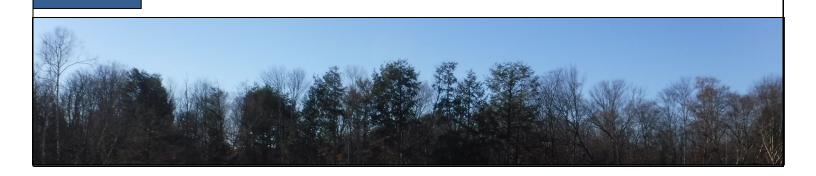
2020 Annual Report Deep River (Miller's Road) Waste Disposal Site

Prepared For:



Prepared by

Jp2g Consultants Inc.

1150 Morrison Drive, Suite 410, Ottawa, Ontario, K2H 8S9 T.613.828.7800 F.613.828.2600 Jp2g Project No. 17-6015E June 2021

DISTRIBUTION LIST

PDF	PDF (WITH DATABASE)	ASSOCIATION / COMPANY
1	1	TOWN OF DEEP RIVER
	1	JP2G CONSULTANTS INC.
1	1	MINISTRY OF THE ENVIRONMENT, CONSERVATION AND PARKS (DISTRICT OFFICE)

Jp2g Consultants Inc. Signatures

Report Prepared By:

Andrea Sare, C.Tech., EP Environmental Technician

Report Reviewed By:

Andrew Buzza, P.Geo Project Manager 0942

EXECUTIVE SUMMARY

The Miller's Road Waste Disposal Site is located in Part Lot 6, Concession XIII, Township of Buchanan now in the Town of Deep River, east of Highway 17 along Miller's Side Road. Regionally the site lies in the east margin of the Algonquin Highlands and is characterized by areas of thin till over bedrock and deposits of fine sand. The Environmental Compliance Approval (ECA) allows for the use and operation of a 4.5 ha landfilling area within an 8.55-hectare property. In addition to the 8.55 ha landfill property, 14.14 ha has been registered on title as contaminant attenuation zone establishing a total site area of 22.69 ha. ECA A413106 amended April 4, 2014 has been issued for the site and monitoring and reporting as per the amended ECA has been completed and is detailed herein.

Operational details are found in **Part 1** of this report. Environmental monitoring completed in 2020 is provided in **Part 2** of this report.

Overburden groundwater monitors have been established at and around the site to document the physical conditions at the site, as well as the groundwater quality. The direction of groundwater flow has been determined to be southeast towards Maskinonge Lake. Some radial flow may exist west of the site due to groundwater mounding.

An assessment of groundwater quality has confirmed the presence of a leachate plume leaving the site to the southeast in the direction of the Landfill Creek. Contaminants in this direction will be contained within a Contaminant Attenuation Zone that extends south to Spring Creek and south east to Maskinonge Lake that is located on Canadian Nuclear Laboratories (Federal) property. Elevated leachate concentrations are also evident along the western property boundary. The chemical parameters exhibit a rapid decrease in concentration in a westerly direction as monitoring wells located further to the west and south west exhibit significantly lower values and are not impacted by leachate. The Municipality has acquired additional properties to the west of the landfill site (i.e. approximately 14 hectares) registered on title as a Contaminant Attenuation Zone in July 2011.

All parameters reveal concentrations that are less than the RUPO with the exception of manganese (spring and fall) for monitoring well 96-1D. No increasing trends in concentrations of manganese at monitoring well 96-1D are apparent; and due to the low values of all other leachate indicator parameters the concentrations are likely attributed to the local mineralogy in the area. Accordingly, the site is interpreted to be compliant with Guideline B-7.

No parameters exceed trigger values with the exception of manganese at 96-1D. This is consistent with the B-7 assessment. Tier II sampling is not recommended.

Surface water samples were collected on three occasions in 2020. Samples were collected from upstream and downstream of the landfill site in both Spring Creek and the Landfill Creek.

Some impact is present in the Landfill Creek located to the southeast of the site. The impact is characterized by elevated metal concentrations as well as iron precipitate on the streambed. Unionized ammonia calculations based on field data at SW-6 are lower than PWQOs and trigger values. Consequently, contingencies are not required at this time.

Continued landfill operations and monitoring as per the ECA are recommended.

Table of Contents

DISTRI	BUTION	N LIST	••••••
EXECU	TIVE SU	JMMARY	1
PART :	1 - 2020	OPERATIONS	
1.0	INTRO	ODUCTION	1
	1.1	Background	1
	1.2	Annual Reporting	1
	1.3	Ministry of the Environment, Conservation and Parks	2
	1.4	Additional Reports Required by the ECA	
2.0	SITE C	DPERATIONS	3
PART :	2 - 2020	ENVIRONMENTAL MONITORING	
I AIII A			
1.0	INTRO	ODUCTION	
2.0	HYDR	OGEOLOGIC SETTING	1
	2.1	Site Description and Physiography	1
	2.2	Bedrock Geology	3
	2.3	Overburden Geology	∠
	2.4	Surface Hydrogeology	∠
	2.5	Hydrogeology	ε
	2.5.1	Hydraulic Properties	6
	2.5.2	Hydraulic Conductivity	ε
	2.5.3	Porosity	ε
	2.6	Physical Hydrogeology	6
	2.6.1	Water Table and Hydraulic Head Elevations	6
	2.6.2	Horizontal Gradients	8
	2.6.3	Vertical Gradients	8
	2.6.4	Groundwater Velocity	g
3.0	MON	ITORING WELL STATUS	g
	3.1	Monitoring Well Installations	g
4.0	LEASE	E AGREEMENT	10
5.0	MON	ITORING PROGRAM	10
	5.1	Assessment Program	10
6.0	GROL	JNDWATER QUALITY ASSESSMENT	12
	6.1	Background Water Quality	12
	6.2	Leachate Characteristics	13
	6.3	On-Site Monitoring Wells	15
	6.4	Off-Site Monitoring Wells	17

	6.5	Residential Monitoring Wells	19
	6.6	Bedrock Groundwater	20
	6.7	Assessment of Impact of the Landfill Site on Groundwater	20
	6.8	Organic Analysis	24
	6.9	Leachate Impacted Areas	
7.0	SITE	COMPLIANCE	24
8.0	ASSE	SSMENT OF TRIGGER VALUES	25
	8.1	Tiered Monitoring	26
	8.2	Groundwater Contingency	27
9.0	METH	HANE MONITORING	27
10.0	SURF	ACE WATER ASSESSMENT	28
	10.1	Introduction	28
	10.2	Surface Water Setting	28
	10.3	Assessment Program	29
	10.4	Background Surface Water Quality	29
	10.5	Surface Water Quality	29
	10.6	Groundwater and Surface Water Interaction	32
	10.7	Surface Water Trigger Location	33
	10.8	Surface Water Trigger Mechanism	33
	10.9	Surface Water Contingency	34
11.0	DISC	JSSION AND RECOMMENDATIONS	35
REFER	ENCES.		37
LIMITA	ATIONS	AND USE OF THE REPORT	39
LIST O	F TABLE	ES S	
Table 1	1	Ministry TSS Groundwater & Surface Water Comments	
Table 2	2	Hydraulic Conductivity Tests	
Table 3	3	Groundwater Elevations and Vertical Gradients	
Table 4	4	Monitoring Summary	
Table 5	5	Range of Background Values Historical Monitoring	
Table 6	6	Range of Leachate Values	
Table 7	7	2020 On-Site Chemical Parameters Indicating Increased Leachate Loading and Greater Then ODWS/OG	
Table 8	8	Off-Site South Chemical Parameters Indicating Increased Leachate	
	_	Loading and Greater Than ODWS/OG	
Table 9	9	Off-Site West Wells Chemical Parameters Indicating Increased Leachate Loading and Greater Than ODWS/OG	
Table 1	10	Residential Wells	
Table 1		Reasonable Use Criteria	
Table 1		Summary of 2020 Ministry Guideline B-7 (Reasonable Use) Calculations Western Proper Line	ty
Table 1	13	Trigger Values	

Table 14	2020 Chemical Parameters Above PWQO's
Table 15	Water Quality Comparison SW2, SW3 and 95-6
Table 16	Water Quality Comparison SW2, SW3 and 07-2S/D

LIST OF GRAPHS

Graph 1 Water Elevations in Monitoring Wells (Upgradient and Downgradient) 2004-2020

Graph 2 Leachate Value vs. Background Values

Graph 3 Boron Concentrations

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Existing Conditions Plan
Figure 3	Site Plan with Contaminant Attenuation Zone
Figure 4	LiDAR Shaded Relief Map of the CNL Site
Figure 5	Topography in the Region Around the Millers Road WDS
Figure 6	Chalk River Laboratories Drainage Basins
Figure 7	Direction of Shallow Overburden Groundwater Flow Spring 2020
Figure 8	Direction of Deep Overburden Groundwater Flow Spring 2020
Figure 9	Monitoring Locations Map

LIST OF APPENDICES

Appendix A Appendix B	Environmental Compliance Approval MECP Correspondence
Appendix C	Monitoring and Screening Checklist and Standard Sampling Protocol
Appendix D	Grain Size Distribution
Appendix E	Monitoring Well Status
Appendix F	Borehole Logs from Recent Programs
Appendix G	Lease Agreement
Appendix H	Water Quality Analysis
Appendix I	Chemical Trends

PART 1

2020 OPERATIONS

1.0 INTRODUCTION

This report presents the results of the 2020 activities that were completed at the Deep River (Miller's Road) Waste Disposal Site. The Miller's Road Landfill Site operates under ECA No. A413106 originally issued April 23, 1980 and most recently amended September 20, 2017. The ECA allows for the use and operation of a 4.5 ha landfilling area within an 8.55-hectare property. In addition to the 8.55 ha landfill property, 14.14 ha has been registered on title as contaminant attenuation zone establishing a total site area of 22.69 ha. The site is licensed to accept Construction and Demolition (C & D) wastes only and is located in Part Lot 6, Concession XIII, Township of Buchanan now in the Town of Deep River east of Highway 17 along Miller's Side Road. A site location plan is provided as **Figure 1** and the ECA is provided as **Appendix A**.

1.1 Background

The Miller's Road Waste Disposal Site is presently leased by the Town of Deep River from Canadian Nuclear Laboratories (CNL) formerly Atomic Energy of Canada Limited (AECL) and has been the landfill Site for the Municipality since 1965. In response to an Application for an amended ECA dated April 2002, the Ministry of the Environment, Conservations and Parks (MECP), (also known as the MOE, MOEE, MOECC and the Ministry) issued ECA No. A413106 dated November 14, 2002. The supporting documentation listed as items 2 to 6 on Schedule "A" described the operation and development and monitoring requirements waste disposal site. The landfilling of domestic waste ceased in July 2002 and the designated areas within the 4.5 ha landfilling area have received C & D waste within the design contours. As required under Conditions 11 and 12, an Operations Report and Sludge Lagoon Decommissioning Plan dated November 2003 was filed providing further detail on site operations. As a part of the expansion application, filed in March 2013, an updated Design and Operations report was prepared by Jp2g Consultants Inc.

The site encompasses a total area of approximately 22.69 ha, of which approximately 4.5 ha has been utilized for landfilling. The remaining lands serve as a buffer and contaminant attenuation zone to the landfill site. Additional lands have been identified through the lease agreement with CNL to act as attenuation zone property.

The site receives C&D waste generated within the geographic boundaries of the Town of Deep River and the Town of Laurentian Hills. The properties surrounding the site are comprised of CNL property to the north, south and east. As per the ECA issued on April 4, 2014 the approved capacity of the site is 321,825m³.

The most recent amended ECA was issued on September 20, 2017 for approval of the Trigger Mechanism and Contingency Plan for the site.

1.2 Annual Reporting

Condition 11.1 of the ECA requires the preparation of an annual report to be submitted to the MECP District Manager by June 1 the year following. Condition 11.2 subsections (i) to (xx) inclusive outline the operational details at the site and the results of the environmental monitoring. The annual report will address the following:

Part 1 Site Operations

Part 2 Environmental Quality Monitoring

1.3 Ministry of the Environment, Conservation and Parks

Under the MECP site compliance review program, the Ottawa District Office has conducted site inspections and directed the Technical Support Section (TSS) to complete groundwater and surface water reviews of the Annual Reports. Reports have been completed on balance to accommodate requirements of the ECA and TSS comments when provided. Historical and more recent Ministry comments are provided in **Appendix B**.

The most recent Technical Support Sections (Groundwater) regarding the Millers Road Site are based the 2016 AMR (2017) and are provided in **Table 1**. All comments are provided in **Appendix B**.

Table 1
Ministry TSS Groundwater & Surface Water Comments

Ministry TSS Groundwater & Surface Water Comments Ministry Response						
Comments on hydrogeological aspects of the 2016 AMR	<u> </u>					
Dated January 4, 2018						
It is recommended to include the residential wells on a 3-year basis with the next sampling scheduled for 2018. I concur with this.	Residential wells will be sampled on a 3-year basis. The residential houses were sampled in 2018, and the next sampling event will be scheduled for 2021.					
Jp2g attributed manganese and iron concentrations to the local area mineralogy, and accordingly concluded that the site is interpreted to be compliant with Guideline B-7. I concur with this conclusion.	Agreed.					
An MECP Surface Water Scientist should continue to be consulted with respect to surface water management at this site.	We will continue to consult a Ministry Surface Water Specialist with respect to surface water management at the site.					
The contingency plan involves conducting additional sampling and investigation to determine the source and extent of impacts, and to identify an acceptable mitigation/remediation program, should one be required. The specifics of the plan will be dependent on the nature and extent of the impact. I concur with the proposed trigger mechanisms and contingency plan. I recommend continuing monitoring iron and manganese as trigger values, for any future leachate-related impacts that may occur.	We will continue to monitor iron and manganese as trigger values for any future leachate-related impacts that may occur.					
Methane was not detected in any of the monitored wells or the on-site attendants shed during the 2016 monitoring events. The onsite risks associated with landfill gas associated with this site are beyond the scope of my review. Landfill gas monitoring should continue, and the need for landfill gas mitigation should continue to be assessed and discussed in future monitoring reports.	Agreed. We will continue to conduct landfill gas monitoring. As well, landfill gas migration will continue to be assessed and discussed in future monitoring reports.					

No other recent TSS comments from the Ministry have been provided to Jp2g for review.

In October 2020 the Ministry completed a "Solid Non-Hazardous Waste Disposal Site Inspection Report". Section 5 of the Site Inspection Report listed actions to be completed by the Town that included:

- 1. The Town shall amend the operating days in the ECA to align with the Site's operational days.
- 2. The Town should ensure that all future annual monitoring reports include a section which discusses groundwater and surface water interactions.

A letter dated January 14, 2021 was completed by Jp2g on behalf of the Town to address the above action items. The letter was provided to the Ottawa District Office of the Ministry of the Environment, Conservation and Parks, via email dated January 14, 2021. Ministry comments dated February 8th, 2021 suggested Item 1 may be updated during the next ECA submission at this time.

The response letter, and email correspondence can be found in **Appendix B**.

1.4 Additional Reports Required by the ECA

The ECA for the Miller's Road WDS issued on April 14, 2014 contain certain conditions that require select reports to be provided to the Ministry. The reports listed below were submitted to the Ministry in 2015.

Condition 3.2 of the ECA requires that '...an operations and procedures manual that addresses the requirements of this ECA is prepared for the Site.' An operations manual was prepared by Jp2g Consultants on behalf of the Town of Deep River in February 2015 and provided to the Town and the Ministry.

Condition 8.2 of the ECA required that '...the Owner shall submit to the Director for approval and copies to the District Manager, details of a contingency plan to be implemented in the event that the surface water or groundwater quality exceeds the trigger mechanism,' A contingency plan was prepared by Jp2g Consultants on behalf of the Town of Deep River in January 2015 and provided to the Ministry.

Condition 10.3 of the ECA required that 'The owner shall prepare an Emergency Response Manual for the Site and Submit to the District Manager...' An Emergency Response Manual was prepared by Jp2g Consultants on behalf of the Town of Deep River in January 2015 and provided to the Ministry.

2.0 SITE OPERATIONS

The information compiled for the C&D waste disposal site operations for 2020 is based on data gathered, and a Jp2g field inspection and site survey. The Millers Road Landfill Site operating hours are Tuesday *through* Saturday 9:00 a.m. to 12:00 p.m. The ECA currently states operational hours of Tuesday *and* Saturday 9:00 a.m. to 12:00 pm; however, correspondence with the Ministry (see **Appendix B**) suggests that upon the next ECA amendment the above operational hours can be adjusted to reflect the correct operations. An attendant is on duty when the site is opened to the public and directs C & D waste deliveries to the designated disposal area. Cover of the waste is to occur at the end of each working day. An existing conditions plan is provided in **Figure 2** at the end of text.

Annual reporting is required under Section 11.2 of the ECA dated April 4, 2014. The following details the required information included in the annual report as per Section 11 of the ECA.

i. The results and an interpretive analysis of the results of all leachate, groundwater, surface water and landfill gas monitoring, including an assessment of the need to amend the monitoring programs;

Completed in Part 2 – 2020 Environmental Monitoring

ii. An assessment with regard to compliance of the groundwater quality at the property boundary and compliance point with regards to Guideline B-7 – Reasonable Use Concept;

Completed in Part 2 – 2020 Environmental Monitoring

iii. An assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plan;

There are no engineered facilities at the site. There are no changes to the site design or site operation required at this point.

iv. Site plans showing the existing contours of the Site;

An Existing Condition Plan is provided as **Figure 2** at the end of text.

v. Areas of landfilling operation during the reporting period;

The landfilling area and active face are shown on the Existing Conditions Plan, **Figure 2**, provided at the end of text.

vi. Areas of intended operation during the next reporting period;

Landfilling in 2021 will be completed consistent with Section 6 of the Design and Operations Manual.

vii. Areas of excavation during the reporting period;

No excavation outside of regular landfilling activities occurred at the Site in 2020.

viii. The progress of final cover, vegetative cover, and any intermediate cover application;

Daily cover is applied at the end of each working day. As final contours are reached a final cover is applied and is seeded by the Town.

ix. Previously existing site facilities;

All site facilities that existed in 2020 are shown in the existing conditions plan, **Figure 2**, provided at the end of text.

x. Facilities installed during the reporting period;

No new facilities were installed in the 2020 reporting period.

xi. Site preparations and facilities planned for installation during the next reporting period;

There are no planned facility installations for the 2021 monitoring period.

xii. Calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Site during the reporting period and a calculation of the total volume of Site capacity used during the reporting period;

The total volume of waste and cover deposited at the Site in 2020 was estimated to be approximately 3,625m³. The total remaining capacity as of the end of 2020 is estimated to be approximately 80,000³. The following table provides a summary or waste landfilling and remaining capacity.

Period of Waste Deposition	Yearly Waste & Cover based on a comparison of yearly surveys (m³)	Remaining Capacity Based on Comparison of Yearly Survey Surface to Final Surface Contours (m ³)
Initial volume subsequent to ECA amendment		104,800
Period from Fall 2013 to Fall 2014	3,074	103,200
Period from Fall 2014 to Fall 2015	2,822	97,100
Period from Fall 2015 to Fall 2016	3,122	93,974
Period from Fall 2016 to Fall 2017	2,983	91,072
Period from Fall 2017 to Fall 2018	4,381	86,728
Period from Fall 2018 to Fall 2019	3,074	83,688
Period from Fall 2019 to Fall 2020	3,625	80,063

xiii. A summary estimated annual quantity (m^3) of waste received at the site.

Approximately 3,625 cubic metres of waste and cover was landfilled at the site in 2020.

xiv. A summary of any complaints received, and the responses made;

No complaints were received regarding the site during the 2020 monitoring period.

xv. A discussion of any operational problems encountered at the Site and corrective action taken;

No operational problems were reported during the 2020 monitoring period.

xvi. A summary of the amount of waste refused for disposal at the Site, the reasons for refusal and the carrier who brought the waste to the Site;

There were no waste loads refused from the Millers Road WDS in 2020.

xvii. A report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;

All monitoring wells at the site are operational.

xviii Any other information with respect to the site which the District Manager or Regional Director may require from time to time.

See Section 1.4 Part 1.

xix A statement of compliance with all conditions of this ECA and other relevant Ministry groundwater and surface water requirements;

An assessment of groundwater and surface water compliance is provided in Part 2-2020 Environmental Monitoring.

A confirmation that the site inspection program as required by this ECA has been complied with by the Owner;

The Town is aware of the site inspections as detailed in Conditions 6.4 and 6.5 of the ECA.

xxi Any changes in operations, equipment or procedures employed at the Site;

No changes are required at this time.

xxii Recommendations regarding any proposed change in operation of the Site;

It is recommended that the Town continue operations as outlined in item 13 of Schedule "A" of the revised ECA dated April 2014: "ii. Design and Operations Report – Millers Road Waste Disposal Site Prepared by Jp2g Consultants Inc." March, 2013.

It is recommended that the Town investigate the use of alternative daily cover that is comprised of "shredded" C&D wastes. An application to revise the ECA would be required.

PART 2 – 2020 ENVIRONMENTAL MONITORING

1.0 INTRODUCTION

Part 2 of this report presents the results of the 2020 monitoring that was completed at the Town of Deep River (Miller's Road Landfill Site). The Miller's Road Landfill Site operates under ECA No. A413106 originally issued April 23, 1980 and most recently amended September 20, 2017. The ECA allows for the use of, and operation of a 4.5 ha landfilling area within an 8.55-hectare property. In addition to the 8.55 ha landfill property, 14.14 ha has been registered on title as contaminant attenuation zone establishing a total site area of 22.69 ha. The site is located in Part Lot 6, Concession XIII, in the former Township of Buchanan, now Town of Deep River (Figure 1).

The overall objective of the environmental quality monitoring is to document and characterize the hydrogeological conditions at the site and based on the data obtained provide an assessment of the impact of the waste disposal site on the ground and surface water regimes. The assessment of the hydrogeological performance of the waste disposal site is based on the determination of the following:

- i) hydrogeologic setting
- ii) leachate plume (direction of groundwater flow and impact of water quality)
- iii) Ministry of the Environment, Conservations and Parks (MECP) Reasonable Use Policy

The report and activities have been completed and reported on in general conformance with the November 2010 Ministry of the Environment Technical Guidance Document for the submission of reports for ground and surface monitoring for Waste Disposal Sites. The "Monitoring and Screening Checklist" is provided in **Appendix C**.

2.0 HYDROGEOLOGIC SETTING

The physiography, geology and hydrogeology of the waste disposal site are described in the following sections and are repeated in part or in whole from previous reports submitted to the Town (as in part listed at the end of this report). The descriptions are based on a review of existing information (Ministry well records and published geologic maps) and on-site specific data obtained from the field investigations.

2.1 Site Description and Physiography

The site is presently leased by the Town of Deep River from Canadian Nuclear Laboratories (CNL) formerly Atomic Energy of Canada Limited (AECL) and has been the waste disposal site for the Municipality since approximately 1965 (Greer Galloway 1985). In December 2005, the Town of Deep River and Atomic Energy of Canada Limited at the time put in place a new lease agreement for the operation of the waste disposal site. The waste disposal site is made up of four areas comprising a total area of 8.55 ha (21.12 acres). Landfilling within Areas 1 and 2 (3.22 ha) has been cleared and used for waste disposal. The northerly portions of Areas 3 and 4 (5.33 ha) are approximately 5 m lower in elevation than Areas 1 and 2 and are heavily wooded. The properties to the west of the site have been purchased for the purpose of a Contaminant Attenuation Zone (CAZ). A site plan showing the 2020 landfilling is provided in **Figure 2**, and a plan showing well locations and the CAZ is shown in **Figure 3**.

June 2021 1 | P a g e

Regionally, the Millers Road WDS and adjacent Canadian Nuclear Laboratories (CNL) lies within the Ottawa-Bonnechere graben, a rift valley that was generated by tension faulting. In the region around CNL, the Ottawa River occupies the fault zone that defines the northeastern boundary of the graben; the southwestern boundary of the rift valley lies approximately 60 km southwest near the Bonnechere River, but there are a number of smaller or secondary faults within the graben. One prominent secondary fault cuts through the CNL site and defines the valley now occupied by the Little Rat, Big Rat, Maskinonge, and Chalk Lakes. The general northwest-southeast fabric in the region's physiography is a product of these faults. Initial development of the graben occurred between 700 and 600 million years ago, with a second episode of tensional faulting occurring between 150 and 90 million years ago. Figure 4 shows the Light Detection And Ranging (LiDAR) relief map of the CNL site. Topographically, one of the dominant features of the CNL property is the ridge (maximum elevation 220 m asl) that separates the Maskinonge-Chalk Lake valley from the Ottawa River. The river lies at a nominal elevation of 111 m asl, while Maskinonge Lake is only slightly higher, at a nominal elevation of 113 m asl. To the west-southwest of the Maskinonge-Chalk Lake valley, the land rises to a former terrace of the Ottawa River. Where exposed, the bedrock surface is frequently knobby, with highs and lows on a scale of several hundred metres laterally and tens of metres vertically. Even when bedrock is not exposed, many of the topographic features of the CNL site are bedrock controlled. Regional topography is shown in Figure 5.

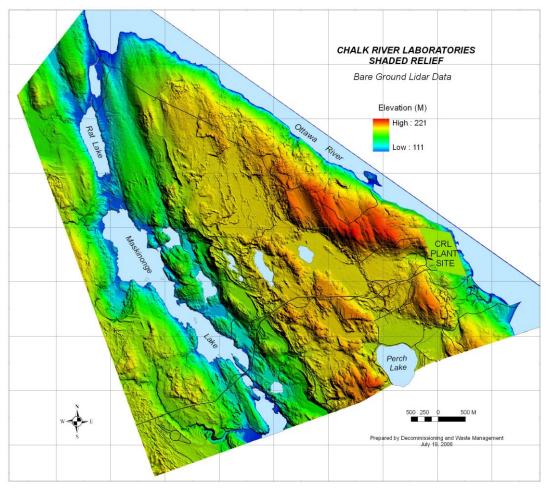


Figure 4 LiDAR Shaded Relief Map of the CNL Site1

June 2021 2 | Page

_

¹ Environmental Assessment Study Report For The Bulk Material Landfill Project 165-03710-ENA-001 Revision 1 March 2009

Figure 5 shows topography at the Miller's Road WDS. The general lay of the land slopes toward Maskinonge Lake.

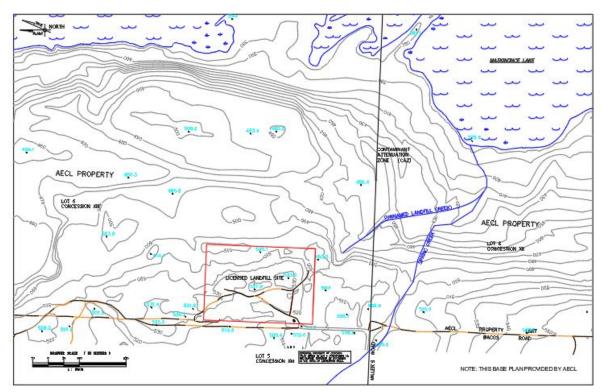


Figure 5 Topography in the Region Around the Millers Road WDS²

Spring Creek flows east towards Maskinonge Lake passing south of the site by approximately 270 m (approximately 90 m south of the unopened road allowance extension of Miller's Side Road). Spring Creek originates up gradient in the privately-owned properties west of the site.

Locally, the site is characterized by relatively flat terrain. A drainage divide runs east-west, through the approximate centre of the site. At the north of the property, north of the divide, the topography slopes gently to the northeast. South of the divide and beyond the landfill boundaries the topography slopes steeply eastward in a series of terraces toward Maskinonge Lake and the Ottawa River. Consequently, drainage from the site flows mostly south-southeast towards Maskinonge Lake. There are no land use concerns or water users observed downstream of the waste disposal site. Currently, the nearby residences are located up gradient (approximately 500m) of the waste disposal site and potential impact on these water supplies is not anticipated (refer to **Section 6.5**). Furthermore, it is anticipated that Spring Creek will act as a hydraulic boundary to any leachate migrating south-westward.

2.2 Bedrock Geology

Bedrock geologic information is based on published geology maps, Ministry water well records, and previous work programs. The site is reported to be underlain by Precambrian, felsic metasedimentary basement rock. The depth to bedrock, as encountered during various drilling programs, varies from 0 m to approximately 30 m. Bedrock outcrops occur throughout the area but are particularly numerous in the northern half of the site and along the pathway to Maskinonge Lake

June 2021 3 | P a g e

 $^{^{2}}$ 2010 Annual Report Deep River (Miller's Road) Waste Disposal Site, Jp2g Consultants Inc. May 2011

southeast of the landfill area. From the northern area, the bedrock dips severely to the west and south varying from near surface to depths of approximately 40 metres.

The following outlines the approximate bedrock surface elevations at selected monitoring wells that are located along the western edge of the site. The elevations are referenced to an assumed datum.

91-5D	107.88
85-3D	103.87
95-4D	101.55
07-FD	112.85
07-3D	116.66
08-1D	106.81

2.3 Overburden Geology

Surficial geologic information is taken from field data, existing surficial mapping and Ministry water well records. There are three major terrain units in the study area, namely thin till over rock, fluvial fine-grained sand and recent organic deposits (Gadd, 1963). A thin veneer of till overlying the bedrock surface occurs in parts of Area 2, Area 3 and Area 4. A grain size analysis of the till describes the overburden as reddish-brown gravelly fine sand with a trace of silt. There are numerous cobbles, stones and boulders throughout the unit. The thickness of the till ranges from 0 to 1.75 m. Thus, this deposit is fairly thin and any leachate migration will be controlled by the bedrock surface characteristics. Grain size analysis is provided in **Appendix D**.

A thick deposit of uniform, fine grained fluvial sand with a trace of silt underlies Area 1, the western portion of Area 2, and the portion of the study site located south between Spring Creek and the existing landfill site. The total thickness of this sand unit varies with the bedrock surface topography that slopes steeply in an easterly direction. The thickness of the sand is at least greater than 10.7 m throughout most of Areas 1 and 2.

Falling head tests have previously measured the hydraulic conductivity of these materials. The resultant hydraulic conductivity varies between 4.8×10^{-5} and 6.95×10^{-5} cm/sec. The shallow soils characterized by a Guelph Permeameter revealed hydraulic conductivity values to vary between 1.3×10^{-2} and 7.47×10^{-3} cm/sec.

2.4 Surface Hydrogeology

The regional area surrounding the Millers Road WDS and the CNL lies entirely within the Ottawa River watershed. On the Ontario side of the Ottawa River, all of the major tributary rivers originate in the Algonquin Highlands; Chalk River and Petawawa River are the two major tributaries near CNL.

Figure 6 delineates the major drainage basins around the site and on the CNL property. Much of the surface drainage from the narrow strip adjacent to the Ottawa River is directed to the river. Maskinonge Lake is the largest surface water body entirely within the CNL site boundary, and its catchment (75% of which is within the site boundaries) is also the largest basin on CNL property, accounting for almost 40% of the site's area.

The Miller's Road WDS is located within the Maskinonge Lake Basin. The basin drains to Maskinonge Lake, which in turn drains via Chalk Lake to the Ottawa River.

June 2021 4 | Page

Surface water features in the vicinity of the Miller's Road WDS include an un-named "Landfill Creek" that is located approximately 100m south east of the site and Spring Creek that originates west of the site and passes by the site to the south (Figure 3).

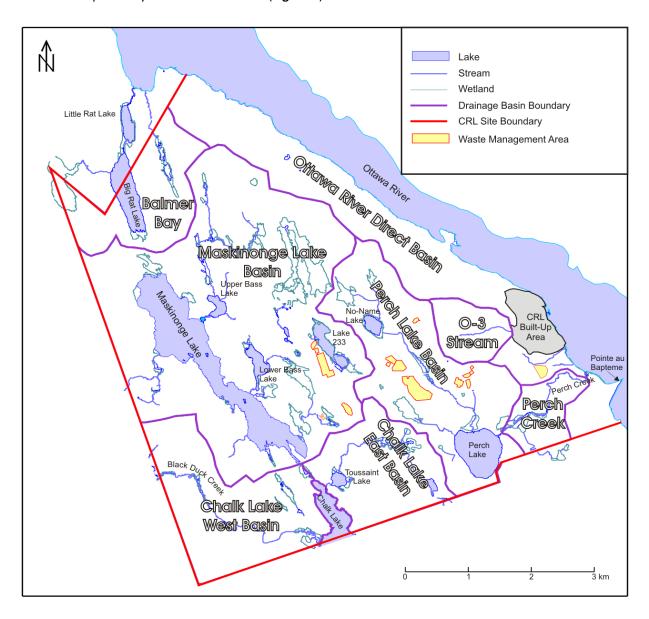


Figure 6 Chalk River Laboratories Drainage Basins³

June 2021 5 | P a g e

-

 $^{^{3}}$ Environmental Assessment Study Report For The Bulk Material Landfill Project 165-03710-ENA-001 Revision 1 March 2009

2.5 Hydrogeology

2.5.1 Hydraulic Properties

Hydraulic properties governing groundwater flow and velocity are hydraulic conductivity (the permeability of the subsurface material with respect to water) and porosity. Groundwater specific discharge (the volumetric flow rate per unit area) in a groundwater flow system is controlled by the hydraulic conductivity of the subsurface materials and the differences in hydraulic head or pressure in the flow system over specified horizontal and/or vertical distances (hydraulic gradient). In overburden flow systems the linear average groundwater velocity is given by the ratio of the specific discharge q (the volumetric flow rate per unit area) to the porosity n.

2.5.2 Hydraulic Conductivity

A thick deposit of uniform, fine grained fluvial sand with a trace of silt underlies the western portion of the site and the portion of the study site located south between Spring Creek and the existing landfill site. The total thickness of this sand unit varies with the bedrock surface topography that slopes steeply in an easterly direction. The thickness of the sand is at least greater than 10.7 m throughout this area. Historical falling head tests and permeameter testing have previously measured the hydraulic conductivity of these sandy materials. The resultant hydraulic conductivity varies between 1.3×10^{-2} cm/sec and 6.95×10^{-5} cm/sec. **Table 2** outlines the hydraulic conductivity of these materials.

Table 2
Hydraulic Conductivity Tests

Location	Date	Depth (mm)	Hydraulic Conductivity cm/sec	Type of Test
85-F	1991	400	1.3 x 10 ⁻²	Guelph Permeameter
85-A	1991	250	7.47 x 10 ⁻³	Guelph Permeameter
91-3	1991	400	1.75 x 10 ⁻³	Guelph Permeameter
91-1	1991	6070	5.53 x 10 ⁻⁵	Falling Head Test
91-2	1991	9840	4.83 x 10 ⁻⁵	Falling Head Test
91-3	1991	8920	6.95 x 10 ⁻⁵	Falling Head Test

2.5.3 Porosity

Due to a well-sorted character, the porosities of the sands, and even of the interstratified sands and silts, are towards the upper end of the range observed in natural materials. The porosities range from 0.35 to 0.45. A representative porosity of the interstratified sands and silts and till is 0.30^4 .

2.6 Physical Hydrogeology

2.6.1 Water Table and Hydraulic Head Elevations

Groundwater levels were measured at selected locations during the monitoring program. Groundwater elevations for samples collected in May and October 2020 are provided in **Table 3**.

June 2021 6 | P a g e

⁴ Environmental Assessment Study Report For The Bulk Material Landfill Project 165-03710-ENA-001 Revision 1 March 2009

Table 3
Groundwater Elevations and Vertical Gradients

Monitoring	Monitoring Reference May-20 Oct-20					Vertical
Well	Elevation	Static	Elevation	Static	Elevation	Gradient (Oct-20)
85-A	128.4	5.31	123.09	5.55	122.85	,
85-B	129.87	5.70	124.17			
85-C	129.44	5.49	123.95	5.66	123.78	
85-D	132.25	8.91	123.34	9.17	123.08	•
88-2-S	133.1	9.65	123.45	9.99	123.11	
88-2-D	133.09	9.58	123.51	9.90	123.19	
89-1-S	128.4	7.03	113.81	7.21	121.19	
89-1-D	128.32	6.45	114.80	6.66	121.66	
91-1	128.234	5.38	122.85	5.58	122.65	
91-2	129.769	9.45	120.32	9.57	120.20	
91-3	118.05	8.84	109.21	8.94	109.11	
91-4	127.97	5.93	122.04	Dry		
91-5 S	129.161	4.73	124.43	5.13	124.03	
91-5 D	129.558	5.14	124.42	5.55	124.01	
95-3-S	129.066	4.81	124.26	5.16	123.91	
95-3 D	129.053	4.92	124.13	5.29	123.76	
95-4 S	129.846	5.16	124.69	5.57	124.28	
95-4 D	129.864	5.21	124.65	5.62	124.24	
95-5	129.391	4.50	124.89	4.86	124.53	
95-6	126.988	4.17	122.82	4.52	122.47	
96-1-S	128.353	3.44	124.91	3.96	124.39	
96-1-D	128.327	3.57	124.76	4.00	124.33	•
96-2		D	ry	D	ry	
96-3	129.98	6.19	123.79	6.53	123.45	
07-2S	123.68	2.04	121.64	2.28	121.40	
07-2D	123.96	5.40	118.56	5.78	118.18	•
07-F S	130.26	6.57	123.69	7.01	123.25	1
07-F D	130.986	6.33	124.66	6.77	124.22	
07-3S	129.63	5.00	124.63	5.44	124.19	
07-3D	129.76	5.13	124.63	5.56	124.20	
08-1S	129.845	5.24	124.61	5.67	124.18	
08-1D	129.858	5.26	124.60	5.64	124.22	

Note:

All data is referenced to an assumed datum and is anticipated to be approximatley 25.0m lower than geodetic elevations

In general, water elevation data is collected twice-yearly from a significant subset of the monitoring wells in the study area around the Miller's Road WDS. The water table elevations range from approximately 125 m (assumed elevation) located up-gradient of the site to approximately 109m (assumed elevation) down-gradient of the site. **Graph 1** provides records of measurements of two monitoring wells (up-gradient and down-gradient) located close to the site for the period of 2004 to 2020.

June 2021 7 | Page

130 125 **Elevation Meters Assumed** 120 91-3 Downgradient 115 96-1-D Upgradient 110 105 100 May-08 May-09 May-10 Oct-15 May-0> Nov-16 Oct-17 Nov-13 Ct-14 0_{ct-11} 0_{ct-12}

Graph 1 - Water Elevations in Monitoring Wells (Up-gradient and Down-gradient) 2004-2020

Water table measurements reveal a fairly stable regime over the annual cycle as well as on a longer-term basis. In most years, the annual variations follow patterns that show minimal in fall and late fall with slightly higher levels in the spring. The difference between the minimum and maximum groundwater levels at each location suggest a consistent hydraulic gradient.

2.6.2 Horizontal Gradients

The direction of groundwater flow at the site is influenced by the bedrock surface topography and is predominantly east and south-east. Groundwater flow in the vicinity of Area 2 may at times take on a south-western trend under a low hydraulic gradient. It may be that the groundwater in this area takes on a radial pattern of flow due to groundwater mounding in the waste area. The direction of flow in close proximity to Spring Creek located south of the site takes on a south-eastern component towards Maskinonge Lake. The direction of groundwater flow leaving the southern portion of Area 4 flows immediately to the southeast and eventually Maskinonge Lake. These flows are influenced by the dipping bedrock surface and topography and reveal a steeper hydraulic gradient. Potential flows from Areas 3 and 4 would also have a southern component (with the exception of the northern section of Area 3). Flows from this area are to the north to a wetland. The flows in this direction are also controlled by the bedrock surface topography and will eventfully migrate to Maskinonge Lake. The direction of groundwater flow at the site during the 2020 monitoring events are provided in Figures 7 and 8.

2.6.3 Vertical Gradients

Vertical gradients were estimated from the water level measurements collected from the multilevel monitoring wells 88-2, 89-1 and 07-02 at the south end of the site and 95-3, 95-4, 96-1, 07-03, 07-F and 08-1 at the northwest end of the site. On balance, there is little difference in elevation of water levels between the shallow and deep settings from the majority of monitoring wells.

The vertical gradients in close proximity to the Landfill Creek south of the site reveal a downward movement of groundwater (i.e. 07-2). Away from the creek at the south end of the site the groundwater reveals an upward movement (i.e. 88-2 and 89-1). Upwards trends were also observed along the west side of the landfill at 07-F located west of the landfill in the CAZ. The vertical gradients are outlined in **Table 3**.

June 2021 8 | P a g e

2.6.4 Groundwater Velocity

The linear velocity of the groundwater flow is estimated based on horizontal gradients from May 2020 and is calculated below.

Linear velocity south of landfill (88-2D to 91-3; 290m)

- V velocity Ki/n
- K Value is average of the falling head test results from the south wells 5.7 x 10⁻⁵ cm/sec
- I gradient between 88 2D and 91-3; 0.04m/m
- N porosity 0.38
- V Ki / n = $5.7 \times 10^{-5} \times 0.04 / 0.38$
- = ~ 2 m/year

Linear velocity south west from western property line (91-5D to 95-3D; 200m)

- V velocity Ki/n
- K K value is average of the falling head test results from the south wells 5.7 x 10⁻⁵ cm/sec
- I gradient between 91-5D and 95-3D; 0.0015 m/m
- N porosity 0.38
- V Ki / n = $5.7 \times 10^{-5} \times 0.0016 / 0.38$
- = < 1 m/year

The values are relatively low and typically representative of the low K values established from 1991.

3.0 MONITORING WELL STATUS

The status of all monitoring wells has been assessed. Each well was located and checked for any deficiencies. All wells requiring sampling under the ECA are reported to be in good working order. The status of all monitoring wells is summarized in **Table 4**. A photo log of wells is provided in **Appendix E**.

3.1 Monitoring Well Installations

Numerous monitoring well installation programs have been completed at the site, the most recent having been completed in the fall of 2008. Borehole logs of all wells dating to and including 1996 are documented in the Robinson Consultants Inc. February 1998 submission. Borehole logs from recent programs are provided in **Appendix F**.

June 2021 9 | P a g e

4.0 LEASE AGREEMENT

The Millers Road Waste Disposal Site is located on Federal Property and is currently leased by the Town of Deep River from Atomic Energy of Canada Limited (now Canadian Nuclear Laboratories). In December 2005 the Town of Deep River and Atomic Energy of Canada Limited (AECL) put in place a new lease agreement for the operation of the waste disposal site. Included in the agreement was the use of additional lands to act as a Contaminant Attenuations Zone (CAZ). The CAZ extends south to Spring Creek and east to Maskinonge Lake. A copy of that agreement and an outline of the CAZ are provided in **Appendix G**.

5.0 MONITORING PROGRAM

The approved monitoring program under the ECA dated April 4, 2014 is based on the supporting documentation for the Expansion Application, Section 7.0 of the Design and Operations Report, Jp2g letter dated January 8, 2014 in response to the EAB review, and ECA Condition 7.6(2).

5.1 Assessment Program

Approved Groundwater Inorganic Monitoring

Groundwater monitoring occurs two times per year and includes:

Monitoring Wells: 91-2 (background), 91-5 S/D, 95-3 S/D, 95-4 S/D, 95-5, 95-6 (leachate), 96-1 S/D, 96-2, 96-3, 07-2 S/D, 07-3 S/D, 07-F S/D, 08-1 S/D.

Groundwater Parameters: alkalinity, chloride, conductivity, nitrite, nitrate, TDS, TKN, hardness, calcium, magnesium, potassium, sodium, aluminium, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, silicon, strontium, thallium, titanium, vanadium, zinc, and DOC.

Approved Groundwater Organic Monitoring

Organic groundwater monitoring occurs two times per year and includes: 95-3S, 95-3D, 96-1S, 96-1D, 95-6, 07-3D, 07-3S

Approved Surface Water Monitoring

Surface water sampling occurs three times per year and includes:

Stations: SW-1 through SW-7

Parameters: (ICP metal scan), alkalinity, BOD, calcium, chloride, COD, conductivity (field), hardness, ammonia, nitrite, nitrate, pH (field), phenols, turbidity, total P, ammonia unionized, DO, Note physical characteristics of sample location.

June 2021 10 | P a g e

A monitoring summary is provided in **Table 4**.

Table 4: Monitoring Summary

Monitoring Location	Sampling Per ECA	Water Level Per ECA	Compliance Location	Well Status	May-20	Sep-20	Oct-20
85-A		✓		Operational			
85-B	***************************************	✓		Operational			
85-C		✓		Operational			
88-2-S		✓		Operational			
88-2-D		✓		Operational			
89-1-S		✓		Operational			
89-1-D		✓		Operational			
91-1		✓		Operational			
91-2 (background)	✓	✓		Operational	✓		√+ Dup
91-3		✓		Operational			
91-4		✓		Operational			
91-5 S	✓	✓		Operational	✓		✓
91-5 D	✓	✓		Operational	✓		√+ Dup
95-3-S	✓	✓	TSS	Operational	√+Vocs		√+Vocs
95-3 D	✓	✓	TSS	Operational	√+Vocs		√+Vocs
95-4 S	✓	✓		Operational	✓		✓
95-4 D	✓	✓		Operational	✓		✓
95-5 (background)	✓	✓		Operational	√+ Dup		✓
95-6 (leachate)	✓	✓		Operational	√+Vocs		√+Vocs
96-1-S	✓	✓	ECA	Operational	√+Vocs		√+Vocs
96-1-D	✓	✓	ECA	Operational	√+Vocs		√+Vocs
96-2	✓	✓		Operational			
96-3	✓	✓		Operational	✓		✓
07-2S	✓	✓		Operational	✓		✓
07-2D	✓	✓		Operational	✓		✓
07-F S	✓	✓		Operational	✓		✓
07-F D	✓	✓		Operational	✓		✓
07-3S	✓	✓		Operational	√+Vocs		√+Vocs
07-3D (leachate)	✓	✓		Operational	√+Vocs		√+Vocs
08-1S	✓	✓		Operational	✓		✓
08-1D	✓	✓		Operational	√+ Dup		√+ Dup
1227 Millers Rd*				Operational			
1235 Millers Rd [*]				Operational			
1236 Millers Rd [*]				Operational			
1244 Millers Rd*		-		Operational	***	***************************************	

Monitoring Location	Sampling Per ECA	Water Level Per ECA	Compliance Location	Well Status	May-20	Sep-20	Oct-20
SW-1	✓			Operational	√+ Dup	√+ Dup	✓
SW-2	✓			Operational	✓	✓	✓
SW-3	✓			Operational	✓	✓	✓
SW-4	✓			Operational	✓	✓	✓
SW-5	✓			Operational	✓	✓	✓
SW-6	✓			Operational	✓	✓	✓
SW-7	✓			Operational	✓	✓	✓

Notes:

* Required by TSS

Dup - In addition to the sample, a duplicate sample was taken for QA/QC purposes Vocs - In addition to the sample, a sample of volatile organic compounds was taken

June 2021 11 | Page

6.0 GROUNDWATER QUALITY ASSESSMENT

Groundwater sampling was completed at the waste disposal site to evaluate the background water quality and the impact of the waste disposal site on the local water quality. Sampling has been carried out at the waste disposal site since 1985. Since this time numerous monitoring events have been completed, the latest groundwater sampling having been completed in the fall of 2020. The results of the chemical and physical analysis alongside the Standard Sampling Protocols are also provided in **Appendix H**.

The following sections discuss the variation of chemical concentrations of samples collected during recent monitoring events. These sections include the site background water quality assessment, leachate characteristics, on-site water quality assessment, and off-site water quality assessment (lands adjacent to the waste disposal site).

6.1 Background Water Quality

The background water quality is defined as the groundwater quality unaffected by human activity. That is the groundwater quality in its natural state. For the purpose of the landfill site background assessment, background water quality will be defined as that water quality that is believed to be unaffected by leachate from the landfill site. The background water quality in the overburden in the vicinity of the site that has been considered to be representative of background water quality conditions is at monitoring wells 91-2 and 95-5. Monitoring well 91-2 is located south of the site and typically reveals low chemical concentrations. Monitoring well 95-5 is located northwest and out of the direction of groundwater flow from the waste disposal site. Groundwater chemical concentrations from the 2020 monitoring at both locations 95-5 and 91-2 are all less than Ontario Drinking Water Standards/Objectives and Guidelines (ODWS/OG). The historical range of background chemical concentrations is provided in **Table 5**. Chemical trends for these wells reveal consistent concentrations over time. Graphs that illustrate the trends are provided in **Appendix I.**

June 2021 12 | P a g e

Table 5
Range of Background Values
Historical Monitoring

	opus/oc	Background Values Monitoring Wells 91-2 and 95-5			
Parameter	ODWS/OG				
	Objective	Median	Range		
Al mg/L	0.1	0.01	0.007 - 0.67		
Alkalinity CaCO3 mg/L	30-500	53	30 – 177		
B mg/L	5	0.01	<0.005 – 0.025		
Ba mg/L	1	0.015	0.005 – 0.08		
Be mg/L		0.0005	<0.0001 - <0.005		
Ca mg/L		15	8 – 52.9		
Cd mg/L	0.005	0.0001	<0.00002 - <0.001		
Cl mg/L	250	1	0.25 – 21		
Co mg/L		0.0002	<0.0001 – 0.039		
Cr mg/L	0.05	0.0012	<0.001 – 0.011		
Cu mg/L	1	0.002	0.0001 – 0.07		
Fe mg/L	0.3	0.03	0.005 – 3.01		
Hardness mg/L	500	53	28 – 65		
K mg/L		2.00	<0.4 – 7.1		
Mg mg/L		4.00	<0.001 – 43		
Mn mg/L	0.05	0.02	<0.001 – 0.29		
Mo mg/L		0.00500	<0.0001 - 0.04		
Na mg/L	200	3.5	0.7 – 7		
N-N03 mg/L	10	0.1	<0.05 – 1.12		
Pb mg/L	0.01	0.001	<0.00002 – 0.0022		
TDS mg/L	500	76	42.4 – 198		

Notes:

Bold values exceed ODWS/OG

Range of values from monitoring well 91-2 from years 1991 - 2020, anomolous value for manganese (46 mg/L, 1996) has been excluded

Range of values from monitoring well 95-5 from years 1995 - 2020

Median values averaged between median values from 91-2 and 95-5 from last ten sample events Hardness objective listed as maximum value in MECP ODWS/OG Technical Guidance Document

6.2 Leachate Characteristics

Leachate characteristics are typically those chemical concentrations that exhibit the highest chemical values. Historically, in the case of the Miller's Road Waste Disposal Site, chemical values from monitoring wells 95-6 and 88-3D (replaced as 07-3D) typically reveal the highest concentrations and are deemed to be representative of leachate concentrations. Monitoring well 95-6 is located in the immediate downgradient flow path from the fill area at the south end of the site and monitoring well 07-3D is located along the northwest property line of Area 2. **Table 6** outlines the 2020 range of leachate concentrations from monitoring wells 95-6 and 07-3D.

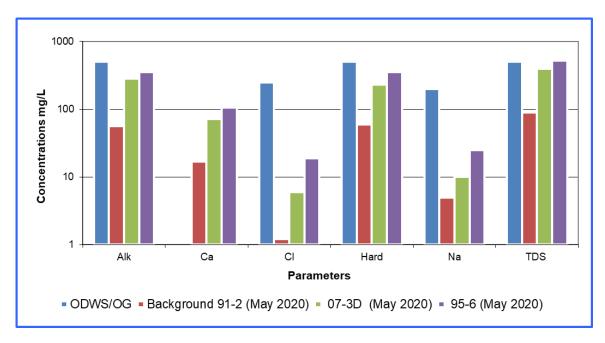
June 2021 13 | P a g e

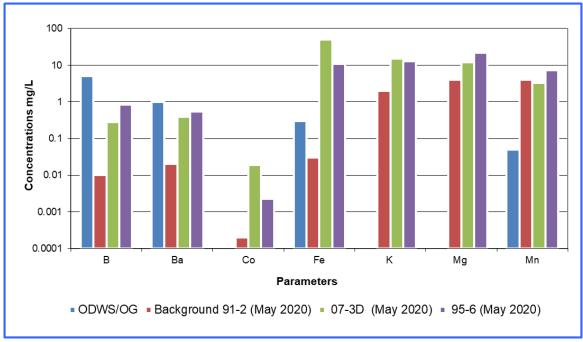
Table 6
Range of Leachate Values

Parameter	ODWS/OG Objective		ground ells 91-2 and 95-5	Monitoring Well 07-3D May-20 - Oct-20	Monitoring Well 95-6 May-20 - Oct-20
		Median	Range		
Al mg/L	0.1	0.01	0.007 – 0.67	<0.01 - <0.01	0.44 - <0.01
Alkalinity CaCO3	30-500	53	30 – 177	285 - 294	354 - 371
B mg/L	5	0.01	<0.005 – 0.025	0.28 - 0.09	0.85 - 0.86
Ba mg/L	1	0.015	0.005 – 0.08	0.39 - 0.34	0.54 - 0.57
Be mg/L		0.0005	<0.0001 - <0.005	<0.0005 - <0.0005	<0.0005 - <0.0005
Ca mg/L		15	8 – 52.9	72 - 69	106 - 116
Cd mg/L	0.005	0.0001	<0.00002 - <0.001	< 0.0001 - < 0.0001	< 0.0001 - < 0.0001
Cl mg/L	250	1	0.25 – 21	6-8	19 -23
Co mg/L		0.0002	<0.0001 – 0.039	0.019 - 0.022	0.0023 - 0.0022
Cr mg/L	0.05	0.0012	<0.001 – 0.011	0.002 - 0.001	0.002 - 0.001
Cu mg/L	1	0.002	0.0001 – 0.07	<0.001 - 0.003	0.004 - 0.002
Fe mg/L	0.3	0.03	0.005 - 3.01	50.1 - 44.6	10.9 - 10.3
Hardness mg/L	500	53	28 – 65	229 - 222	355 - 393
K mg/L		2.00	<0.4 – 7.1	15 - 14	13 - 13
Mg mg/L		4.00	<0.001 – 43	12 - 12	22 - 25
Mn mg/L	0.05	0.02	<0.001 – 0.29	3.34 - 3.52	7.4 - 7.67
Mo mg/L		0.00500	<0.0001 - 0.04	<0.0005 - <0.005	<0.005 - <0.005
Na mg/L	200	3.5	0.7 – 7	10 - 8	25 - 29
N-N03 mg/L	10	0.1	<0.05 – 1.12	<0.10 - <0.10	<0.1 - <0.1
Pb mg/L	0.01	0.001	<0.00002 - 0.0022	<0.001 - <0.001	<0.001 - <0.001
TDS mg/L	500	76	42.4 – 198	394 - 358	517 - 564

Notes:

Bold values exceed ODWS/OG


Hardness objective listed as maximum value in Ministry ODWS/OG Technical Guidance Document


As indicated in **Table 6**, leachate at the site is characterized by inorganic parameters with elevated concentrations above background values and in instances greater than ODWS/OG. While both monitoring wells reveal parameters with elevated chemical concentrations in relation to background values, water quality from monitoring well 95-6 generally reveals the highest impact, however in 2020, iron showed higher concentrations at 07-3D than 95-6. **Graph 2** illustrates the relationship between the two inorganic leachate signatures and background values (background values are from monitoring well 91-2 - Spring 2020).

June 2021 14 | Page

Graph 2
Leachate Values vs Background Values

6.3 On-Site Monitoring Wells

The on-site monitoring wells located on the 8.55-hectare site are: 91-5, 96-3, 85-C, 88-2S, 88-2D, 85-D, 85-Y, 03-1 and 95-6. Their locations are provided on **Figure 9**. All of these wells are located between the licensed fill area and the perimeter of the buffer zone with the exception of monitoring well 03-1. Monitoring wells 85-Y, 85-D and 95-6 are located in the immediate downgradient flow

June 2021 15 | P a g e

path from Area 4 in an area of steep hydraulic gradient. Monitoring well 91-5 is located along the western perimeter of the site within an area of a low hydraulic gradient. Monitoring wells 85-C and 96-3 are located along the southern perimeter of the waste disposal site and are considered to be in the direction of groundwater flow originating from the southwest corner of Area 1. During the 2020 monitoring events, samples were collected from the following on-site locations: 91-5S, 91-5D, 95-6 and 96-3 (water quality from 95-6 has been determined to be representative of leachate at the site). **Table 7** outlines concentrations from on-site wells that are greater than ODWS/OG and reflective of leachate loading.

Table 7
2020 On-Site Chemical Parameters Indicating
Increased Leachate Loading and Greater Than ODWS/OG

Parameter	ODWS/OG Objective	Background Monitoring Wells 91-2 and 95-5 Historical Range of Values	Leachate Charateristics Monitoring Well 95-6 May-20 - Oct-20	Monitoring Well 91-5D May-20 - Oct-20	Monitoring Well 91-5S May-20 - Oct-20	Monitoring Well 96-3 May-20 - Oct-20
Alkalinity CaCO3 mg/L	30-500	30 – 177	354 - 371	48 - 43	94 - 90	64 - 62
B mg/L	5	<0.005 – 0.025	0.85 - 0.86	0.01 - 0.01	<0.01 - <0.01	<0.01 - <0.01
Ba mg/L	1	0.005 - 0.08	0.54 - 0.57	0.06 - 0.07	0.04 - 0.04	0.02 - 0.02
Ca mg/L		8 – 52.9	106 - 116	16 - 19	26 - 26	18 - 17
Cl mg/L	250	0.25 – 21	19 - 23	62 - 71	3 - 7	<1 - 5
Fe mg/L	0.3	0.005 - 3.01	10.9 - 10.3	16.5 - 15.4	0.47 - 0.46	0.04 - 0.04
Hardness mg/L	500	28 – 65	355 - 393	60 - 72	90 - 94	70 - 67
K mg/L		<0.4 – 7.1	13 -13	2 - 2	2 - 2	2 - 2
Mg mg/L		<0.001 – 43	22 -25	5 - 6	6 - 7	6 - 6
Mn mg/L	0.05	<0.001 – 0.29	7.4 - 7.67	0.14 - 0.16	0.03 - 0.04	<0.01 - <0.01
Na mg/L	200	0.7 – 7	25 - 29	36 - 37	5 - 6	3 - 3
TDS mg/L	500	42.4 – 198	517 - 564	203 - 217	122 - 127	92 - 88

Notes:

Bold values exceed ODWS/OG

Hardness listed as maximum value in Ministry ODWS/OG Technical Guidance Document

Table 7 illustrates that the major component of on-site leachate impact is focused in the vicinity of leachate monitoring well 95-6. The leachate impact is characterized by elevated inorganic chemical parameters (alkalinity, boron, barium, chloride, calcium, hardness, sodium, TDS, manganese and iron). To a lesser degree, impact is recognized along the western property line at monitoring station 91-5D. Impact at this location is characterized by elevated levels of chloride and sodium greater than background levels, with iron and manganese at levels greater than the ODWS/OG. The shallow setting, 91-5S reveals only iron to exceed ODWS/OG, while other parameters are relatively in-line with the higher range of background values. Iron and manganese values are in part attributed to the overburden geology in the area. Monitoring location 96-3 located along the south-western limit of the landfill site does not reveal any exceedances to ODWS/OG, and concentrations remain in line with the background ranges.

The historical trends of selected chemical concentrations from the on-site wells (91-5D, 96-3) are provided in **Appendix I** and do not reveal any increasing trends in concentrations, with the exception of slight recent increases in chloride at monitoring well 96-3.

June 2021 16 | P a g e

6.4 Off-Site Monitoring Wells

The groundwater quality of the waste disposal site has historically been characterized by samples collected from the remainder of the monitoring wells that are located off-site but within the CAZ (to the south) and include:

South wells:

85-A, 85-Z, 89-1S, 89-1D, 89-2S, 89-2D, 07-2S. 07-2D, 91-1, 91-2, 91-3. (89-2S and D have been replaced by 07-2S and D).

Monitoring wells 85-Z and 07-2 are located southeast of Area 1 in an area with a steep hydraulic gradient. Monitoring wells 91-1, 91-2, 91-3, 85-A and 89-1 are all located south of the site. Samples from monitoring wells 91-2 and 95-5 have been determined to be representative of background values. In 2020, samples were collected from 07-2S, 07-2D, and 91-2; **Table 8** outlines chemical concentrations that are greater than ODWS/OG and reflective of leachate at the site.

Table 8
Off-Site South Chemical Parameters Indicating Increased Leachate Loading

Parameter	ODWS/OG Objective	PWQO (CWQG)	Background Monitoring Wells 91-2 and 95-5 Historical Range of Values	Leachate Characteristics Monitoring Well 95-6 May-20 - Oct-20	Monitoring Well 07-2S May-20 - Oct-20	Monitoring Well 07-2D May-20 - Oct-20
Alkalinity CaCO3 mg/L	30-500	a ¹	30 – 177	354 - 371	475 - <u>83</u>	347 - 370
B mg/L	5	0.2 (1.5)	<0.005 - 0.025	0.85 - 0.86	0.34 - < 0.01	0.98 - 1.0
Ba mg/L	1		0.005 – 0.08	0.54 - 0.57	0.22 - 0.04	0.36 - 0.38
Ca mg/L			8 – 52.9	106 - 116	130 - 24	120 - 129
Cl mg/L	250	(120)	0.25 – 21	19 - 23	9 - 2	32 - 34
Fe mg/L	0.3	0.3	0.005 – <u>3.01</u>	<u> 10.9</u> - <u>10.3</u>	<u>9.12</u> - <u>0.95</u>	<u> 11.8</u> - <u>11.0</u>
Hardness mg/L	500		28 – 65	355 - 393	460 - 85	411 - 446
K mg/L			<0.4 – 7.1	13 -13	3 - 1	7 - 7
Mg mg/L			<0.001 – 43	22 -25	33 - 6	27 - 30
Mn mg/L	0.05		<0.001 – 0.29	7.4 - 7.67	0.21 - 0.03	5.84 - 6.46
Na mg/L	200	***************************************	0.7 – 7	25 - 29	18 - 2	38 - 41
TDS mg/L	500		42.4 – 198	517 - 564	543 - 109	567 - 616

Notes:

Bold values exceed ODWS/OG

 ${\it Hardness\ listed\ as\ maximum\ value\ in\ the\ Ministry\ ODWS/OG\ Technical\ Guidance\ document}$

As indicated above, the groundwater in the vicinity of monitoring well 07-2 is characterized by water quality that reveals chemical concentrations that are reflective of leachate at the site. Iron, manganese, and TDS revealed concentrations that are greater than ODWS/OG in both the shallow and deep setting in 2020. The deep piezometer setting, 07-2D typically reveals higher chemical values indicating that the deeper groundwater is more impacted than the shallow groundwater.

As per the Ministry's TSS Comments dated December 3, 2013, monitoring wells 07-2S and 07-2D have been compared to PWQOs. As described in the TSS review there is potential for contaminants to reach the Landfill Creek from the groundwater in the vicinity of monitoring well 07-2S and D. The 2020 results indicated alkalinity and iron to exceed the PWQOs. Based off median values of the last ten events, alkalinity showed a decrease 25% at 07-2S on only one occasion. Iron showed relatively

June 2021 17 | P a g e

^{&#}x27;a' refer to water quality notes in Appendix H

<u>Underline</u> exceeds PWQO and/or CWQG

¹ <0.25 decrease of the median value taken from last 10 sampling events

high concentrations at both locations during the 2020 sampling events, while boron had levels above PWQOs but was below CWQGs (1.5 mg/L).

The nearest surface water station to 07-2S/D is SW2. In 2020 only iron exceeded the PWQO ranging from <0.03 mg/L to 0.81 mg/l. As indicated above, iron is found in background concentrations (i.e. SW1) and is a poor indicator parameter in assessing leachate impact. No other parameters exceeded the PWQOs at this station. Furthermore, SW3 and SW4 (located further downstream), also indicated similar exceedances to iron, however no significant increasing trends are apparent.

It is recommended that water quality from monitoring wells 07-2S and 07-2D continue to be compared to PWQOs to assess any potential impacts groundwater migrating from the landfill may have on the local surface water environment.

West wells:

85-B, 88-3S, 88-3D, 95-3S, 95-3D, 95-4S, 95-4D, 95-5, 96-1S, 96-1D, 07-3S, 07-3D, 07-FS, 07-FD, 08-1S and 08-1D.

Monitoring wells 85-B, 88-3 (replaced by 07-3) and 08-1 are located west of the site in the road allowance, while monitors 95-3, 95-4, 95-5 and 96-1, are located further west on the property purchased by the municipality (incorporated as part of the CAZ). Samples from monitoring well 95-6 have been interpreted to be representative of leachate at the site. Monitoring wells 91-2 and 95-5 have been determined to be representative of background values. In 2020, samples were collected from all monitoring stations. **Table 9** outlines chemical concentrations that are greater than ODWS/OG and reflective of leachate impact at the site.

Table 9
Off-Site West Wells
Chemical Parameters Indicating Increased Leachate Loading and Greater Than ODWS/OG

Parameter	ODWS/OG Background Monitoring Wells		-	95-3 May-20 - Oct-20		95-4 May-20 - Oct-20		96-1 May-20- Oct-20	
	Objective	91-2 and 95-5 Historical Range	95-6 May-19 - Oct-19	Shallow	Deep	Shallow	Deep	Shallow	Deep
Alkalinity CaCO3 mg/L	30-500	30 – 177	354 - 371	73 - 69	84 - 82	180 - 161	40 - 37	26 - 26	115-117
B mg/L	5	<0.005 - 0.025	0.85 - 0.86	<0.01 - <0.01	<0.01 - <0.01	<0.01 - <0.01	<0.01 - 0.01	<0.01 - <0.01	<0.01 - <0.01
Ba mg/L	1	0.005 - 0.08	0.54 - 0.57	<0.01 - 0.01	0.02 - 0.02	0.05 - 0.04	0.06 - 0.07	<0.01 - <0.01	0.02 - 0.02
Ca mg/L		8 – 52.9	106 - 116	18 - 17	25 - 25	50 - 45	15 - 16	5 - 6	31 - 32
Cl mg/L	250	0.25 – 21	19 - 23	<1 - 3	7 - 7	<1 - 1	70 - 78	<1 - <1	<1 - 5
Fe mg/L	0.3	0.005 - 3.01	10.9 - 10.3	0.07 - 0.14	0.04 - 0.05	<0.03 - <0.03	11.7 - 12.4	<0.03 - <0.03	0.12 - 0.12
Hardness mg/L	500	28 – 65	355 - 393	70 - 71	91 - 95	178 - 170	58 - 60	21 - 23	114 - 125
K mg/L		<0.4 – 7.1	13 - 13	2 - 2	2 - 3	<1 - <1	2 - 2	<1 - <1	2 - 3
Mg mg/L		<0.001 – 43	22 - 25	6 - 7	7 - 8	13 - 14	5 - 5	2 - 2	9 - 11
Mn mg/L	0.05	<0.001 – 0.29	7.4 - 7.67	<0.01 - <0.01	0.02 - 0.02	0.07 - 0.06	0.11 - 0.13	<0.01- <0.01	0.04 - 0.04
Na mg/L	200	0.7 – 7	25 - 29	2 - 2	5 - 6	2 - 2	38 - 42	<2 - <2	2 - 3
TDS mg/L	500	42.4 – 198	517 - 564	94 - 88	133 - 130	209 - 190	216 - 225	29 - 34	145 - 145

June 2021 18 | P a g e

Parameter			Leachate Monitoring Well	07-F May-20 - Oct-20		07-3 May-20 - Oct-20		08-1 May-20 - Oct-20	
	Objective	91-2 and 95-5 Historical Range	95-6 May-20 - Oct-20	Shallow	Deep	Shallow	Deep	Shallow	Deep
Alkalinity CaCO3 mg/L	30-500	30 – 177	354 - 371	195 - 205	110 - 95	161 - 166	285 - 294	99 - 95	110 - 99
B mg/L	5	<0.005 - 0.025	0.85 - 0.86	<0.01 - <0.01	0.04 - 0.04	<0.01 - <0.01	0.28 - 0.09	<0.01 - <0.01	0.02 - 0.01
Ba mg/L	1	0.005 - 0.08	0.54 - 0.57	0.07 - 0.08	0.04 - 0.03	0.05 - 0.06	0.39 - 0.34	0.02 - 0.02	0.06 - 0.05
Ca mg/L		8 – 52.9	106 - 116	56 - 59	19 - 17	46 - 48	72 - 69	28 - 25	34 - 32
Cl mg/L	250	0.25 – 21	19 - 23	<1 - 5	5 - 4	<1 - 1	6 - 8	<1 - 1	16 - 18
Fe mg/L	0.3	0.005 - 3.01	10.9 - 10.3	<0.03 - 0.07	0.48 - 0.72	<0.03 - 0.04	50.1 - 44.6	0.08 - 0.08	1.75 - 1.43
Hardness mg/L	500	28 – 65	355 - 393	202 - 213	76 - 67	164 - 178	229 - 222	103 - 91	114 - 109
K mg/L		<0.4 – 7.1	13 -13	2 - 2	6-6	1-1	15 - 14	1-1	3 - 3
Mg mg/L		<0.001 – 43	22 -25	15 - 16	7 - 6	12 - 14	12 - 12	8 - 7	7 - 7
Mn mg/L	0.05	<0.001 – 0.29	7.4 - 7.67	<0.01 - <0.01	0.14 - 0.17	<0.01 - <0.01	3.74 - 3.52	0.02 - 0.02	1.09 - 0.88
Na mg/L	200	0.7 – 7	25 - 29	2 - 3	12 - 10	2 - 2	10 - 8	3 - 5	10 - 10
TDS mg/L	500	42.4 – 198	517 - 564	231 - 249	139 - 124	199 - 207	394- 358	124 - 119	172 - 166

Bold values exceed ODWS/OG

Hardness listed as maximum value in Ministry ODWS/OG Technical Guidance document

Table 9 illustrates that the major component of off-site leachate impact is focused in the vicinity of monitoring wells 07-3, 95-4 and to a lesser extent 08-1 and 07-F. Wells 07-3, 07-F and 08-1 are located in the road allowance in close proximity to the waste area. Monitoring well 95-4 is located slightly further west. Similar to the groundwater south of the site, the deeper groundwater on balance reveals parameters with the higher chemical concentrations. Chemical concentrations dissipate rapidly moving west from the site as evidenced by the low chemical concentrations in the other monitoring wells that are located on the property recently west of the landfill area. (i.e. wells 95-3, 95-5 and 96-1). The groundwater at these locations is not impacted by leachate from the waste disposal site. Historical trends of the chemical results from the off-site wells located to the west within the CAZ are provided in **Appendix I.** The water quality at these locations does not reveal any increasing trends in concentrations with the exception of variable, yet slightly increasing trends in iron at monitoring well 96-1S.

6.5 **Residential Monitoring Wells**

As required by Item 14 of the ECA, groundwater supply wells local to the site were sampled most recently during the 2018 monitoring program.

In 2018 the residential wells were sampled to ensure impacts from landfilling are not reaching drinking water wells in the vicinity of the site. Sampling was completed during the 2018 program at four (4) residential wells along Millers Road near the landfill site. The results of the historical residential groundwater sampling are shown in Table 10. None of the sampled residential wells exceeded ODWS/OG for the prescribed analytes. It is interpreted that the landfill is not influencing the water quality of the residential wells. It is recommended to include the residential wells on a 3year basis with the next sampling scheduled for 2021.

June 2021 19 | Page

Table 10
Residential Wells

Parameter	ODWS/OG		Leachate	1227	1235	1236	1244 ^[1]
	Objective	Monitoring Wells	Characteristics	'	May 18 - Oct 18	May 18 - Oct 18	Oct 18
		91-2 and 95-5 Historical Range	Monitoring Well				
		of Values	95-6				
			May 18 - Oct 18				
Alkalinity CaCO3	30-500	30 – 177	343 - 326	108 - 124	112 - 51	36 - 33	51
B mg/L	5	<0.005 – 0.025	0.74 - 0.78	0.06 - 0.07	0.02 - 0.03	<0.01 - <0.01	<0.01
Ba mg/L	1	0.005 – 0.08	0.56 - 0.52	0.01 - 0.01	<0.01 - <0.01	<0.01 - <0.01	<0.01
Ca mg/L		8 – 52.9	121 - 88	16 - 16	15 - 9	12 - 6	14
Cl mg/L	250	0.25 – 21	24 - 23	1-2	10 - 10	3 - 1	1
Fe mg/L	0.3	0.005 - 3.01	10.8 - 10.6	<0.03 - 0.03	<0.03 - <0.03	<0.03 - <0.03	<0.03
Hardness mg/L	500	28 – 65	405 - 306	56 - 56	50 - 31	38 - 19	47
K mg/L		<0.4 – 7.1	14 - 12	<1 - <1	1 - 1	1 - <1	<1
Mg mg/L		<0.001 – 43	25 - 21	4 - 4	3 - 2	2 - 1	3
Mn mg/L	0.05	<0.001 – 46	8.04 - 7.18	<0.01 - <0.01	<0.01 - <0.01	<0.01 - <0.01	<0.01
Na mg/L	200	0.7 – 7	31 - 26	33 - 31	21 - 16	3 - 3	3
TDS mg/L	500	42.4 – 198	567 - 532	153 - 155	138 - 99	64 - 56	78

Bold values exceed ODWS/OG

Notes: 1244 [1] No sample was collected in spring 2018 sampling event

Hardness listed as maximum value in MOE ODWS/OG Technical Guidance document

Residential sample locations numbered by their municipal address along Millers road

6.6 Bedrock Groundwater

Bedrock at the site is discussed in depth in **Section 2.2** and is comprised of basement Precambrian felsic metasediments.

Overall, the bedrock surface dips to the east to the Ottawa River. Intuitively the groundwater, although controlled by the fracture network within the Precambrian bedrock will be east onto CNL property that is restricted for development. As per TSS comments dated December 3, 2013, and as a precautionary measure, water wells from users within 500m of the site were sampled. Sampling was last completed during the spring and fall events in 2018. The sampling included the analysis of inorganics and organic (VOCs) parameters. Of the four (4) residential wells sampled, one (1) is reported to be utilize the bedrock as a water supply aquifer. As indicated in **Section 6.5**, no impact from the landfilling is interpreted to be impacting the residential well network near the site. We have recommended that sampling from the residential wells be completed periodically on a three-year basis with the next sampling to be completed in the spring of 2021.

6.7 Assessment of Impact of the Landfill Site on Groundwater

The Reasonable Use Concept addresses the levels of off-site contaminants, which are considered acceptable by the Ministry. The Reasonable Use Criteria allow for the definition of the level of contamination in the groundwater beyond which mitigative action should be undertaken. The acceptability of the site in terms of its impact on groundwater has been assessed in terms of the Reasonable Use Criteria (RUC). The RUC establish the acceptability of change in groundwater quality (cm) as follows:

June 2021 20 | P a g e

Aesthetic Parameters

Degradation of less than 50% of the difference between the background quality and the established objective for the particular health related parameters.

Health Related Parameters

Degradation of less than 25% of the difference between the background quality and the established objective for the particular health related parameter.

Acceptable concentrations are based on background levels and water quality guidelines (ie. drinking water objectives).

The chosen background values are utilized to calculate the RUC allowable concentrations for specific parameters, as per the following formulas:

Health Related: Non-Health Related:

 $C_{allow} = P_b + (C_m - P_b) \times 25\%$ $C_{allow} = P_b + (C_m - P_b) \times 50\%$

Where:

C_{allow} = Maximum allowable concentration of parameter as per the RUC guidelines C_m = Maximum acceptable concentration (MAC) of parameter as per the ODWS/OG

P_b = Chosen background value of parameter

Condition 7.7 of the ECA requests compliance with Ministry Guideline B-7. All monitoring points along the property boundary are assessed for Reasonable Use Compliance. The parameters used in this assessment include alkalinity, boron, barium, chloride, sodium and TDS. As suggested by the Ministry in their memorandum of May 2001 (**Appendix B**) it is not uncommon for manganese and other parameters (iron, TDS, aluminium) to naturally occur in excess of ODWS/OG. Another Ministry memorandum (December 3, 2013) requested that iron and manganese be added to the list of Reasonable Use parameters for the Guideline B-7 assessment. As such, iron and manganese have been included in the assessment.

Item 14 of the ECA recommends vinyl chloride be added as a compliance parameter. As a result of this recommendation, vinyl chloride has been included as a compliance parameter.

Table 11 outlines the Reasonable Use Criteria for selected parameters at the site.

June 2021 21 | P a g e

Table 11
Reasonable Use Criteria

Parameter mg/L	P _b	C _m	F	C _{allow}
Vinyl Chloride	0.0002	0.002	0.25	0.0007
Boron	0.01	5	0.25	1.26
Barium	0.015	1	0.25	0.26
Alkalinity	53	500	0.5	277
Chloride	1	250	0.5	126
Iron	0.03	0.3	0.5	0.17
Manganese	0.015	0.05	0.5	0.03
Sodium	3.5	200	0.5	102
TDS	76	500	0.5	288

Notes:

Background values are the median values from monitoring wells 91-2 and 95-5 from 1991/1995 to 2020

Background values of vinyl chloride assumed to be laboratory detection limit

The maximum acceptable concentrations, C_{allow} are compared to the groundwater quality results for the monitoring wells sampled during 2020. The monitoring wells considered in the Reasonable Use Assessment have historically been those wells that are located along or beyond the western landfill boundary and included: 07-3S, 07-3D, 07-FS, 07-FD, 91-5S, 91-5D, 95-3S, 95-3D, 95-4S, 95-4D,95-5, 96-1S and 96-1D. Wells to the south and southeast are not considered in the Reasonable Use Assessment as the Ministry suggested in their memorandum of October 29, 2007 that impacts to the groundwater quality in the southeast downgradient direction will be contained within the contaminant attenuation zone. As a result of the purchase of property to the west of the landfill site by the Municipality (for the purpose of a CAZ), the compliance monitoring well for the Reasonable Use Performance Objectives (RUPO) assessment will be monitoring well 96-1S and 96-1D. As per TSS comments dated December 3, 2013, and recommendations from item 14 of the ECA, monitoring wells 95-3S and 95-3D have been added to the assessment. **Table 12** outlines the chemical values from these wells in comparison to the RUPO.

June 2021 22 | P a g e

Table 12 Summary of 2020 Ministry Guideline B-7 Reasonable Use Calculations Western Property Line

Parameters		RUC	95-3S	95-3D	96-1S	96-1D
Health	Boron mg/L					
Parameters	May-20	1.26	<0.01	<0.01	<0.01	<0.01
	Oct-20		<0.01	<0.01	<0.01	<0.01
	Barium mg/L					
	May-20	0.26	<0.01	0.02	<0.01	0.02
	Oct-20		0.01	0.02	<0.01	0.02
	Vinyl Chloride mg/L					
	May-20	0.0007	<0.0002	<0.0002	<0.0002	<0.0002
	Oct-20		<0.0002	<0.0002	<0.0002	<0.0002
Aesthetic	Alkalinity mg/L					
Parameters	May-20	277	73	84	18	115
	Oct-20		69	82	24	117
	Chloride mg/L					
	May-20	126	<1	7	<1	<1
	Oct-20		3	7	<1	5
	Iron mg/L					
	May-20	0.17	0.07	0.04	<0.03	0.12
	Oct-20		0.14	0.05	<0.03	0.12
	Manganese mg/L					
	May-20	0.03	<0.01	0.02	<0.01	0.04
	Oct-20		<0.01	0.02	<0.01	0.04
	Sodium mg/L					
	May-20	102	2	5	<2	2
	Oct-20		2	6	<2	3
	TDS mg/L					
	May-20	288	94	133	29	145
	Oct-20		88	130	34	145

Notes:

exceeds RUC

All parameters reveal concentrations that are less than the RUPO with the exception of manganese (spring and fall) for monitoring well 96-1D. No increasing trends in concentrations of manganese at monitoring well 96-1D are apparent; and due to the low values of all other leachate indicator parameters the concentrations are likely attributed to the local mineralogy in the area. Accordingly, the site is interpreted to be compliant with Guideline B-7.

June 2021 23 | Page

6.8 Organic Analysis

Organic sampling was completed in 2020 at selected sample locations. The sample locations analysed for organic parameters include: 95-3S, 95-3D, 96-1S, 96-1D, 07-3S, 07-3D & 95-6.

The organic sampling did not reveal any exceedances of ODWS with the exception of vinyl chloride at monitoring wells 07-3D (spring and fall) and 95-6 (spring and fall). The exceedances of vinyl chloride are consistent with historical organic sampling at these locations. Vinyl chloride was added to the compliance assessment list as per Item 14 of the ECA. Vinyl chloride was not present at other locations included in the assessment outside of monitoring wells 07-3D and 95-6.

Monitoring wells 07-3S and 07-3D are located along the western landfill line. Monitoring well 95-6 is located to the south east within the flow path. The chemical results are tabulated and provided in **Appendix H**.

Residential sampling historically occurred in 2018 included the analysis of benzene, 1,4-dichlorobenzene, dichloromethane, toluene and vinyl chloride. All parameters revealed concentrations that were less than ODWS/OGs.

6.9 Leachate Impacted Areas

Leachate impact has been measured at monitoring wells that are located along the western perimeter of the waste fill boundary at monitoring wells 07-3D, 07-FD and 08-1D and southeast of the site at monitoring well 95-6. To the west, the impact has been characterized by inorganic parameters at elevated concentrations and the presence of organic parameters at concentrations greater than minimum detection limits and Ontario Drinking Water Standards Objectives and Guidelines. Vertically, the impact is restricted to the deeper overburden groundwater as the shallow piezometer settings at all locations do not reveal any significant impact. Horizontally, the leachate impact is confirmed to be at least as far as monitoring well 95-4 but not as far as wells located further to the west and southwest (i.e. 96-1 and 95-3). Groundwater elevations confirm a direction of the groundwater flow to be southeast from the site. Chemical concentrations to the west continue to be reduced significantly in a short distance. The low chemical concentrations as indicated in samples collected from both the deep and shallow monitoring levels from wells 95-3 and 95-5 (in comparison to the respective levels from wells 07-3, 07-F, 95-4 and 08-1) confirm a rapid decrease in plume strength in this direction. The compliance monitoring well 96-1S & D now located along the western edge of the municipal holdings is not impacted by the waste disposal site.

7.0 SITE COMPLIANCE

The purpose of this report is to confirm the mitigation of any off-site impacts as a result of the landfilling operations and to ensure compliance with respect to Ministry Guideline B-7.

In 2009, the municipality had taken action to assess and mitigate off-site leachate impacts to the south and east. Currently any impacts leaving the site to the southeast are contained within the CAZ that was established under the Lease Agreement of 2005.

As discussed in the December 2008 annual report completed by Jp2g Consultants, groundwater monitoring indicated that ODWS/OG exceedances attributed to landfill leachate impacts were at the western site boundary (monitoring wells 07-3D, 07-FD and 08-1D). These monitoring wells revealed concentrations of selected inorganic (primarily 07-3D) and organic concentrations that were greater than ODWS/OG limits.

June 2021 24 | Page

With this in mind the following options were presented to the Municipality for consideration to achieve compliance of the Miller's Road Waste Disposal Site.

Option 1 Source containment or removal.

Option 2 Establish a CAZ to bring the site into compliance with respect to

Guideline B-7 based on ODWS/OG limits.

Option 3 Install a pump and treat groundwater recovery system.

As per Condition 31 of the former ECA (i.e. Notice 6 dated November 26, 2009), the Municipality acquired an approximate 14 hectare parcel of land located immediately west of the Millers Road Waste Disposal Site for the purpose of a CAZ (**Figure 3**). The property has been registered on title as a Contaminant Attenuation Zone.

In addition to the establishment of the CAZ (i.e. the lands to the west of the Miller's Road Waste Disposal Site, beyond the 66 foot road allowance located in Part Lot 5, Concession 13, geographic Township of Buchanan now in the Town of Laurentian Hills), the Official Plan for the Town of Laurentian Hills includes policies for setbacks and influence areas for waste disposal sites. Section 8.6.5 generally states that no development will be permitted within 30m of the boundary of the licensed fill area, and the development of sensitive land uses proposed within 500m may be permitted where justified by an environmental impact study. The study must demonstrate that the proposed development will not be negatively impacted by the waste disposal facility eg. leachate methane gas, rodents, vermin, odours, fire etc. Where recommended by the impact statement, measures to mitigate any adverse effects will be required as a condition of development.

The Town of Laurentian Hills Zoning By-Law 11-05 adopts similar provisions for land uses adjacent to a waste disposal site. The minimum distance separation (30m) and the influence area (500m) provisions are included in Section 4.23 of the By-Law.

8.0 ASSESSMENT OF TRIGGER VALUES

The trigger mechanism for the Millers Road WDS is recommended to be identified as the exceedance of 75% of the Ministry Guideline B-7 limits along the western limit of the designated contaminant attenuation zone (i.e. monitoring well 96-1S and D) where the exceedance of parameters used in the RUC assessment is observed over two (2) consecutive groundwater monitoring events. A trigger mechanism is not required south east of the site as the property is comprised of restricted federal lands (i.e. CNL property) and the Ministry has indicated that contaminants will be maintained within the CAZ in this direction. As per item 14 of the ECA monitoring locations 95-3S and D have been included in the trigger assessment as compliance locations.

Table 13 outlines the 75% trigger value of selected reasonable use parameters for monitoring wells 96-1 and 95-3. Monitoring well 96-1 is located along the western property line and monitoring location 95-3 is located much closer to the landfill area. In the event of exceedances over two (2) consecutive monitoring periods a tiered monitoring program as described in **Section 8.1** shall be implemented.

June 2021 25 | P a g e

Table 13
Trigger Values

Parameter	RUC	75% Trigger	95-3S* 95-3D*		96-18		96-1D			
mg/L		value	May-20	Oct-20	May-20	Oct-20	May-20	Oct-20	May-20	Oct-20
Vinyl Chloride	0.0007	0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Boron	1.26	0.95	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	0.26	0.20	<0.01	0.01	0.02	<0.02	<0.01	<0.01	0.02	0.02
Alkalinity	277	208	73	69	84	92	18	24	115	117
Chloride	126	95	<1	3	7	7	<1	<1	<1	5
Iron	0.17	0.13	0.07	0.14	0.04	0.05	<0.03	<0.03	0.12	0.12
Manganese	0.03	0.02	<0.01	<0.01	0.02	0.02	<0.01	<0.01	0.04	0.04
Sodium	102	77	2	2	5	6	2	2	2	3
TDS	288	216	94	88	133	130	29	34	145	145

Notes:

*Compliance location as recommended by the Ministry

Exceeds Trigger Value

As indicated in **Table 13**, no parameters exceed the 75% trigger values with the exception of iron for the fall event at monitoring location 95-3S, and manganese at 96-1D, for both sampling events.

For the same reasons discussed in **Section 6.7**, iron and manganese are considered poor indicators of off-site impact as these parameters have been documented to be prevalent in the environment. There is no indication of increasing trends in concentrations, with other parameter concentrations remaining low at the above trigger locations. Both parameters that exceeded the trigger assessment (iron, manganese) remain below the OWDS; based on this information it is interpreted that these wells are not impacted by the waste disposal site.

Accordingly, the site is interpreted to be compliant with Guideline B-7 and subsequent tiered monitoring is not warranted.

8.1 Tiered Monitoring

As per the ECA dated April 4, 2014 a contingency plan was developed to formalize an action plan in the event of a groundwater or surface water exceedance of the trigger mechanism. Condition 8.2 of the ECA required that '...the Owner shall submit to the Director for approval and copies to the District Manager, details of a contingency plan to be implemented in the event that the surface water or groundwater quality exceeds the trigger mechanism,' A contingency plan was prepared by Jp2g Consultants on behalf of the Town of Deep River in January 2015 and provided to the Ministry. The plan was approved by the amended ECA dated September 20, 2017.

The trigger mechanism for the Millers Road WDS is recommended to be identified as the exceedance of 75% of the Ministry Guideline B-7 limits along the western limit of the designated contaminant attenuation zone (i.e. monitoring well 96-1S/D) where the exceedance of parameters used in the RUC assessment is observed over two (2) consecutive groundwater monitoring events. As per item 14 of the ECA monitoring locations 95-3S/D have been included in the trigger assessment as compliance locations. A trigger mechanism is not required south east of the site as the property is comprised of restricted federal lands (i.e. CNL property) and the Ministry has indicated that contaminants will be maintained within the CAZ in this direction.

June 2021 26 | Page

In the event that chemical values from the designated monitoring station/s (96-1S/D and 95-3S/D) exceed the trigger mechanism values (during 2 consecutive sampling events), a tier type sampling program will be initiated. The three-tier monitoring program is listed below.

Tier 1 Trigger Level

Any two (2) consecutive ground water samples from the routine annual monitoring program that exceed the trigger values may trigger the Tier II monitoring as indicated below. Subsequent to the exceedance, an assessment will be provided to the Ministry to determine the necessity of Tier II monitoring.

Tier II Trigger Level

Tier II monitoring will consist of consecutive monthly groundwater sampling of the compliance wells (96-1 and 95-3). The list of parameters will be the same as the routine sampling. The Tier II monitoring results shall be provided to the Ministry District Manager as soon as they are available. Any two consecutive groundwater samples from the Tier II monitoring program that exceed values as indicated above, will trigger the implementation of the appropriate contingency plan(s) and Tier III monitoring as outlined below. If the above Tier II monitoring does not show further exceedances, or, if in the opinion of the district manager the monitoring may return to the routine program.

Tier III Trigger Level

Within 60 days of the triggering of Tier III (ie. two consecutive monthly exceedances), the Town will provide to the Ministry District Manager a detailed work plan and implementation schedule for an appropriate contingency to control leachate and Tier III monitoring program to verify the effectiveness of the contingency, or alternatively, rational for the cessation of tiered monitoring.

8.2 Groundwater Contingency

Under Ministry Guideline B-7, the owner of a waste disposal site is responsible for preventing unacceptable off-property groundwater impacts. Should the groundwater monitoring program indicate the existence of, or potential for, unacceptable impacts, the owner shall prepare and present a mitigation plan for the approval of the Ministry. In this event, actions taken by the Town of Deep River to prevent or remediate the off-property impacts could consist of:

- a) acquisition of additional land to bring the Site in compliance with Ministry Guideline B-7;
- b) gaining control over the contaminated groundwater to bring the Site into compliance; or
- c) developing and implementing groundwater control/treatment measures to bring the Site into compliance with Ministry guideline B-7.

9.0 METHANE MONITORING

Methane monitoring was completed during the 2020 monitoring events. Methane was not detected in any of the monitoring wells or the on-site attendants shed during the monitoring events.

June 2021 27 | Page

10.0 SURFACE WATER ASSESSMENT

10.1 Introduction

This section outlines the results of the 2020 surface water monitoring at the Miller's Road Landfill Site. The purpose of this sampling is to assess the impact of the site on the local surface water as well as to compare the chemical concentrations to historical data, the Provincial Water Quality Objectives (PWQO), and the Canadian Water Quality Guidelines (CWQGs). The PWQO's are values established by the Ministry to serve as chemical and physical indicators and provide guidance in making water quality management decisions. The Ministry last completed a review of and commented on the surface water monitoring as part of the *Miller's Road Waste Disposal Site Contingency Plan, 2015*. This memorandum (dated May 17, 2017) is provided in **Appendix B**.

10.2 Surface Water Setting

There are two surface water features in close proximity to the landfill site. They are Spring Creek and the unnamed Landfill Creek. Spring Creek originates upgradient and west of the landfill site and passes under Miller's Road approximately 300 metres west of the access road to the site entrance. From here, Spring Creek meanders south of the site in an eastward direction to Maskinonge Lake. The Landfill Creek originates south east of the site and meanders in this direction until it meets with Spring Creek approximately 0.5 km south east of the site. The following provides a brief description of the surface water stations. The surface water stations are located in **Figure 9**.

Surface Water Station	Description
SW-1	Monitoring station SW-1 is located upgradient of the site as Spring Creek passes under Miller's Road. This site has been deemed to be representative of background conditions.
SW-2	Monitoring station SW-2 is located as the Landfill Creek emerges from the ground south east of the landfill site. This station is often characterized by iron precipitate and a visual presence of leachate.
SW-3	Monitoring station SW-3 is located approximately 100 metres southeast downgradient of station SW-2. Iron precipitate is often present at this location although to a lesser extent than SW-2.
SW-4	Monitoring station SW-4 is located further downstream in the Landfill Creek.
SW-5	Monitoring station SW-5 is located further downstream in the Landfill Creek.
SW-6	Monitoring station SW-6 is the last station along the Landfill Creek prior to the convergence with Spring Creek. This station is considered a compliance station.
SW-7	Monitoring station SW-7 is located in Spring Creek just downstream of the convergence of the Landfill Creek and Spring Creek.

June 2021 28 | P a g e

10.3 Assessment Program

Surface water sampling was completed at the waste disposal site to evaluate the impact of the waste disposal site on the local water quality. Overall, sampling has been carried out at the waste disposal site since 1985 and the surface water information dates back to 1996. Since this time several monitoring events have been completed, the latest surface water monitoring event being discussed was completed in the fall of 2020. The results of the chemical and physical analysis are provided in **Appendix H**.

10.4 Background Surface Water Quality

For the purpose of the landfill site assessment the background surface water quality (SW-1) is unaffected by leachate from the landfill site. The data collected from SW-1 was therefore used to compare to all the other sampling locations.

Throughout the monitoring period, chemical parameters from station SW-1, in general, revealed exceedances of similar parameters as were found in most of the other sampling locations. The only parameter exceeding PWQOs for the 2020 monitoring events were phenols, aluminium and iron.

Summary statistics for iron are as follows:

	PWQO	Median (last 10 events)	75 th percentile (1996 - 2020)	Min	Max
Iron mg/L	0.3	0.5	0.94	0.26	2.13

While both the Landfill Creek and Spring Creek reveal exceedances of similar parameters, the Landfill Creek does however exhibit some varied characteristics from Spring Creek. For instance, concentrations of alkalinity, boron, calcium, hardness, potassium, manganese and magnesium are higher in the Landfill Creek than that of Spring Creek.

10.5 Surface Water Quality

Table 14 lists the parameters from the recent sampling that exceed the Provincial Water Quality Objectives and Interim Provincial Water Quality Objectives (PWQO, IPWQO).

June 2021 29 | P a g e

Table 14
2020 Chemical Parameters Above PWQO's

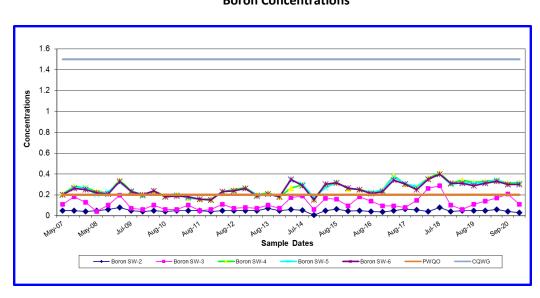
Monitoring Station	Phenols	Aluminum	Boron	Iron	Unionized Ammonia
PWQO/IPWQO ->	0.001	0.075	0.2	0.3	0.02
SW-1					
May-20	0.003			0.4	
Sep-20	0.007	0.09		0.72	
Oct-20				0.4	
SW-2					
May-20					
Sep-20				0.81	
Oct-20				0.33	
SW-3					
May-20				1.08	
Sep-20			0.21	1.22	0.04
Oct-20				0.57	
SW-4					
May-20			0.34	2.16	0.04
Sep-20			0.31	1.45	0.04
Oct-20			0.32	1.24	0.05
SW-5					
May-20			0.34	2.04	0.05
Sep-20			0.3	1.26	0.04
Oct-20			0.31	0.83	0.04
SW-6					
May-20			0.33	1.89	0.04
Sep-20			0.3	1.07	0.04
Oct-20			0.3	0.42	0.04
SW-7					
May-20	0.004			0.56	
Sep-20	0.004			0.72	
Oct-20				0.37	

Notes:

All values in mg/L

CWQG for Boron is 1.5 mg/L

As indicated in **Table 14**, surface water exceedances were noted in the background sample location as well as sample locations in the Landfill Creek. The most prevalent parameter that reveals concentrations greater than PWQOs is iron. The iron concentrations are in part, perceived to be naturally occurring as both up gradient and downgradient monitoring locations reveal relatively similar values, however SW-4, SW-5 and SW-6 are showing the most elevated concentrations in 2020. Concentrations of boron in the downstream samples regularly reveal concentrations that are marginally greater than PWQO's. The boron values are however significantly less than the Canadian Water Quality Guidelines (1.5mg/L). Some exceedances were found for unionized ammonia in the


June 2021 30 | Page

laboratory analysis; however, all unionized ammonia based on field parameters are well below the PWQO. The field calculations are provided in **Appendix H**.

A spatial distribution graph of median values from the last ten sampling events for iron and boron is provided in **Appendix I**. The graph indicates that both iron and boron are present in the landfill creek at concentrations that increase with distance from the landfill site (i.e. SW4, 5 and 6 are greater than SW-2 and 3). However, concentrations seem to decrease by SW7, likely due to dilution from an increased flow rate (i.e. 65 L/sec).

A review of the stream flows from the 2020 monitoring generally reveals increasing flow from SW-2 (i.e. 1 L/Sec) to SW7 (i.e. 65 L/Sec) during the spring freshet. The increased flows suggest contributions to the stream further downgradient of the waste disposal site. A comparison of the boron concentrations over the past ten years is provided in **Graph 3**. As shown in **Graph 3**, SW-2 and SW-3 located closest to the landfill site have the lowest boron concentrations in comparison to the monitoring locations further downstream, however concentrations remain well below the CWQG of 1.5 mg/L.

Graph 3
Boron Concentrations

June 2021 31 | Page

10.6 Groundwater and Surface Water Interaction

Selected chemical values in the surface water from station SW-2 (the first sampling point leaving the site), and SW-3 (second point along the creek) were compared to the 2020 leachate samples (groundwater monitoring wells 95-6 and 07-2S/D). These are provided in **Table 15** and **16**.

Table 15
Water Quality Comparison SW-2, SW-3 and 95-6

Parameters	ODWS/OG	PWQO (CWQG)	Surface water (SW-2) May 20 - Sep20 - Oct 20	Surface water (SW-3) May 20 - Sep20 - Oct 20	Leachate Well (95-6) May 20 - Oct 20
Aluminum	0.1	0.075	0.05 - 0.06 -0.05	<0.01 - <0.01 - <0.01	0.44 - <0.01
Boron	5	0.2 (1.5)	0.06 - 0.04 - 0.03	0.17 - <mark>0.21</mark> - 0.11	0.85 - 0.86
Cobalt		0.0009	<0.0002 - <0.0002 - <0.0002	<0.0002 - 0.0002 - <0.0002	0.0023 - 0.0022
Copper	1	0.005	<0.001 - <0.001 - <0.001	<0.001 - <0.001 - <0.001	0.004 - 0.002
Iron	0.3	0.3	<0.03 - 0.81 - 0.33	1.08 - 1.22 - 0.57	10.9 - 10.3
Manganese	0.05		0.02 - 0.27 - 0.3	0.28 - 0.41 - 0.27	7.4 - 7.3
Zinc	5	0.03	<0.01 - <0.01 - <0.01	<0.01 - <0.01 - <0.01	<0.01 - <0.01
Chloride	250	(120)	5-6-6	17 - 18 - 18	19 - 23

All concentrations in mg/L **Bold** exceeds ODWS/OG **Red** exceeds PWQO/CWQG

In general, all parameters reveal lower chemical values in the surface water than in the groundwater. The iron and manganese concentrations, although higher in the groundwater, are likely a result of landfill impact as well as natural occurrences (as indicated in concentrations exceeding the PWQO at background location SW-1).

The concentration of iron, boron, manganese and chloride are elevated at monitoring stations SW-3, SW-4, SW-5 and SW-6 in comparison to concentrations from monitoring station SW-2 which is located closer to the landfill site.

As per the Ministry's TSS Comments dated December 3, 2013, monitoring wells 07-2S and 07-2D have also been used for the comparison of groundwater/surface water interaction. As described in the TSS review there is potential for contaminants to reach the Landfill Creek from the groundwater in the vicinity of monitoring well 07-2S and D. **Table 16** shows a comparison of 07-2S/D to surface water stations SW2 and SW3.

June 2021 32 | P a g e

Table 16
Water Quality Comparison SW-2, SW-3 and 07-2S/D

Parameters	ODWS/OG	PWQO (CWQG)	Surface water (SW-2) May 20 - Sep20 - Oct 20	Surface water (SW-3) May 20 - Sep20 - Oct 20	07-2S May 20 - Oct 20	07-2D May 20 - Oct 20
Aluminum	0.1	0.075	0.05 - 0.06 -0.05	<0.01 - <0.01 - <0.01	<0.01 - <0.01	0.05 - 0.01
Boron	5	0.2 (1.5)	0.06 - 0.04 - 0.03	0.17 - <mark>0.21</mark> - 0.11	0.34 - <0.01	0.98 - 1.00
Cobalt		0.0009	<0.0002 - <0.0002 - <0.0002	<0.0002 - 0.0002 - <0.0002	0.0006 - <0.0002	0.0024 - 0.00229
Copper	1	0.005	<0.001 - <0.001 - <0.001	<0.001 - <0.001 - <0.001	<0.001 - 0.005	<0.001 - 0.004
Iron	0.3	0.3	<0.03 - 0.81 - 0.33	1.08 - 1.22 - 0.57	9.12 - 0.95	11.8 - 11.0
Manganese	0.05		0.02 - 0.27 - 0.3	0.28 - 0.41 - 0.27	0.21 - 0.03	5.84 - 6.46
Zinc	5	0.03	<0.01 - <0.01 - <0.01	<0.01 - <0.01 - <0.01	<0.01 - <0.01	0.01 - <0.01
Chloride	250	(120)	5-6-6	17 - 18 - 18	9 - 2	32 - 34

All concentrations in mg/L **Bold** exceeds ODWS/OG **Red** exceeds PWQO/CWQG

As shown in **Table 16**, all parameters reveal lower chemical values in the surface water than in the groundwater. The iron and manganese concentrations, although higher in the groundwater, are likely a result of landfill impact as well as natural occurrences (as indicated in concentrations exceeding the PWQO at background location SW-1). Parameter concentrations at the groundwater monitoring well are shown to be elevated in the deep groundwater setting (07-2D) compared to the shallow setting (07-2S). Iron showed relatively high concentrations at both locations during the 2020 sampling events, while boron had levels above PWQOs but was below CWQGs (1.5 mg/L).

It is recommended that surface water stations SW-2 and SW-3 continue to be compared to the water quality from monitoring wells 95-6, 07-2S and 07-2D to assess any potential impacts groundwater migrating from the landfill may have on the local surface water environment.

10.7 Surface Water Trigger Location

The Trigger Monitoring Station is SW-6. This monitoring point is located in the Landfill Creek before the confluence of the Landfill Creek and Spring Creek.

10.8 Surface Water Trigger Mechanism

Currently surface water monitoring occurs three times a year at seven (7) sampling locations. This is considered sufficient to confirm whether the subsurface and streams in the downgradient catchment area maintains PWQO standards. The following trigger location, mechanism and sampling protocols will assist in determining this.

- The trigger location is surface water station SW-6. This station is located before the
 confluence of the Landfill Stream and Spring Creek. The trigger mechanism was last
 reviewed and subsequently approved as part of the submission to expand the landfilling
 operations in 2014.
- Trigger mechanism parameters include:

Unionized Ammonia 75th percentile **0.022 mg/L** Chloride 75th percentile **20 mg/L**

June 2021 33 | Page

- Other parameters (selected metals, including iron) are not considered "stand-alone" trigger constituents, as these parameters were observed to occasionally exceed the PWQO at the background station SW-1.
- Sample collection should only be undertaken when there is continuous flow in the watercourse as stagnant ponded water is not representative of the surface water conditions.
- Any exceedance for any listed parameter should be defined as the numerical elevation of an analytical value above the trigger concentration or above the background concentration at up gradient station SW-1 if higher that the trigger concentration.
- Two consecutive exceedances for any listed trigger parameter at the SW-6 sample station should be deemed to be caused by the landfill and a contingency plan should be prepared and submitted to the MECP District Manager shortly after detection of the second exceedance.

In 2020 no trigger exceedance occurred for chloride. Field values of unionized ammonia revealed concentrations to be well below 0.02 mg/L, ranging from 0.0003 mg/L to 0.005 mg/L. No contingency measures are required at this time.

10.9 Surface Water Contingency

In the event two (2) consecutive exceedances occur the conductance of a detailed surface water/biological study to determine if the trigger exceedance causes acceptable or unacceptable quality/biological impact on the receiving watercourse will occur. We would add that prior to the initiation of such a study an assessment be provided to the Ministry on the need to move ahead with the surface water/biological study.

- recommendations for:
 - the site closure or continued operation with the design/construction of appropriate engineered facilities (such as leachate collection/treatment works, surface water drainage control, low permeability soil or geotextile capping of the refuse footprint);
 - the timing for the installation of the recommended remedial facilities; and
 - the subsequent quality monitoring program needed to confirm acceptable surface water impact.

If acceptable impact should be demonstrated by the surface water/biological study, the Ministry would be requested to support the continuance of routine sampling program without mitigation regarding the specific trigger exceedance.

June 2021 34 | Page

11.0 DISCUSSION AND RECOMMENDATIONS

The following discussion and recommendations are provided.

Groundwater Monitoring

- Two groundwater monitoring events (spring and fall) were completed as part of the regular monitoring program at the site.
- The direction of groundwater from the site is to be south east towards Maskinonge Lake. There may be some radial flow in the vicinity of Area 2 as a result of groundwater mounding under the landfilling area.
- Leachate impact has been measured at monitoring wells 07-3D, 07-FD, 08-1D, 95-4D (Area 2) and in the groundwater monitors 95-6 and 07-2 (south-eastern corner of Area 4).
- The leachate impact is measured by elevated inorganic concentrations (alkalinity, boron, barium, chloride, calcium, hardness, sodium, TDS, manganese and iron). Groundwater leaving the site from Area 4 (southeast) will be contained with the CAZ in this direction.
- Impact west of Area 2 is also characterized by elevated organic parameters in the groundwater. The vertical impact in this direction is restricted to the deeper groundwater. The horizontal extent measures as far as monitoring well 95-4 but not as far as wells 95-3 and 96-1.
- The water quality from wells that are located slightly further to the west (95-3, 95-5 and 96-1S and 96-1D) is characterized by low levels of inorganic parameters and organic parameters below detections limits.
- As per Condition 31 of the former ECA, the Municipality purchased an approximate 14-hectare parcel of land immediately to the west of the landfill site. This acquisition has been registered on title as a Contaminant Attenuation Zone (CAZ).
- For Groundwater organic sampling was completed in 2020. The organic sampling did not reveal any exceedances of ODWS with the exception of vinyl chloride at 07-3D and 95-6. The presence of vinyl chloride at these locations is consistent with historical results.
- The residential wells were not sampled in 2020. The next sampling scheduled for the spring event of 2021, as per the Ministry memorandum dated January 4, 2018 (provided in **Appendix B**).
- All parameters reveal concentrations that are less than the RUPO with the exception of manganese (spring and fall) for monitoring well 96-1D. No increasing trends in concentrations of manganese at monitoring well 96-1D are apparent; and due to the low values of all other leachate indicator parameters the concentrations are likely attributed to the local mineralogy in the area. Accordingly, the site is interpreted to be compliant with Guideline B-7.
- No parameters exceed trigger values with the exception of manganese at 96-1D. This is consistent with the B-7 assessment. Tier II sampling is not recommended.
- Continued ground and surface water monitoring is recommended as per the ECA.

June 2021 35 | P a g e

Surface Water Monitoring

- Surface water sampling has been completed upstream and downstream from the landfill site in both Spring Creek and the Landfill Creek. Three surface water-sampling events (spring, summer and fall) were completed in 2020.
- The chemical values at monitoring station SW-1 are deemed reflective of background conditions. Surface water station SW-1 is located up gradient as Spring Creek passes under Miller's Road.
- Iron concentrations above the PWQO are exhibited at all Surface Water stations. Select metals, and unionized ammonia (laboratory analysis only) were revealed to exceed PWQOs at select monitoring locations.
- Some impact is present in the Landfill Creek located to the southeast of the site. The impact is characterized by elevated metal concentrations as well as iron precipitate on the streambed.
- In 2020 no trigger exceedance occurred for chloride. Field values of unionized ammonia revealed concentrations to be below 0.022 mg/L. No contingency measures are required at this time.
- Surface water will be sampled and reported on in 2021 as per the ECA.

June 2021 36 | P a g e

REFERENCES

Gadd, N.R., 1960. Surficial Geology of Chalk River, Ontario; G.S.C., Map 1132A, Scale 1:63,360.

Lumbers, S.A., 1976. Mattawa - Deep River Area (Eastern Half), District of Nipissing and County of Renfrew; Ontario Division of Mines, Preliminary Map P.1197, Geol. Ser., Scale 1:63,360 or 1 inch to 1 mile; Geology 1972 to 1975, Compilation 1972 to 1976.

Freeze, R.A., and Cherry, J.A., 1979. Groundwater: Prentice-Hall Inc., Englewood Cliff, New Jersey.

Ministry of the Environment, 1983. Ontario Drinking Water Objectives: Ontario Ministry of the Environment, Toronto, Ontario, 56 p.

Chapman, L.J., and Putnam, D.F., 1984. The Physiography of Southern Ontario, Third Edition: Ontario Geological Survey Special Volume 2, Ontario Ministry of Natural Resources.

Greer Galloway & Associates Ltd., 1985. Town of Deep River Sanitary Landfill Site, Development Plan and Operations Report.

Ministry of the Environment, 1986. The Incorporation of the Reasonable Use Concept into the Groundwater Management Activities of the Ministry of the Environment: Ontario Ministry of the Environment, Water Resources Branch, 21 p.

Barnet, P.J. and Leyland, J.G., 1988. Quaternary Geology of the Pembroke Area, Renfrew County; O.G.S., Map P.3124, Geological Series - Preliminary Map, Scale 1:50,000.

Geo-analysis Inc., 1989. Deep River and Area Waste Management Environmental Assessment Study, Hydrogeological Component.

Ministry of the Environment and Energy, 1992. Draft Guidelines - Surface Water Quality Assessment for Existing Waste Disposal Sites.

Geo-analysis Inc., 1992. Hydrogeological Investigation, Town of Deep River Waste Disposal Site (Miller's Road Site), Part Lot 6, Concession 13, Township of Buchanan.

Geo-analysis Inc., 1993. Miller's Road Waste Disposal Site, Hydrogeological Summary of Findings, Town of Deep River.

Robinson Consultants Inc., 1996. Hydrogeologic Investigation Deep River (Miller's Road) Waste Disposal Site.

Robinson Consultants Inc., 1997. Hydrogeologic Investigation Deep River (Miller's Road) Waste Disposal Site.

Robinson Consultants Inc., 2002. Surface Water Assessment Deep River (Miller's Road) Waste Disposal Site (Revised Sections only).

Robinson Consultants Inc., April 2003. Miller's Road Waste Disposal Site Amended Certificate of Approval A413106 MOE Reference # 0562-53J P5Z.

Robinson Consultants Inc., 2004. Annual Report Deep River (Miller's Road) Waste Disposal Site.

June 2021 37 | Page

Jp2g Consultants Inc., 2005 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2006.

Jp2g Consultants Inc., 2006 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2007.

Jp2g Consultants Inc., 2007 Annual Report Deep Rive (Miller's Road) Waste Disposal Site, May 2008.

AECL Report Environmental Assessment Study Report for the Bulk Material Landfill Project 165-03710-ENA-001 Revision 1, March 2009.

Jp2g Consultants Inc., 2008 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2009.

Jp2g Consultants Inc., 2009 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2010.

Jp2g Consultants Inc., 2010 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2011.

Jp2g Consultants Inc., 2011 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2012.

Jp2g Consultants Inc., 2012 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2013.

Jp2g Consultants Inc., 2013 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2014.

Jp2g Consultants Inc., 2014 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2015.

Jp2g Consultants Inc., 2015 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2016.

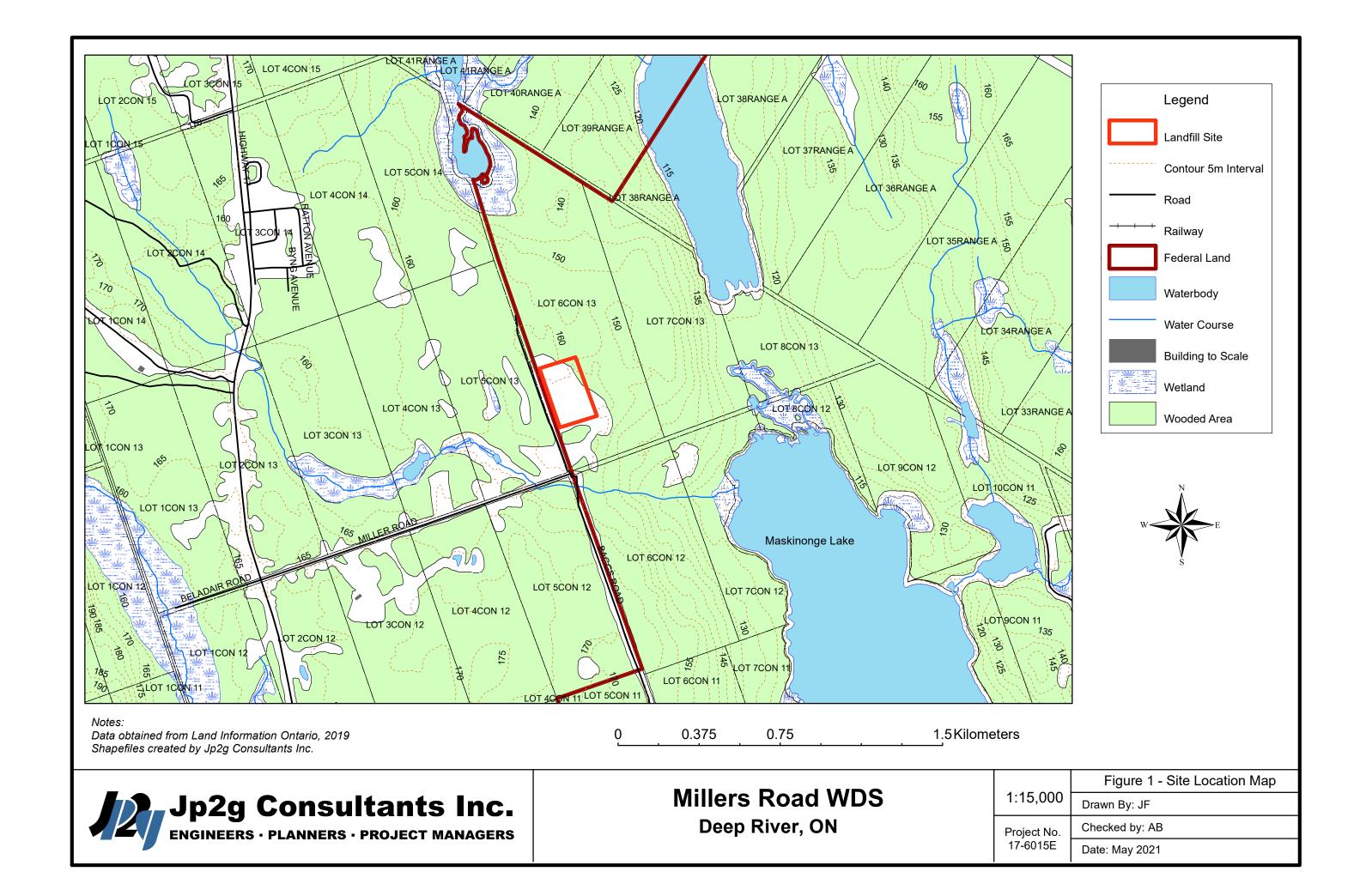
Jp2g Consultants Inc., 2016 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2017.

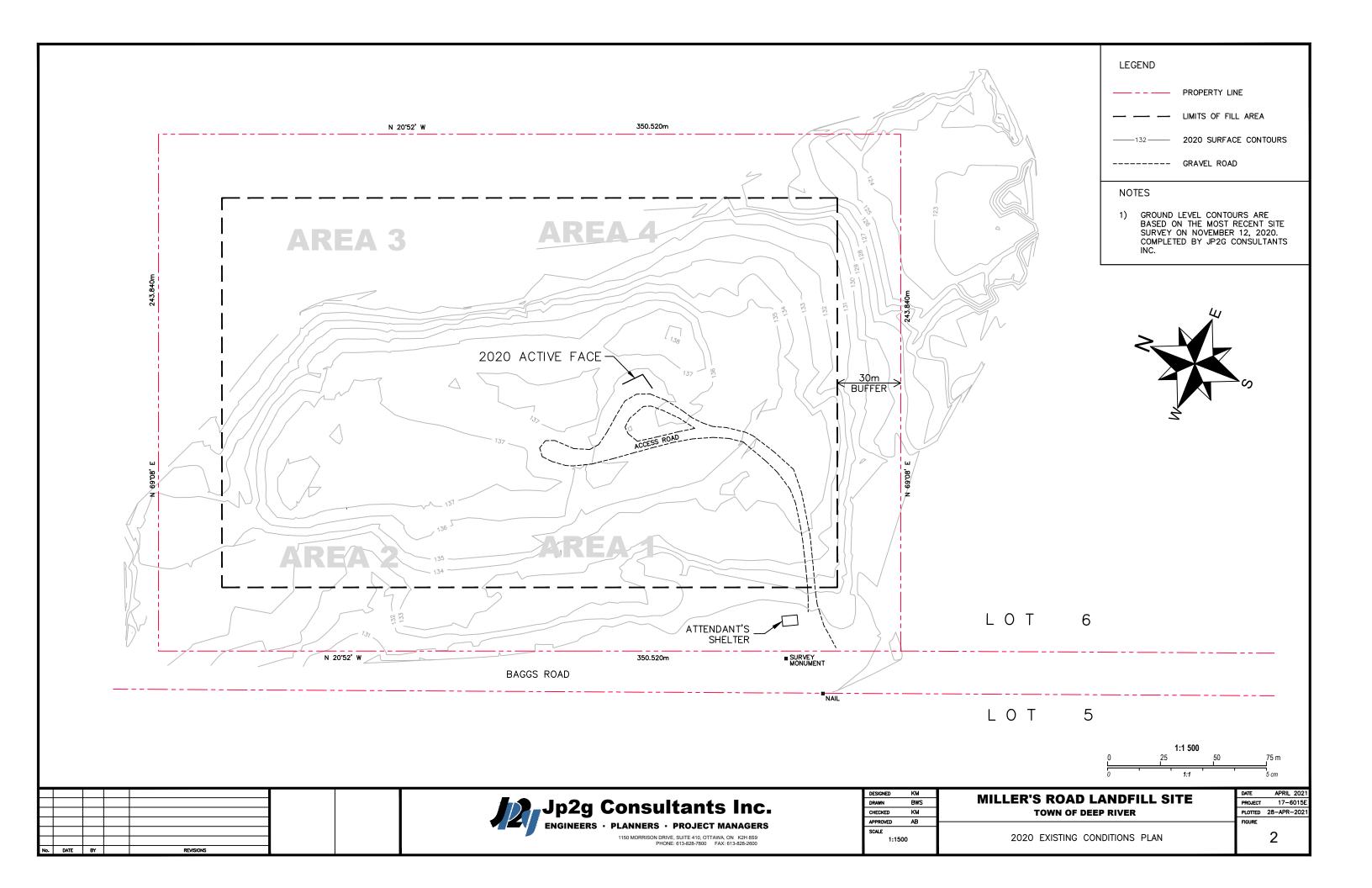
Jp2g Consultants Inc., 2017 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2018.

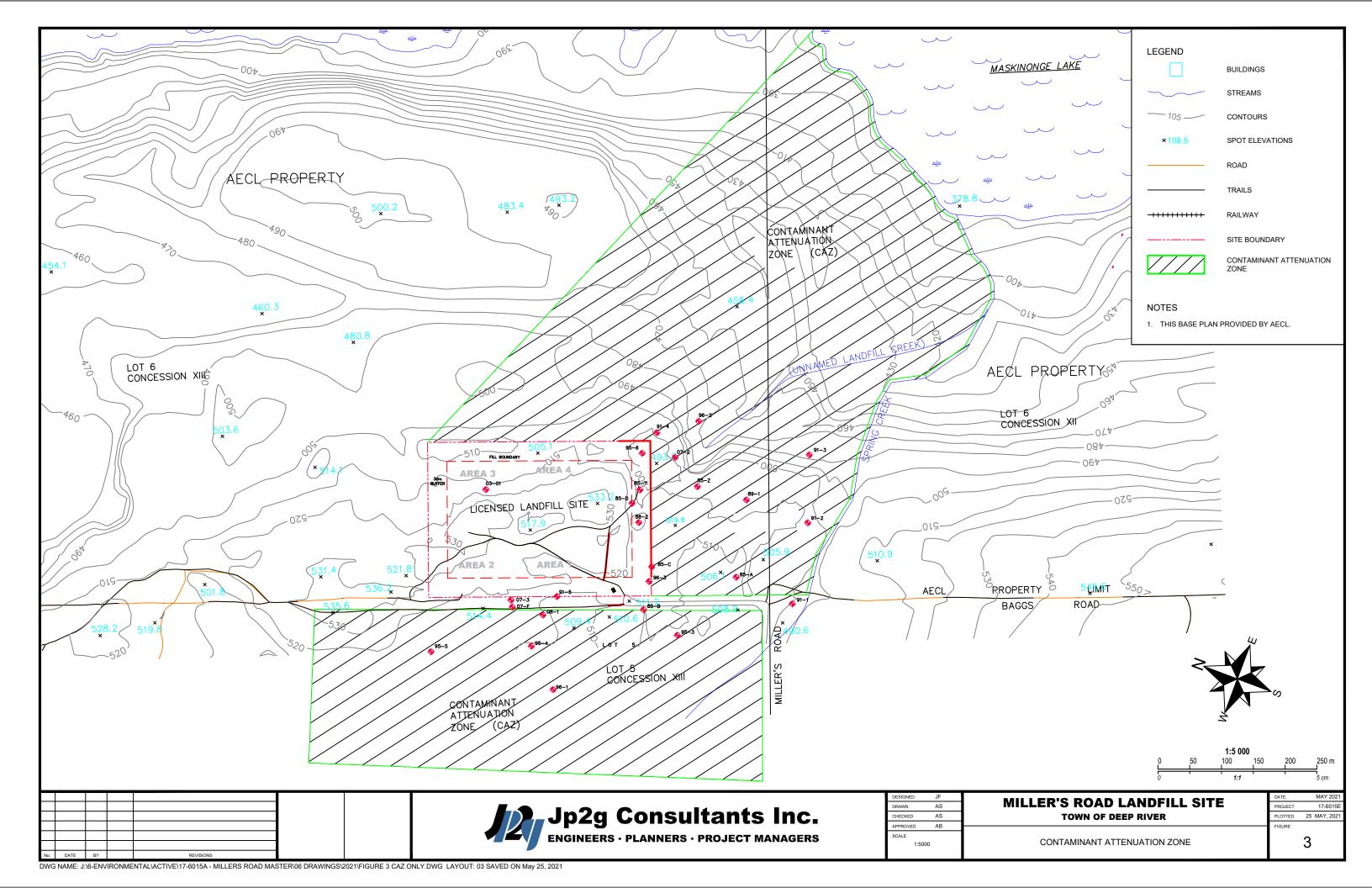
Jp2g Consultants Inc., 2018 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2019.

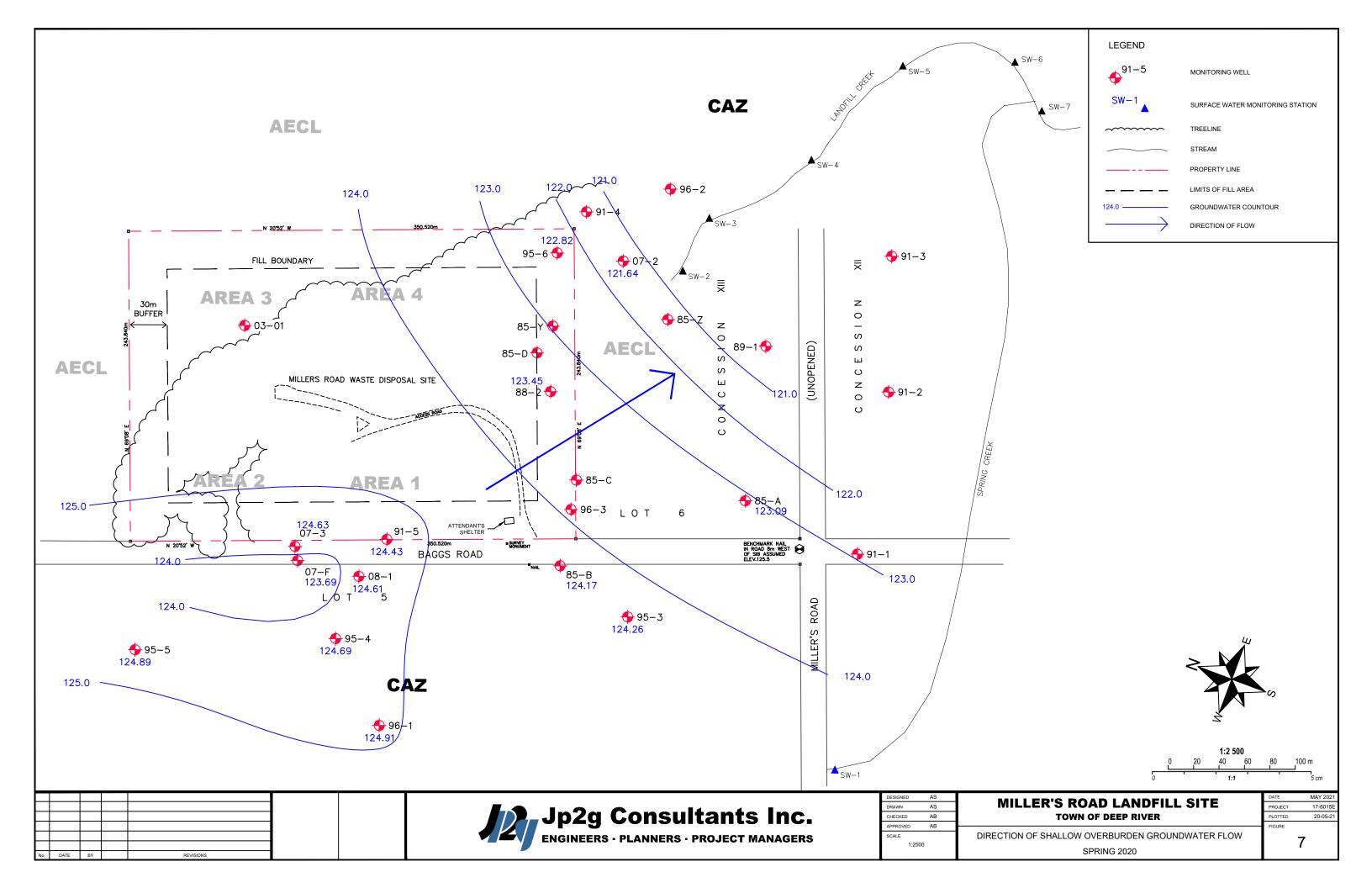
Jp2g Consultants Inc., 2019 Annual Report Deep River (Miller's Road) Waste Disposal Site, May 2020.

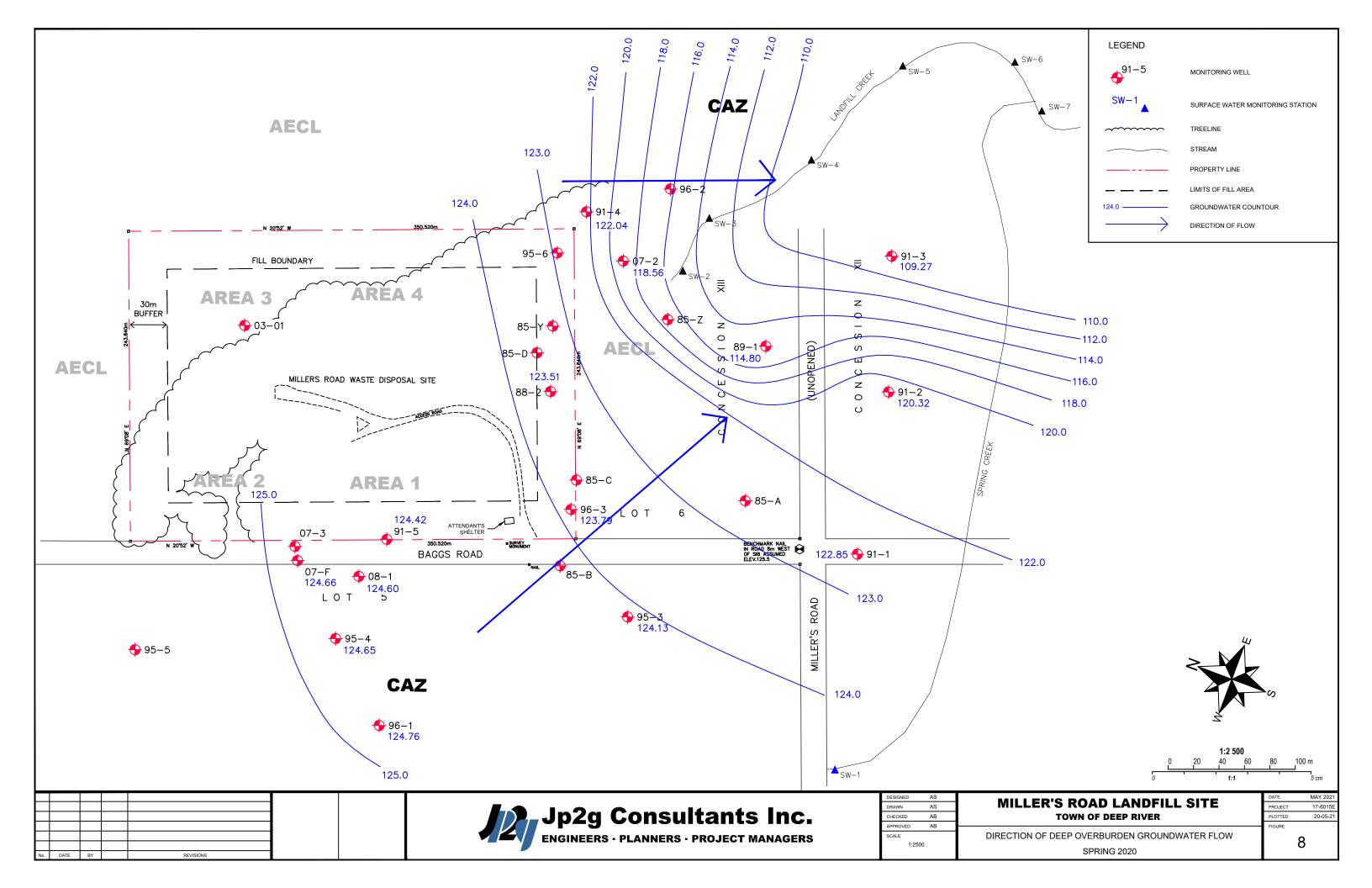
June 2021 38 | Page

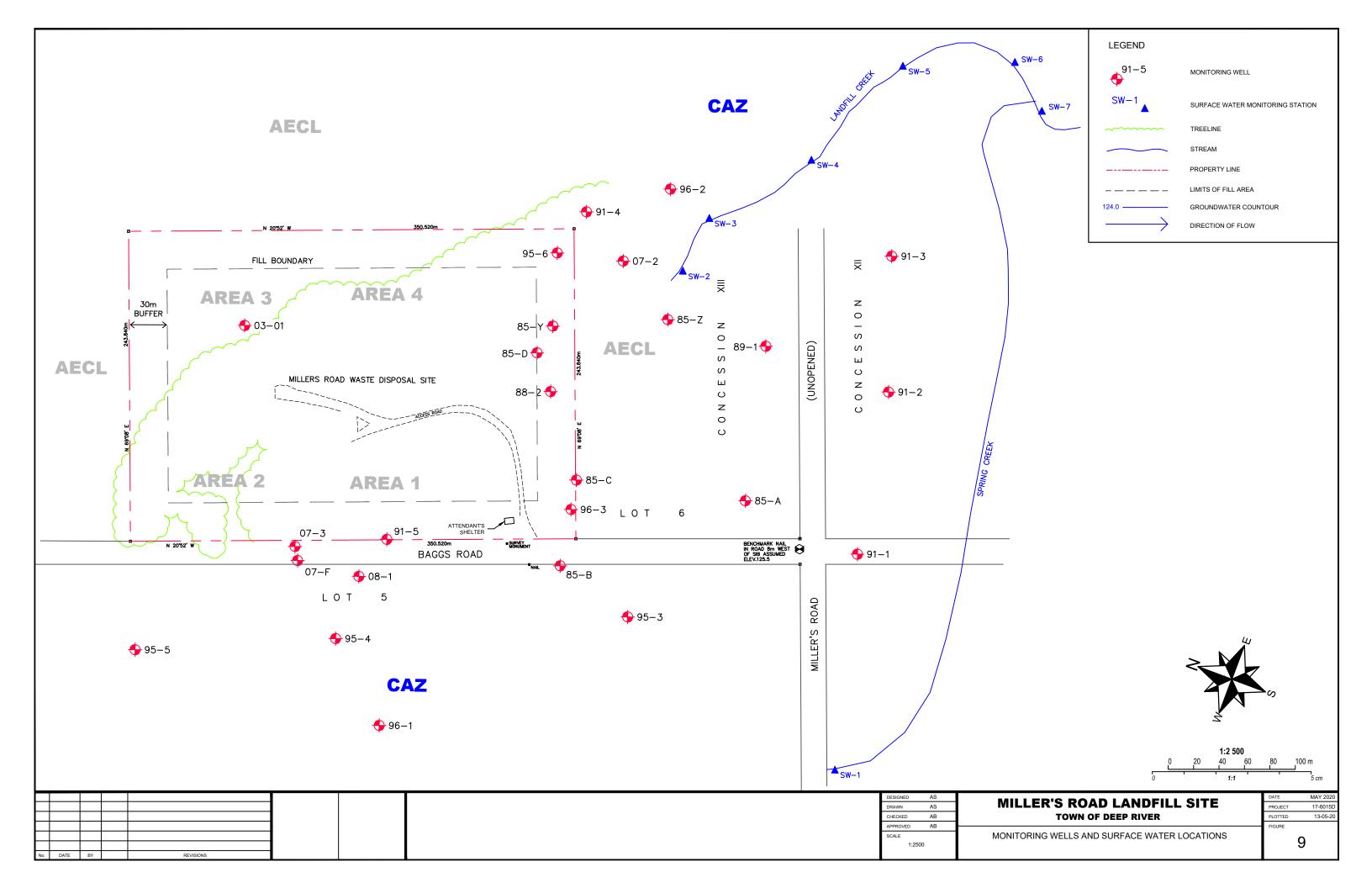

LIMITATIONS AND USE OF THE REPORT


This report was prepared for the exclusive use of the Town of Deep River. Any use which a third party makes of this report, and or reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Jp2g Consultants Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.


This landfill impact report involves a limited sampling of locations to assess the probability of contamination on site. The test data, chemical analyses, and conclusions given herein are the results of analyzing the groundwater encountered during the sampling programs. Based upon the total number of test holes performed, these are considered to be fairly representative of the groundwater conditions within each area tested. It should be noted, however, that any assessment regarding the presence of contamination on the property is based on interpretation of conditions determined at specific locations and depths. Chemical results are limited to those parameters tested.


June 2021 39 | P a g e


Figures



Appendix A

Environmental Compliance Approval

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A413106

Notice No. 1

Issue Date: September 20, 2017

The Corporation of the Town of Deep River Post Office Box, No. 400 Deep River, Ontario K0J 1P0

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Town of Deep River, County of Renfrew

K0J 1P0

You are hereby notified that I have amended Approval No. A413106 issued on April 4, 2014 for a 4.5 hectare waste disposal site within a total site area of 8.55 ha being known as the Miller's Road Landfill Site, as follows:

The following Condition is hereby revoked and replaced with the following:

8.2 The Trigger Mechanism and Contingency Plan for the Site is hereby approved in accordance with Items 39, 40 and 41 in Schedule "A:

The following items are added to Schedule A:

- 39. Document package submitted dated February 5, 2015 and received on February 12, 2015.
- 40. Email from Andrew Buzza, Jp2g dated August 24, 2017 re: inclusion of well 95-3 as compliance well and vinyl chloride on compliance assessment list (attached in IDS).
- 41. Letter from Andrew Buzza, Jp2g dated August 30, 2017 re: revised Trigger and contingency program.

The reason(s) for this amendment to the Approval is (are) as follows:

1. To acknowledge fulfilment of condition 8.2 and include the above documents in Schedule A.

This Notice shall constitute part of the approval issued under Approval No. A413106 dated April 4, 2014

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of September, 2017

Dale Gable, P.Eng.
Director
appointed for the purposes of Part II.1 of
the Environmental Protection Act

BH/

c: District Manager, MOECC Ottawa Andrew Buzza, Jp2g Consultants Inc.

Ministry of the Environment Ministère de l'Environnement

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A413106 Issue Date: April 4, 2014

The Corporation of the Town of Deep River

Post Office Box, No. 400 Deep River, Ontario

K0J 1P0

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Deep River Town, County of Renfrew

K0J 1P0

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

a 4.5 hectare waste disposal site within a total site area of 8.55 ha being known as the Miller's Road Landfill Site.

For the purpose of this environmental compliance approval, the following definitions apply:

"Adverse Effect" means the same as the definition in the EPA.

"Contaminating Lifespan" or "CLS" refers to the period of time, after closure until the Site finally produces contaminants at concentrations below levels which have unacceptable health or environmental effects;

"*Director*" means any *Ministry* employee appointed in writing by the Minister pursuant to section 5 of the *EPA* as a *Director* for the purposes of Part V of the EPA;

"District Manager" refers to the District Manager in the Ministry of the Environment's Ottawa District Office;

"District Office" refers to the Ministry of the Environment Ottawa District Office;

"EAB" refers to the Environmental Approvals Branch of the Ministry of the Environment;

"*EMP*" refers to the Environmental Monitoring Plan;

"*Environmental Compliance Approval" or "ECA"* means this entire provisional Environmental Compliance Approval document, issued in accordance with Section 20.2 of the *EPA*, and includes any schedules to it, the application and the supporting documentation listed in Schedule "A";

"EPA" means Environmental Protection Act, R.S.O. 1990, c. E. 19, as amended from time to time;

"Major Works" are those works that have an engineering component.

"MOE" or "Ministry" refers to the Ontario Ministry of the Environment;

"Operator" has the same meaning as "Operator" as defined in s.25 of the EPA;

"Owner" means Town of Deep River;

"O. Reg. 101/94" means Ontario Regulation 101/94 as amended from time to time;

- "PA" means the Pesticides Act, R.S.O. 1990, c. P-11, as amended from time to time;
- "Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to Section 5 of the OWRA or Section 5 of the EPA or Section 17 of PA;
- "Regional Director" refers to the Director of the Ministry of the Environment's Eastern Regional Office;
- "Regulation 232" or "Reg. 232" or "O. Reg. 232/98" means Ontario Regulation 232/98 (New Landfill Standards) made under the EPA, as amended from time to time;
- "Regulation 347" or "Reg. 347" means Regulation 347, R.R.O. 1990, made under the EPA, as amended from time to time; and
- "*Site*" means the entire waste disposal site being known as the Miller's Road Landfill Site located on Lot 6, Concession 13 in the Town of Deep River in the County of Renfrew, approved by this *Certificate*.
- "Trained personnel" means knowledgeable in the following through instruction and/or practice:
- a. relevant waste management legislation, regulations and guidelines;
- b. major environmental concerns pertaining to the waste to be handled;
- c. occupational health and safety concerns pertaining to the processes and wastes to be handled;
- d. management procedures including the use and operation of equipment for the processes and wastes to be handled;
- e. emergency response procedures;
- f. specific written procedures for the control of nuisance conditions;
- g. specific written procedures for refusal of unacceptable waste loads;
- h. the requirements of this *Certificate*.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1.0 GENERAL

Compliance

- 1.1 The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Site* is notified of the *ECA* and the conditions herein and shall take all reasonable measures to ensure the person complies with the same.
- 1.2 Any person authorized to carry out work on or operate any aspect of the *Site* shall comply with the conditions of this *ECA*.

In Accordance

1.3 Except as otherwise provided for in this *ECA*, the *Site* shall be designed, developed, constructed, operated and maintained in accordance with the supporting documentation listed in Schedule "A".

Other Legal Obligations

- 1.4 The issuance of, and compliance with, this *ECA* does not:
 - a. relieve any person of any obligation to comply with any provision of the *EPA* or any other applicable statute, regulation or other legal requirement; or
 - b. limit in any way the authority of the *Ministry* to require certain steps be taken or to request that any further information related to compliance with this *ECA* be provided to the *Ministry*.

unless a provision of this ECA specifically refers to the other requirement or authority and clearly states that the other requirement or authority is to be replaced or limited by this ECA.

Adverse Effect

1.5 The *Owner* or *Operator* remain responsible for any contravention of any other condition of this *ECA* or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect or impairment of air and/or water quality.

Furnish Information

- 1.6 Any information requested by the *Director* or a *Provincial Officer* concerning the *Site* and its operation under this *ECA*, including but not limited to any records required to be kept by this *ECA* shall be provided in a timely manner.
- 1.7 The receipt of any information by the *Ministry* or the failure of the *Ministry* to prosecute any person or to require any person to take any action, under this *ECA* or under any statute, regulation or subordinate legal instrument, in relation to the information, shall not be construed as:
 - i. an approval, waiver, or justification by the *Ministry* of any act or omission of any person that contravenes any condition of this *ECA* or any statute, regulation or other subordinate legal requirement; or ii. acceptance by the *Ministry* of the information's completeness or accuracy.
- 1.8 Any information related to this *ECA* and contained in *Ministry* files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, RSO 1990, CF-31.

Interpretation

- 1.9 This ECA revokes and replaces the previous ECA and all subsequent amendments.
- 1.10 Where there is a conflict between a provision of any document, including the application, referred to in this *ECA*, and the conditions of this *ECA*, the conditions in this *ECA* shall take precedence.
- 1.11 Where there is a conflict between the application and a provision in any documents listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and that the *Ministry* approved the amendment in writing.
- 1.12 Where there is a conflict between any two documents listed in Schedule "A", other than the application, the document bearing the most recent date shall take precedence.
- 1.13 The conditions of this *ECA* are severable. If any condition of this *ECA*, or the application of any condition of this *ECA* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *ECA* shall not be affected thereby.

Certificate of Requirement

- 1.14 Pursuant to Section 197 of the *EPA*, no person having an interest in the *Site* shall deal with the *Site* in any way without first giving a copy of this *Certificate* to each person acquiring an interest in the *Site* as a result of the dealing.
- 1.15 The Certificate of Requirement shall be registered in the appropriate land registry office on title to the *Site* and a duplicate registered copy shall be submitted to the *Director* within ten (10) calendar days of receiving the Certificate of Requirement signed by the *Director*.

No Transfer or Encumbrance

1.16 No portion of this *Site* shall be transferred or encumbered prior to or after closing of the *Site* unless the *Director* is notified in advance and is satisfied with the arrangements made to ensure that all conditions of this *ECA* will be carried out

and that sufficient financial assurance is deposited with the *Ministry* to ensure that these conditions will be carried out.

Change of Owner

- 1.17 The *Owner* shall notify the *Director*, in writing, and forward a copy of the notification to the *District Manager*, within 30 days of the occurrence of any changes in the following information:
 - i. the ownership of the Site;
 - ii. the *Operator* of the *Site*;
 - iii. the address of the Owner or Operator;
 - iv. the partners, where the *Owner* or *Operator* is or at any time becomes a partnership and a copy of the most recent declaration filed under the *Business Names Act*, R. S. O. 1990, c. B.17, shall be included in the notification:
 - v. the name of the corporation where the *Owner* or *Operator* is or at any time becomes a corporation, other than a municipal corporation, and a copy of the most current information filed under the *Corporations Information Act*, R. S. O. 1990, c. C.39, shall be included in the notification.
- 1.18 In the event of any change in the ownership of the *Site*, other than a change to a successor municipality, the *Owner* shall notify in writing the succeeding owner of the existence of this *ECA*, and a copy of such notice shall be forward to the *Director* and *District Manager*.

Inspections

- 1.19 No person shall hinder or obstruct a *Provincial Officer* from carrying out any and all inspections authorized by the EPA, or the PA, of any place to which this ECA relates, and without limiting the foregoing:
 - i. to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this *ECA* are kept;
 - ii. to have access to, inspect, and copy any records required to be kept by the conditions of this ECA;
 - iii. to inspect the *Site*, related equipment and appurtenances;
 - iv. to inspect the practices, procedures, or operations required by the conditions of this ECA; and
 - v. to sample and monitor for the purposes of assessing compliance with the terms and conditions of this *ECA* or the *EPA*, or the *PA*.

2.0 CONSTRUCTION, INSTALLATION and PLANNING

2.1 As-built drawings for the landfill shall be retained on site and made available to *Ministry* staff for inspection.

3.0 GENERAL OPERATIONS

Proper Operation

3.1 The *Site* shall be properly operated and maintained at all times. All waste shall be managed and disposed of in accordance with the *EPA* and *Regulation* 347 and the requirements of this *ECA*. At no time shall the discharge of a contaminant that causes or is likely to cause an *Adverse Effect* be permitted.

Operations Manual

- 3.2 The Owner shall ensure that an operations and procedures manual that addresses the requirements of this *ECA* is prepared for the Site:
 - a. Health and safety;
 - b. Operation and maintenance of the Site;

- c. Waste acceptance;
- d. Waste disposal area and development;
- e. Nuisance management;
- f. Leachate management;
- g. Landfill gas management;
- h. Surface water/Storm water management;
- i. Inspections and monitoring;
- j. Contingency plans and emergency procedures;
- k. Complaints; and,
- 1. Reporting and record keeping.
- 3.3 The operations and procedures manual shall be:
 - a. retained at the Site;
 - b. reviewed on an annual basis and updated by the Owner as required; and
 - c. be available for inspection by *Ministry* staff.

Capacity

- 3.4 (1) The Design and Operations Plan is approved for a total capacity of **321,825 cubic meters** (including waste, daily and interim cover material); and
- (2) The total capacity as identified in Condition No. 3.4 (1) does not include the final cover.
- (3) The theoretical capacity for the Site is **355,950 cubic meters**.
- (4) To utilize the remaining theoretical capacity which is the difference between the volume identified in Condition 4.4 (3) and 4.4 (1), the *Owner* must receive approval from the *Director* through an amendment to the *ECA* to utilize this capacity.

Service Area

3.5 Only waste that is generated in the within the boundaries of the Town of Deep River Valley and the Town of Laurentian Hills shall be accepted at the *Site*. No waste shall be received for disposal at this *Site* from outside the approved service area.

Hours of Operation

- 3.6 Waste shall only be accepted at the *Site* during the following time periods:
 - i. Tuesday 9:00 a.m. to 12:00 p.m; and
 - ii. Saturday 9:00 am to 12:00 p.m.
- 3.7 With the prior written approval of the *District Manager*, the time periods may be extended to accommodate seasonal or unusual quantities of waste.
- 3.8 The *Owner* may provide limited hours of operation provided that the hours are posted at the landfill gate and that suitable notice is provided to the public of any change in operating hours.
- 3.9 Upon reasonable notice to the *Director*, contingency actions may take place outside normal hours of operation. Emergency response may occur at any time as required.

Signage

3.10 Signs shall be placed at the landfill *Site* entrance/exit indicating, at a minimum, the following:

- a. Name of the landfill and name of the Owner/Operator;
- b. MOE *ECA* Number;
- c. Days and hours of operation and public use;
- d. Contact telephone number at the Town of Deep River;
- e. Service Area for the Site;
- f. Types of waste accepted and prohibited;
- g. Overview of landfill complaints procedure, including a phone number for registering a complaint;
- h. Unauthorized entry is prohibited; and
- i. A warning against dumping wastes outside the Site.

Site Security

3.11 During non-operating hours, the *Site* entrance and exit gates shall be locked and the *Site* shall be secured against access by unauthorized persons

On-Site Roads

3.12 On-*Site* roads shall be provided and maintained in a manner that vehicles hauling waste to and on the *Site* may travel readily and safely on any operating day. During winter months, when the *Site* is in operation, roads must be maintained to ensure safe access to the landfill working face. On-*Site* roads must be clear of mud, ice and debris which may create hazardous conditions.

Waste Inspection Procedures

3.13 The *Operator* shall develop and implement a program to inspect waste to ensure that the waste is of a type approved for acceptance under this *ECA*.

Waste Inspection and Deposition

3.14 All loads of waste must be properly inspected by trained site personnel prior to acceptance at the *Site* and waste vehicles must be diverted to appropriate areas for waste disposal.

Litter Control:

3.15 The *Owner* shall take all practical steps to prevent escape of litter from the *Site*. The *Owner* shall inspect and collect litter from the *Site* on a monthly basis from April to November and as needed between December and March. All loose, windblown litter shall be collected and disposed of at the landfill working face.

Vermin, Scavenging, Dust, Litter, Odour, Noise, etc.

- 3.16 The *Site* shall be operated and maintained such that the vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.
- 3.17 No scavenging is to occur at the Site.

Dust

3.18 The *Owner* shall control fugitive dust emissions from on site sources including but not limited to on-*Site* roads, stockpiled cover material and, closed landfill area prior to seeding especially during times of dry weather conditions. If necessary, major sources of dust shall be treated with water and/or dust suppression materials to minimize the overall dust emissions from the *Site*.

Noise

3.19 The Owner shall comply with noise criteria in MOE Guideline entitled "Noise Guidelines for Landfill Sites."

Spills

3.20 All spills and upsets shall be immediately reported to the Ministry's Spills Action Centre (SAC) and shall be recorded in a log as to the nature of the spill or upset, and the action taken for clean-up, correction and prevention of future occurrences.

Overall Surface Water Management

- 3.21 (1) The *Owner* shall take all appropriate measures to minimize surface water from coming in contact with waste. Temporary berms and ditches shall be constructed around active waste disposal areas to prevent extraneous surface water from coming in contact with the active working face.
- (2) The *Owner* shall not discharge surface water to receiving water bodies without an approval under the *EPA*.

Landfill Gas

3.22 All buildings are to be free of any landfill gas accumulation. The *Owner* shall provide adequate ventilation systems to relieve landfill gas accumulations in buildings if necessary.

4.0 LANDFILL SITE OPERATIONS

Waste Types

4.1 Only solid non-hazardous Construction and Demolition waste generated within the Town of Deep River and Town of Laurentian Hills shall be accepted at the *Site* for landfilling.

Unacceptable Waste

- 4.2 i. The *Owner* shall conduct appropriate inspections and ensure that appropriate controls are in place to prevent the acceptance and landfilling of liquid industrial waste and hazardous waste and to prevent the acceptance of waste from outside the approved service area.
- ii. The *Owner* shall record in the daily records for the *Site* operations any occurrence of unacceptable waste delivered to the *Site*, the name of the waste hauler delivering the waste to the *Site* and waste generator (if known).
- iii. The *Owner* shall forthwith notify the *District Manager* of any and all waste load refusals at the *Site* related to requirements in this *ECA*, including service area and waste types.

Burning of Waste

- 4.3 (1) Burning of waste is not permitted at the Site with the exception of the material under Condition 4.4 (2)
- (2) Only clean wood and brush shall be permitted for burning. Burning of the materials shall be completed as per the Ministry of the Environment Guideline C-7 (Burning at Landfill Sites);

Waste Placement

- 4.4 No waste shall be landfilled outside of the **limit of fill area** for the *Site* as shown in Item 13 in Schedule "A" attached to this *ECA*.
- 4.5 No waste shall be landfilled below the **base grades** as discussed and shown in Item 13 in Schedule "A" attached to this *ECA*.

- 4.6 i. No waste shall be landfilled at any time above the **final waste grades** as shown in Item 13 in Schedule "A" attached to this *ECA*; and
- ii. Final slopes above grade at the time of *Site* closure within the waste fill area shall be within the range of 4H:1V (25%) and 20H:1V (5%).
- 4.7 Waste placement shall occur at a minimum 1 meter above the highest groundwater table elevation at the Site
- 4.8 No waste shall be landfilled in the buffer area.
- 4.9 The *Owner* shall deposit waste in a manner that minimizes exposure area at the landfill working face and all waste shall be compacted before cover is applied.

Asbestos Waste

- 4.10 Any waste that is considered asbestos waste shall be handled in accordance with Section 17 of *O. Reg. 347* as amended from time to time
- 4.11 A suitable sized excavation for the asbestos waste shall be made by the *Owner* in a location away from the active landfilling face.
- 4.12 All asbestos waste shall be inspected to ensure that the asbestos waste is properly bagged or contained and free from puncture, tears or leaks.
- 4.13 The asbestos waste shall be placed in the excavation to avoid damage to the containers and to prevent dust and spillage.
- 4.14 Upon completion of the unloading and deposition of the asbestos in the excavation, at least 125 centimetres of cover or waste material shall be placed over the asbestos.
- 4.15 All asbestos waste shall be deposited to a level no higher that 1.25 metres below the general elevation of the disposal area to ensure that daily cover material removal in the future does not encounter the asbestos waste.

Cover Material

- 4.16 i. Daily Cover By the end of each working day, the entire working face shall be compacted and covered with a minimum thickness of 150 mm of soil cover or an approved thickness of alternative cover material.
- ii. Intermediate Cover In areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 300 mm of soil cover or an approved thickness of alternative cover material shall be placed.

Landfill Surface Water Management

4.17 Stormwater runoff generated from the active waste fill area shall be considered contaminated and treated as leachate. Operational methods shall ensure that any precipitation falling onto active waste fill areas, not under final cover, shall be directed into the waste or into a control structure for testing prior to confirm surface water can be discharged to the natural environment.

5.0 TRAINING

Employees and Training

- 5.1 A training plan for all employees that operate any aspect of the site shall be developed and implemented by the *Operator*. Only trained employees shall operate any aspect of the *Site* or carry out any activity required under this *ECA*. For the purpose of this *ECA* "trained" means knowledgeable either through instruction or practice in:
 - i. the relevant waste management legislation including EPA, O. Reg. 347, regulations and guidelines;

- ii. major environmental and occupational health and safety concerns pertaining to the waste to be handled;
- iii. the proper handling of wastes;
- iv. the management procedures including the use and operation of equipment for the processes and wastes to be handled:
- v. the emergency response procedures;
- vi. the specific written procedures for the control of nuisance conditions;
- vii. the terms, conditions and operating requirements of this ECA and,
- viii. proper inspection, receiving and recording procedures and the activities to be undertaken during and after a load rejection.

6.0 INSPECTIONS AND RECORD KEEPING

Daily Inspections and Log Book

- 6.1 An inspection of the entire *Site* and all equipment on the *Site* shall be conducted each day the *Site* is in operation to ensure that the site is being operated in compliance with this *ECA*. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the *Site* if needed.
- 6.2 A record of the inspections shall kept in a daily log book or a dedicated electronic file that includes:
 - i. the name and signature of person that conducted the inspection;
 - ii. the date and time of the inspection;
 - iii. the list of any deficiencies discovered;
 - iv. the recommendations for remedial action; and
 - v. the date, time and description of actions taken.
- 6.3 (1) A record shall be kept in the daily log book for any refusal of waste shipments, the reason(s) for refusal, and the origin of the waste, if known.
- (2) At least once a year before the submission of the Annual Report required by Condition 11.1, the *Owner* shall conduct a topographic survey of the limit of landfilling to determine the approximate volume of waste that has been landfilled at the *Site*. The survey results shall be included in the Annual Report required by Condition 11.1

Site Inspections

- 6.4 During *Site* operations, the *Owner* shall inspect the *Site* monthly for the following items but not limited to these items:
 - i. General settlement areas or depressions on the waste mound;
 - ii. Shear and tension cracks on the waste mound;
 - iii. Condition of surface water drainage works;
 - iv. Erosion and sedimentation in surface water drainage system;
 - v. Presence of any ponded water on the waste mound;
 - vi. Evidence of vegetative stress, distressed poplars or side slope plantings on or adjacent to the waste mound; and
 - vii. Condition of fence surrounding the Site.
- 6.5 The *Owner* shall inspect the waste mound and surrounding areas weekly for presence of leachate seeps. Any leachate seeps that are discovered shall be repaired within 48 hours of notice by the *Owner*.

Record Retention

6.6 Except as authorized in writing by the *Director*, all records required by this *ECA* shall be retained at the *Site* for a minimum of two (2) years from their date of creation.

- 6.7 The *Owner* shall retain all documentation listed in Schedule "A" for as long as this *ECA* is valid.
- 6.8 All monthly summary reports are to be kept at the Site until they are included in the Annual Report.
- 6.9 The *Owner* shall retain employee training records as long as the employee is working at the *Site*.
- 6.10 The *Owner* shall make all of the above documents available for inspection upon request of *Ministry* staff.

7.0 MONITORING

Groundwater Monitors

- 7.1 The *Owner* shall ensure all groundwater monitoring wells are properly capped, locked and protected from damage.
- 7.2 In areas where landfilling is to proceed around monitoring wells, suitable extensions shall be added to the wells and they shall be properly re-secured.
- 7.3 All groundwater monitoring wells whether included in the monitoring program or not shall be assessed, repaired, replaced or decommissioned as required. Any well being decommissioned shall be decommissioned in accordance with good standard practice that will prevent contamination through the abandoned well and in accordance with Ontario Regulation 903.
- 7.4 The *Owner* shall repair or replace any monitoring well included in the monitoring program which is destroyed or in any way made inoperable for sampling such that no more than one sampling event is missed.
- 7.5 Any monitoring well included in the monitoring program that is no longer required as part of the groundwater monitoring program may be decommissioned provided its removal from the monitoring program has been approved by the *Director*. A report on the decommissioning shall be provided in the annual monitoring report for the period during which the well was decommissioned

Monitoring Programs

- 7.6. (1) Monitoring programs shall be carried out for groundwater, surface water, and leachate, in accordance with Item No. 13 (Section 7) in Schedule "A" and Item No. 14 in Schedule A.
- (2) In addition to the monitoring program listed in Condition 11.6, the Owner shall:
 - i. Sample and analyze for VOCs at monitoring locations 96-1 and 95-3; and
 - ii. Include Monitoring well 96-2 to the monitoring program and monitor for the the inorganic list.
- (3) For any changes to the monitoring program, the *Owner* shall in a cover letter request the acceptance of the changes by the *District Manager*.
- (4) Within fourteen (14) days of receiving the writing correspondence from the District Manager confirming that the District Manager is in agreement with the proposed changes to the monitoring program, the *Owner* shall forward a letter identifying the proposed changes and a copy of the correspondences from the *District Manager*, to the *Director* requesting the *ECA* be amended to approve the proposed changes prior to implementation.

Compliance Criteria

7.7 The *Owner* shall ensure the *Site* is in compliance with MOE Guideline B-7 Reasonable Use Concept is applied and met at all points on the property line which are impacted by leachate from the *Site*.

Groundwater Supply Well

7.8 The Owner shall sample and analysis groundwater supply wells within 500 metres of the site twice per year in 2014 and 2015 with samples analysed for the inorganic list and VOCs (Parametes as listed listed in Column 1 of the MOE Document titled Landfill Standards: A ine on the Regulatory and Approval Requirements for New or Expanding Landfills Sites" June 2012)

8.0 TRIGGER MECHANISMS AND CONTINGENCY PLANS

Trigger Mechanisms

- 8.1 In the event of a confirmed exceedance of a *Site*-specific trigger level for groundwater or surface water impacts due to leachate or gas levels, the *Owner* shall complete the following:
 - i. immediately notify the *District Manager*; and
 - ii. an investigation into the cause and the need for implementation of remedial or contingency actions shall be carried out by the *Owner* in accordance with the approved trigger mechanisms and associated contingency plans described in the Item 13 (Section 7) in Schedule "A"

Contingency Plans

- 8.2 By **December 31, 2014**, the *Owner* shall submit to the *Director* for approval, and copies to the *District Manager*, details of a contingency plan to be implemented in the event that the surface water or groundwater quality exceeds the a trigger mechanism.
- 8.3 If monitoring results, investigative activities and/or trigger mechanisms indicate the need to implement contingency measures, the *Owner* shall ensure that the following steps are taken:
 - a. The *Owner* shall notify the *Director* and *District Manager*, in writing, of the need to implement contingency measures, no later than 30 days after confirmation of the exceedances;
 - b. Detailed plans, specifications and descriptions for the design, operation and maintenance of the contingency measures shall be prepared and submitted by the *Owner* to the *Director* and *District Manager* for approval within 90 days after confirmation of the exceedances; and
 - c. The contingency measures shall be implemented by the *Owner* upon approval by the *Director*.
- 8.4 The *Owner* shall ensure that any proposed changes to the *Site*-specific trigger levels for leachate impacts to the surface water or groundwater, shall be approved in advance by the *Director* prior to implementation.

9.0 COMPLAINTS PROCEDURE

- 9.1 If at any time, the *Owner* receives complaints regarding the operation of the *Site*, the *Owner* shall respond to these complaints according to the following procedure:
 - a. The *Owner* shall record and number each complaint, either electronically or in a log book, and shall include the following information: the nature of the complaint, the name, address and the telephone number of the complainant if the complainant will provide this information and the time and date of the complaint;
 - b. The *Owner*, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
 - c. The *Owner* shall complete a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents. A copy of the report shall be retained on-site.

9.2 The *Owner* shall post site complaints procedure at site entrance along with the name and phone number of a suitable, local contact to receive complaints or questions related to the *Site*. All complaints and the *Owner*'s actions taken to remedy the complaints must be summarized in the Annual Report.

10.0 EMERGENCY SITUATIONS

- 10.1 In the event of a fire or discharge of a contaminant to the environment, *Site* staff shall contact the *MOE* Spills Action Centre (1-800-268-6060) and the *District Office* of the *MOE*.
- 10.2 The *Owner* shall submit to the *District Manager* a written report within 3 days of the spill or incident, outlining the nature of the incident, remedial measures taken and measures taken to prevent future occurrences at the Site.
- 10.3 The *Owner* shall prepare an Emergency Response Manual for the *Site* and submit to the *District Manager* within 60 days of the issuance of this amendment, in consultation with local emergency response agencies. The Emergency Response Manual should indicate the responsibility of each of the stakeholders with respect to handling possible emergency situations.
- 10.4 The Emergency Response Manual shall be updated on a regular basis and be provided to the *District Manager* within one month of the revision date.
- 10.5 The *Owner* shall ensure that adequate fire fighting and contingency spill clean up equipment is available and that emergency response personnel are familiar with its use and location.

11.0 ANNUAL REPORTING

- 11.1 A written report on the development, operation, monitoring and closure of the *Site*, shall be completed annually (the "Annual Report"). The Annual Report shall be submitted to the *District Manager* by **June 1st** of each year and shall cover the year ending the preceding December 31st.
- 11.2 The Annual Report shall include the following:
 - i. the results and an interpretive analysis of the results of all leachate, groundwater, surface water and landfill gas monitoring, including an assessment of the need to amend the monitoring programs;
 - ii. An assessment with regards to compliance of the groundwater quality at the property boundary and compliance point with regards to Guideline B-7 Reasonable Use Concept;
 - iii. an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the *Site*, and the adequacy of and need to implement the contingency plans;
 - iv. Site plans showing the existing contours of the Site;
 - v. areas of landfilling operation during the reporting period;
 - vi. areas of intended operation during the next reporting period;
 - vii. areas of excavation during the reporting period;
 - viii. the progress of final cover, vegetative cover, and any intermediate cover application;
 - ix. previously existing site facilities;
 - x. facilities installed during the reporting period;
 - xi. Site preparations and facilities planned for installation during the next reporting period;
 - xii. calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the *Site* during the reporting period and a calculation of the total volume of Site capacity used during the reporting period:
 - xiii. a summary estimated annual quantity (cubic metres) of waste received at the Site.
 - xiv. a summary of any complaints received and the responses made;
 - xv. a discussion of any operational problems encountered at the Site and corrective action taken;
 - xvi. a summary of the amount of wastes refused for disposal at the *Site*, the reasons for refusal and the carrier who brought the waste to the *Site*;
 - xvii. a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;

- xviii. any other information with respect to the site which the *District Manager or Regional Director may* require from time to time;
- xix. a statement of compliance with all conditions of this *ECA* and other relevant *Ministry* groundwater and surface water requirements;
- xx. a confirmation that the site inspection program as required by this *ECA* has been complied with by the *Owner*:
- xx. Any changes in operations, equipment or procedures employed at the Site; and
- xx. Recommendations regarding any proposed changes in operations of the Site.

12.0 SITE CLOSURE

12.1 At least two (2) years prior to the anticipated date of closure of this *Site* or the date 90 per cent of the total waste disposal volume is reached, whichever occurs first, the *Owner* shall submit to the *Director* for approval, with copies to the *District Manager*, a detailed *Site* Closure Plan pertaining to the termination of landfilling operations at this *Site*, post-closure inspection, maintenance and monitoring, and end use.

Schedule "A"

- 1. Letter from the Town of Deep River to the Ministry of the Environment and Energy dated June 26, 1995 and enclosed "Application for a Certificate of Approval for a Waste Disposal Site", dated June 26, 1995 and supporting documentation entitled "Town of Deep River Leaf and Yard Waste Composting Operation" providing site plans, site description and operation information, public consultation and municipal approval
- 2. Deep River (Miller's Road) Waste Disposal Site Certificate of Approval A413106 Final Report prepared by Robinson Consultants Inc. and dated February 1998.
- 3. Hydrogeologic Report Deep River (Miller's Road) Waste Disposal Site prepared by Robinson Consultants Inc. and dated April 2001.
- 4. Miller's Road Landfill Closure and C&D Waste Operation and Development Plan prepared by Jp2g Consultants Inc. and dated August 2001.
- 5. Deep River Waste Disposal Site Application for Approval for Waste Disposal Site Amendment to C of A A413106 Town of Deep River prepared by Robinson Consultants Inc. and dated April 2002.
- 6. Surface Water Assessment Deep River (Miller's Road) Waste Disposal Site (Revised Sections Only) prepared by Robinson Consultants Inc. and dated October 2002.
- 7. Application for approval signed by Belo Csomor, The Corporation of the Town of Deep River and the accompanying cover letter dated November 13, 2003 from Andrew Buzza, Robinson Consultant Inc.
- 8. Application for a Provisional Certificate of Approval for a Waste Disposal Site, signed by Belo Csomo, The Corporation of the Town of Deep River, and dated January 1, 2004.
- 9. Letter to Margaret Wojcik, Ontario Ministry of the Environment, from Andrew Buzza, Robinson Consultants Inc., dated January 26, 2004, describing the proposal.
- 10. Letter to Margaret Wojcik, Ontario Ministry of the Environment, from Andrew Buzza, Robinson Consultants Inc., dated May 6, 2004, providing additional clarification on the proposal.
- 11. Letter dated December 21, 2005 to Ian Parrott, Ontario Ministry of the Environment, from Belo Csomor, The Corporation of the Town of Deep River, including the attached lease agreement between the Town of Deep River and Atomic Energy of Canada Ltd. to permit the continued operation of Miller's Road Landfill Site and to delineate and establish

the contaminant attenuation zone on Atomic Energy of Canada lands and to include a drawing showing the extend of the contaminant attenuation zone.

- 11. Application for a Provisional Certificate of Approval for a Waste Disposal Site, signed by Belo Csomo, The Corporation of the Town of Deep River, and dated August 28, 2009.
- 12. Letter dated August 27, 2009 to Tesfaye Gebrezghi, Ontario Ministry of the Environment, from Andrew Buzza, Project Manager, Jp2g Consultants Inc.
- 13. Application for Expansion Deep River (Miller's Road) Waste Disposal Site prepared for the Town of Deep River by Jp2g Consultants Inc. dated March 2013. The document included the following Items:
 - i. Environmental Compliance Approval Application dated April 4, 2013 and signed by Christopher Carroll, Treasurer, Town of Deep River.
 - ii. Design and Operations Report Millers Road Waste Disposal Site prepared by Jp2g Consultants Inc. (Project No. 2106142B) dated March 2013.
 - iii. Millers Road Physical Assessment Report prepared by Jp2g Consultants Inc. (Project No. 2106142B) dated March 2013.
- 14. Letter dated December 23, 2013 addresses to Michelle Larose, Town of Deep River from Dale Gable, Ministry of the Environment requesting additional information on the application to utilized remaining capacity.
- 15. Letter dated January 8, 2014 addressed to Dale Gable, Ministry of the Environment from Mr. Andrew Buzza, Jp2g Consultants Inc. providing additional information on the Design and Operations Plan.

The reasons for the imposition of these terms and conditions are as follows:

- 1. The reason for Conditions 1.1 and 1.2 is to ensure that the Site is designed, operated, monitored and maintained in accordance with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.
- 2. The reason for Conditions 1.3, 1. 4. 1. 5, 1.9, 1.10, 1.11, 1.12, 1.13, 3.1, 3.2, 3.3 and 7.7 is to clarify the legal rights and responsibilities of the Owner under this ECA.
- 3. Conditions 1.6, 1.7 and 1.8 are included to ensure that the appropriate Ministry staff have ready access to information and the operations of the Site, which are approved under this Certificate.
- 4. Conditions 1.14 and 1.15 are included, pursuant to subsection 197(1) of the EPA, to provide that any persons having an interest in the Site are aware that the land has been approved and used for the purposes of waste disposal.
- 5. The reasons for Condition 1.16 are to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this ECA.
- 6. The reasons for Conditions 1.17 and 1.18 are to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes.
- 7. The reason for Condition 1.19 is to ensure that appropriate Ministry staff have ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this ECA. This condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the EPA and OWRA.
- 8. The reason for Condition 2.1 is to ensure the Owner keeps a record of as-built drawing for the set available.
- 9. The reasons for Conditions 3.1, 3.2 and 3.3 are to ensure the Owner operates the Site in an environmentally safe manner. This to is ensure the environment and public health are protected.
- 10. The reasons for Conditions 3.4 and 3.5 is to specify the approved areas from which waste may be accepted at the Site and the types and amounts of waste that may be accepted for disposal at the Site, based on the Owner's application and supporting documentation.
- 11. The reasons for Conditions 3.6, 3.7, 3.8 and 3.9 are to specify the normal hours of operation for the landfill Site and a mechanism for amendment of the hours of operation.
- 12. The reason for Condition 3.10 is to ensure that users of the Site are fully aware of important information and

- restrictions related to Site operations under this ECA of Approval.
- 13. The reasons for Condition 3.11 are to specify Site access to/from the Site and to ensure the controlled access and integrity of the Site by preventing unauthorized access when the Site is closed and no Site attendant is on duty.
- 14. The reason condition 3.12 has been included is to ensure that access roads are clear and do not pose a safety hazard to the general public.
- 15. The reason for Condition 3.13 is needed in order to make certain that the waste received at the site is in accordance with the ECA and O. Reg. 347.
- 16. The reason for Condition 3.14 is necessary in order to ensure that all waste loads are inspected and waste that is disposed of at the site is in accordance with the terms and conditions in this ECA.
- 17. The reasons for Conditions 4.15, 4.16 and 4.18 are to ensure that the Site is operated, inspected and maintained in an environmentally acceptable manner and does not result in a hazard or nuisance to the natural environment or any person.
- 18. The reasons for Condition 4.17 are the protection of public health and safety and minimization of the potential for damage to environmental control, monitoring and other works at the landfill Site. Scavenging is the uncontrolled removal of material from waste at a landfill site.
- 19. The reason for Condition 3.19 is to ensure that noise from or related to the operation of the landfill is kept to within Ministry limits and does not result in a hazard or nuisance to any person.
- 20. The reasons for Conditions 3.20, 10.1 and 10.2 are to ensure that the Ministry is informed of any spills or fires at the Site and to provide public health and safety and environmental protection.
- 21. The reason for Condition 3.21 is to ensure that appropriate measures are taken in order to prevent surface water from contacting waste so as not to cause an adverse effect on the environment.
- 22. Condition 3.22 has been inserted in order to ensure that concentrations of landfill gas do not pose a hazard to human health or the environment.
- 23. The reasons for Conditions 4.1 and 4.2 are to specify the approved types of waste that may be accepted for disposal at the Site, based on the Owner's application and supporting documentation.
- 24. The reason for Condition 4.3 is that open burning of municipal waste is unacceptable because of concerns with air emissions, smoke and other nuisance affects, and the potential fire hazard.
- 25. The reason for Condition 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 is to specify restrictions on the extent of landfilling at this Site based on the Owner's application and supporting documentation. These limits define the approved volumetric capacity of the site. Approval to landfill beyond these limits would require an application with supporting documentation submitted to the Director.
- 26. Conditions 4.10 to 4.15 inclusive have been included in order to ensure asbestos waste is handled and disposed of in accordance with O. Reg. 347 as amended from time to time. Proper handling and disposal of asbestos waste ensures that the asbestos waste does not cause an adverse impact on the environment and also does not affect human health.
- 27. The reason for Condition 4.16 is to ensure that landfilling operations are conducted in an environmentally acceptable manner. Daily and intermediate cover is used to control potential nuisance effects, to facilitate vehicle access on the site, and to ensure an acceptable site appearance is maintained. The proper closure of a landfill site requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the site.
- 28. The reason for Condition 4.17 is to ensure impacted surface water at the site is handled in a manner that does not impact the environment or human health.
- 29. The reason for Condition 5.1 is to ensure that the Site is supervised and operated by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person.
- 30. The reason for Conditions 6.1, 6.2, 6.4 and 6.5 are needed to ensure regular inspections of the site are conducted in order to protect the natural environment.
- 31. The reason for Conditions 6.3, 6.6, 6.7, 6.8, 6.9 and 6.10 is to ensure that accurate waste records are maintained to ensure compliance with the conditions in this ECA (such as fill rate, site capacity, record keeping, annual reporting, and financial assurance requirements), the EPA and its regulations.
- 32. The reasons for Conditions 7.1 to 7.5 inclusive are to ensure protection of the natural environment and the integrity of the groundwater monitoring network.
- 33. The reason for Condition 7.6 inclusive is to demonstrate that the landfill site is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.
- 34. The reason for Condition 7.8 is to ensure the Owner samples groundwater supply wells within 500 m of the Site to ensure the Site is not impacting those wells. This is to ensure the long-term health and safety of the public and the

environment.

- 35. The reason for Conditions 8.1, 8.2 and 8.3 is to ensure that the Owner follows a plan with an organized set of procedures for identifying and responding to unexpected but possible problems at the Site. A remedial action / contingency plan is necessary to ensure protection of the natural environment. A leachate contingency plan is a specific requirement of Reg. 232.
- 36. The reason for Conditions 9.1 and 9.2 is to establish a forum for the exchange of information and public dialogue on activities carried out at the landfill Site. Open communication with the public and local authorities is important in helping to maintain high standards for site operation and environmental protection.
- 37. The reasons for Conditions 11.1 and 11.2 are to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.
- 38. The reasons for Condition 12.1 is to ensure that final closure of the Site is completed in an aesthetically pleasing manner and to ensure the long-term protection of the natural environment.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A413106 issued on April 23, 1980

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-3717 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 4th day of April, 2014

Tesfaye Gebrezghi, P.Eng. Director appointed for the purposes of Part II.1 of the Environmental Protection Act

DG/ c: District Manager, MOE Ottawa Andrew Buzza, Jp2g Consultants Inc.

Ministry of the Environment Ministère de l'Environnement

AMENDMENT TO PROVISIONAL CERTIFICATE OF **APPROVAL** WASTE DISPOSAL SITE

NUMBER A413106

Notice No. 6

Issue Date: November 26, 2009

The Corporation of the Town of Deep River

Post Office Box, No. 400 Deep River, Ontario

K0J 1P0

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Deep River Town, County of Renfrew

K0J 1P0

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 for the Deep River Town Landfill (Miller's Road Landfilling Site), as follows:

I The follow Condition is hereby added:

By June 1, 2010, the Township of Deep River shall purchase or obtain a written easement agreement 31. with the property owner(s) of the land(s) required to establish a extended Contaminant Attenuation Zone (CAZ) as per Items 11 and 12 of Schedule "A".

II The following Items are hereby added to Schedule "A":

- Application for a Provisional Certificate of Approval for a Waste Disposal Site, signed by Belo Csomo, 11. The Corporation of the Town of Deep River, and dated August 28, 2009.
- Letter dated August 27, 2009 to Tesfaye Gebrezghi, Ontario Ministry of the Environment, from Andrew 12. Buzza, Project Manager, Jp2g Consultants Inc.

The reason for this amendment to the Certificate of Approval is as follows:

The reasons for the amendment to Condition 31 is to ensure the Owner obtain sufficient CAZ used for 1. landfilling operations. This is to ensure the long-term health and safety of the public and the environment.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980, as amended.

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto, Ontario
M5G 1E5

<u>AND</u>

The Director
Section 39, Environmental Protection Act
Ministry of the Environment
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 26th day of November, 2009

THIS NOTICE WAS MAILED

ON Dec. 4, 2009

9 C
(Signed)

Tesfaye Gebrezghi, P.Eng.

Director

Section 39, Environmental Protection Act

AT/

c: District Manager, MOE Ottawa
Andrew Buzza, P. Geo, Jp2g Consultants Inc.

Ministry of the Environment

Ministère dø l'Environnement AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL

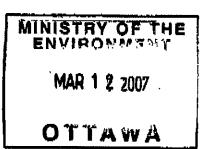
WASTE DISPOSAL SITE

NUMBER A413106 Motice No. 5

Issue Date: February 20, 2007

The Corporation of the Town of Deep River PO Box 400, 100 Deep River Road

Deep River, Ontario


KOJ 1PO

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Deep River Town, County of Renfrew

K0J 1P0

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 for the Deep River Town Landfill (Miller's Road Landfilling Site), as follows:

The following document is added to Schedule "A":

Letter dated December 21, 2005 to Ian Parrott, Ontario Ministry of the Environment, from Belo Csomor, 10. The Corporation of the Town of Deep River, including the attached lease agreement between the Town of Deep River and Atomic Energy of Canada Ltd. to permit the continued operation of Miller's Road Landfill Site and to delineate and establish the contaminant attenuation zone on Atomic Energy of Canada lands and to include a drawing showing the extend of the contaminant attenuation zone.

The reason for this amendment to the Certificate of Approval is as follows:

This Notice of Amendment is issued to add to Schedule "A" a lease agreement between the Town of Deep River and Atomic Energy of Canada Ltd. for the continued operation of Miller's Road Landfill Site and to approve the contaminant attenuation zone on Atomic Energy of Canada lands.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980, as amended.

In accordance with Section 139 of the Environmental Protection Act, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act, provides that the Notice requiring the hearing shall state:

- The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- The name of the appellant;
- 4. The address of the appellant;
- The Certificate of Approval number;
- The date of the Certificate of Approval;
- The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., Suite 1700
P.O. Box 2382
Toronto, Ontario
M4P 1E4

AND

The Director
Section 39, Environmental Protection Act
Ministry of the Environment
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of February, 2007

THIS NUTICE WAS MAILED

ON March 6, 2007

(Signed)

Tesfaye Gebrezghi, P.Eng.

Director

Section 39, Environmental Protection Act

MW/

c: District Manager, MOE Ottawa

Belo Csomor, The Corporation of the Town of Deep River

613 592 5995 Millers.

Ministry of the Environment l'Environnement

Ministère de

AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL

File No.

WASTE DISPOSAL SITE NUMBER A413106

Notice No. 4

The Corporation of the Town of Deep River PO Box 400 Deep River, Ontario KOJ 1PO

ROBINSON CONSULTANTS RECEIVED NOV 2 9 2004 Initial

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Deep River Town, County of Renfrew

K0J 1P0

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 for the Deep River Town landfill, as follows:

- Condition 8 is amended to read as follows: 1...
 - 8. The Town shall obtain from the Atomic Energy of Canada a lease agreement to use the site for the landfilling operations, by December 31, 2005.
- 2. Condition 9 is amended to read as follows:
 - 9. The Town shall delineate and establish a Contaminant Attenuation Zone in order to put the Landfill in compliance with the RUG, by December 31, 2005.
- 3. Condition 13 is amended to read as follows:
 - The final cover shall be installed in Areas 1 and 4 which shall not receive construction and 13. demolition waste, by December 31, 2004.
- 4. The following Condition 30 is added:
 - 30. The Town shall establish and maintain a record of negotiations with Atomic Energy of (a) Canada required by Conditions 8 and 9. This record shall be in the form of a log or a dedicated electronic file and shall include as a minimum:
 - (i) date and time of the meeting;
 - persons attending the meeting; and (ii)

- (iii) conclusions reached and decisions made at the meeting.
- (b) The record required by Condition 30(a) shall be made available to the District Manager upon a request.

The reasons for this amendment to the Certificate of Approval are as follows:

Conditions 8, 9 and 10 are amended to extend the deadlines for negotiations with the Atomic Energy of Canada and for the final cover application over Areas 1 and 4, which are closed and not receiving any more waste.

Condition 30 is included to require the Town to keep records to demonstrate that the Town is putting a reasonable amount of effort to obtain the agreements required by this Certificate.

All in accordance with the application for approval signed by Belo Csomor, The Corporation of the Town of Deep River and the accompanying cover letter dated November 13, 2003 from Andrew Buzza, Robinson Consultant Inc.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director:
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., 12th Floor
P.O. Box 2382
Toronto, Ontario
M4P 1E4

<u>AND</u>

The Director
Section 39, Environmental Protection Act
Ministry of Environment and Energy
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the

Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 22nd day of November, 2004

THIS	NOTICE WAS MAILED		
ON_	NOV. 24, 2004	-	
90			
	(Signed)		

Ian Parrott, P.Eng.

Director

Section 39, Environmental Protection Act

MW/

c: District Manager, MOE Ottawa
Andrew Buzza, P.Geo, Robinson Consultants Inc. ✓

RECEIVED MAY 2 / 2004

Ministry of the

Ministère

Environment l'Environnement

AMENDMENT TO PROVISIONAL CERTIFICATE OF APPROVAL WASTE DISPOSAL SITE

NUMBER A413106 Notice No. 3

The Corporation of the Town of Deep River

PO Box 400

Deep River, Ontario

KOJ 1PO

Site Location: Miller's Road Landfill Site

Lot 6, Concession 13

Deep River Town, County of Renfrew

KOJ 1PO

613-592-5995

Andrew Buzzag from: MW - MDE 416-314-7993

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 for the Deep River Town Landfill, as follows:

- Condition No. 6 is changed to read as follows: l.
 - The Landfill shall be used for the disposal of construction and demolition waste only. 6. (a)
 - The approved service area is the Town of Deep River and the Town of Laurentian Hills. (b)
- 2. The following documents are added to Schedule "A":
 - Application for a Provisional Certificate of Approval for a Waste Disposal Site, signed by Belo. 7. Csomo, The Corporation of the Town of Deep River, and dated January 1, 2004.
 - Letter to Margaret Wojcik, Ontario Ministry of the Environment, from Andrew Buzza, Robinson 8. Consultants Inc., dated January 26, 2004, describing the proposal.
 - Letter to Margaret Wojcik, Ontario Ministry of the Environment, from Andrew Buzza, Robinson 9. Consultants Inc., dated May 6, 2004, providing additional clarification on the proposal.

The reason for this amendment to the Certificate of Approval is as follows:

Condition No. 6 was amended to explicitly show the service area, already approved by a Notice of Amendment, dated November 14, 2002.

All in accordance with the documents listed above and added to Schedule "A".

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980.

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u> provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- The name of the appellant;
- 4. The address of the appellant;
- The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., 12th Floor
P.O. Box 2382
Toronto, Ontario
M4P 1E4

AND

The Director
Section 39, Environmental Protection Act
Ministry of Environment and Energy
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1LS

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 19th day of May, 2004

Ian Parrott, P.Eng.

Director

Section 39, Environmental Protection Act

MW/

c: District Manager, MOE Ottawa
Andrew Buzza, P.Geo, Robinson Consultants Inc.

Post-It" Fax Note 7771E	Date 3 CY 2Y pages 8
KWEN MOONLOG	From
Co./Dept. 1029 Casultats	Co. P. C.
Phone #	Phone #
C	

File No.

Ministry of and Energy

Ministère de Environment l'Environnement et de l'Énergie

AMEI

WASTE DISPOSAL SITE ROBINSON COMMER A413106 RECTIVED NOV 2 2 2002

The Corporation of the Town of Deep River PO Box 400 Deep River, Ontario K0J 1P0

Site Location: Miller's Road Landfill Site

Part Lot 6, Conc. 13, Former Twp. of Buchanan

Deep River Town, County of Renfrew

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 and amended on November 16, 1995 for the Deep River Town landfill site, as follows:

- I. For the purpose of this Provisional Certificate of Approval and the terms and conditions specified below, the following definitions apply:
- a) "Town" means the Deep River Town, County of Renfrew;
- "Ministry", or "MOE" means the Ministry of the Environment; b)
- "Director" means the one or more persons who from time to time so designated for the purpose C) of Section 30 of the Environmental Protection Act;
- "District Manager" means the District Manager, the Ottawa District Office of the MOE Eastern d) Region:
- "Landfill" means Part of Lot 6, Concession 13, Former Township of Buchanan, Deep River Town, County of Renfrew;
- "ODWS" means the Ontario Drinking Water Standards; f)
- "RUG" means the Ministry Guideline B-7 (Incorporation of the Reasonable Use Concept into MOE Groundwater Management Activities); and
- h) "This Certificate" means this Provisional Certificate of Approval as amended from time to time, including all Schedules attached to and forming part of this Certificate.
- II. Condition 1 of this Certificate has been revoked.
- III. Conditions 2 through 7 amended to this Certificate on November 16, 1995, shall re-number as Conditions 21 through 26 under the heading "The Leaf and Yard Waste Composting Facility".
- IV. The second paragraph on the front page shall read as follows: "for the use and operation of a 4.5 ha landfilling area within a 8.55 ha total site area

all in accordance with the following plans and specifications:

as listed in Schedule "A"."

V. TERMS AND CONDITIONS

GENERAL

- 1. The Landfill shall be developed, operated and maintained in accordance with all of the plans and specifications in the documents listed in Schedule "A". Should there be discrepancies between the documents listed in Schedule "A" and these conditions, conditions shall take precedence. Should there be discrepancies among the documents listed in Schedule "A", the document bearing the most recent data shall take precedence.
- 2. Requirements specified in this Certificate are the requirements under the Environmental Protection. Act. Issuance of this Certificate in no way abrogates the Township's legal obligations to take all reasonable steps to avoid violating other applicable provisions of the Act and other legislation and regulations and to obtain any other approvals required by legislation.
- 3. Requirements of this Certificate are severable. If any requirement of this Certificate, or the application of any requirement of this Certificate to any circumstance, is held invalid, the application of such requirement to other circumstances and the remainder of this Certificate shall not be affected thereby.
- 4. The Town shall allow Ministry personnel, or a Ministry authorized representative(s), upon presentation of credentials, to:
 - (a) carry out any and all inspections authorized by Section 156, 157 or 158 of the Act, Section 15, 16, or 17 of the Ontario Water Resources Act, R.S.O. 1990, or Section 19 or 20 of the Pesticide Act, R.S.O. 1990, as amended from time to time, of any place to which this Certificate relates; and, without restricting the generality of the foregoing to:
 - (b) i) enter upon the premises where the records required by the Conditions of this Certificate are kept;
 - ii) have access to and copy, at any reasonable time, any records required by the Conditions of this Certificate;
 - iii) inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations required by the Conditions of this Certificate; and
 - iv) sample and monitor at reasonable times for the purposes of assuring compliance with the Conditions of this Certificate.

5. All records and monitoring data required by the Conditions of this Certificate must be kept on the site for a minimum period of at least two (2) years.

LANDFILL

- 6. The Landfill shall be used for the disposal of construction and demolition waste only.
- 7. Waste disposal at the Landfill shall be limited to a 4.5 hectare landfilling area shown on Drawing 1 of Item 4, Schedule "A".
- 8. Within one year of the issuance of this Notice, the Town shall obtain from the Atomic Energy of Canada a lease agreement to use the site for landfilling operations.
- 9. Within one year of the issuance of this Notice, the Town shall delineate and establish a Contaminant Attenuation Zone in order to put the Landfill in compliance with the RUG.
- 10. The Landfill shall be closed when final contours shown on Drawing 2 of Item 4, Schedule "A" and reduced by 0.6 m for final cover, have been reached.

LANDFILL OPERATIONS

- 11. Within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed operation report for the continued use of the Landfill. A report shall include but not be limited to the following subjects: operating hours, supervision, detailed description of daily operations, a detailed contoured site plan, site cross-sections, dust control measures, and site inspections.
- 12. Within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed sludge lagoon decommissioning plan.
- 13. Within one year of the issuance of this Notice, final cover shall be installed in Areas 1 and 4 which shall not receive construction and demolition waste.

GROUNDWATER MONITORING

- 14. Within eight (8) months of the issuance of this Notice, the Town shall install a monitoring well in the northeast corner of the Landfill.
- 15. Within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated groundwater monitoring program.
- 16. Within one year of the issuance of this Notice, the Town shall submit for the District Manager's approval the groundwater trigger mechanism which shall include the following: trigger locations,

the list of trigger parameters, trigger concentrations, and the re-sampling procedure.

17. Any changes to the groundwater monitoring program and/or the groundwater trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

SURFACE WATER MONITORING

- 18. Within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated surface water monitoring program.
- 19. Immediately upon the issuance of this Notice, the Town shall implement the surface water trigger mechanism described in Item 6 of Schedule "A".
- 20. Any changes to the surface water monitoring program and /or the surface water trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

CLOSURE PLAN

- 27. Two years before this Certificate is due to expire, the Town shall submit for the Director's approval the Final Closure Plan. The Final Closure Plan shall address:
 - a) Details of any additional cover which may be necessary;
 - b) Details of any additional vegetative plantings which may be necessary;
 - c) Post-closure and end-use plans;
 - d) Plans and schedules for the continued groundwater and surface water monitoring; and
 - e) Plans and schedules for the routine Landfill inspections.

ANNUAL REPORT

- 28. The Town shall submit to the District Manager an Annual Monitoring Report by June 1st of the year following the calendar year covered by the Report. The Annual Monitoring Report shall include the following:
 - a) The results of an annual survey of the waste mound and comparison of the actual capacity used to the capacity approved;
 - b) A plan of the Landfill outlining all groundwater and surface water monitoring locations;
 - c) Tables outlining groundwater monitoring locations, analytical parameters sampled, and frequency of sampling;
 - d) An analysis and interpretation of groundwater and surface water monitoring data, a review of the adequacy of monitoring programs, conclusions of the monitoring data, and recommendations for any changes to monitoring programs that may be necessary;
 - e) An assessment of groundwater quality in relation to the groundwater trigger concentrations, the RUG and the ODWS;
 - f) An assessment of surface water quality in relation to the surface water trigger concentrations and the PWQO;

- g) An assessment of the efficiency of the Contaminant Attenuation Zone;
- h) An update of changes in operations, equipment, or procedures made or produced at the Landfill, and any operating difficulties encountered;
- i) A summary of complaints regarding Landfill operations and the Town's response and action;
- j) Recommendations respecting any proposed change in the operation of the Landfill; and
- k) A statement on compliance with all Conditions of this Certificate.
- 29. Any changes to the Annual Monitoring Report that may be necessary in the future, shall be made subject to the District Manager's approval.
- VI. The following Items have been added to Schedule "A":
- Deep River (Miller's Road) Waste Disposal Site Certificate of Approval A413106 Final Report prepared by Robinson Consultants Inc. and dated February 1998.
- 3. Hydrogeologic Report Deep River (Miller's Road) Waste Disposal Site prepared by Robinson Consultants Inc. and dated April 2001.
- 4. Miller's Road Landfill Closure and C&D Waste Operation and Development Plan prepared by Jp2g Consultants Inc. and dated August 2001.
- 5. Deep River Waste Disposal Site Application for Approval for Waste Disposal Site Amendment to C of A A413106 Town of Deep River prepared by Robinson Consultants Inc. and dated April 2002.
- 6. Surface Water Assessment Deep River (Miller's Road) Waste Disposal Site (Revised Sections Only) prepared by Robinson Consultants Inc. and dated October 2002.

The reasons for this amendment to the Certificate of Approval are as follows:

The reason for Amendment I is to provide definitions of terms used in this Certificate.

The reason for Amendment IV is to define a landfilling area and a total site area.

The reason for Condition 1 is to ensure that the Landfill shall be developed, operated, maintained, monitored and closed in accordance with all of the plans and specifications in the documents listed in Schedule "A". Should there be discrepancies between the documents listed in Schedule "A" and these conditions, conditions shall take precedence. Should there be discrepancies among the documents listed in Schedule "A", the document bearing the most recent data shall take precedence.

The reason for Condition 2 is to ensure that the issuance of this Certificate in no way abrogates the Town's legal obligations to take all reasonable steps to avoid violating other applicable provisions of the *Environmental Protection Act* and other legislation and regulations and to obtain any other approvals required by legislation.

The reason for Condition 3 is to ensure that requirements of this Certificate are severable. If any

requirements of this Certificate, or the application of any requirement of this Certificate to any circumstance, is held invalid, the application of such requirement to other circumstances and the reminder of this Certificate shall not be affected thereby.

- The reason for Condition 4 is to ensure that Ministry personnel shall be able to conduct necessary Landfill inspections, monitoring and sampling.
- The reason for Condition 5 is to ensure that all records and monitoring data shall be kept on-site for a minimum period of two (2) years.
- The reason for Condition 6 is to ensure that the Landfill shall be used for the disposal of construction and demolition waste only.
- The reason for Condition 7 is to ensure that waste disposal at the Landfill shall be limited to a 4.5 hectare landfilling area shown on Drawing 1 of Item 3, Schedule "A".
- The reason for Condition 8 is to ensure that within one year of the issuance of this Notice, the Town shall obtain from the Atomic Energy of Canada a lease agreement to use the site for landfilling operations.
- The reason for Condition 9 is to ensure that within one year of the issuance of this Notice, the Town shall delineate and establish a Contaminant Attenuation Zone in order to put the Landfill in compliance with the RUG.
- The reason for Condition 10 is to ensure that the Landfill shall be closed when final contours shown on Drawing 2 of Item 3, Schedule "A" and reduced by 0.6 m for final cover, have been reached.
- The reason for Condition 11 is to ensure that within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed operation report for the continued use of the Landfill.
- The reason for Condition 12 is to ensure that within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed sludge lagoon decommissioning plan.
- The reason for Condition 13 is to ensure that within one year of the issuance of this Notice, final cover shall be installed in Areas 1 and 4 which shall not receive construction and demolition waste.
- The reason for Condition 14 is to ensure that within eight (8) months of the issuance of this Notice, the Town shall install a monitoring well in the northeast corner of the Landfill.
- The reason for Condition 15 is to ensure that within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated groundwater monitoring program.
- The reason for Condition 16 is to ensure that within one year of the issuance of this Notice, the Town shall submit for the District Manager's approval the groundwater trigger mechanism which shall include

the following: trigger locations, the list of trigger parameters, trigger concentrations, and the re-sampling procedure.

The reason for Condition 17 is to ensure that any changes to the groundwater monitoring program and/or the groundwater trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

The reason for Condition 18 is to ensure that within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated surface water monitoring program.

The reason for Condition 19 is to ensure that immediately upon the issuance of this Notice, the Town shall implement the surface water trigger mechanism described in Item 6 of Schedule "A".

The reason for Condition 20 is to ensure that any changes to the surface water monitoring program and/or the surface water trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

The reason for Condition 27 is to ensure that two years before this Certificate is due to expire, the Town shall submit for the Director's approval the Final Closure Plan.

The reason for Condition 28 is to ensure that the Town shall submit to the District Manager an Annual Monitoring Report by June 1st of the year following the calendar year covered by the Report.

The reason for Condition 29 is to ensure that any changes to an Annual Monitoring Report that may be necessary in the future, shall be made subject to the District Manager's approval.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- The address of the appellant;
- 5. The Certificate of Approval number;
- The date of the Certificate of Approval;
- The name of the Director;
- The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., 12th Floor
P.O. Box 2382
Toronto, Ontario
M4P 1E4

AND

The Director
Section 39, Environmental Protection Act
Ministry of Environment and Energy
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 14th day of November, 2002

Ian Parrott, P.Eng.

Director

Section 39, Environmental Protection Act

EZ/

c: District Manager, MOEE Ottawa

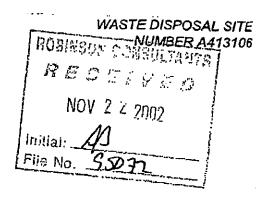
Andrew Buzza, Project Manager, Robinson Consultants Inc. 🗸

09:03

RI DERPKINET CAF

Ĕ7.

Ministry of and Energy


Ministère de Environment l'Environnement et de l'Énergie

The Corporation of the Town of Deep River **PO Box 400** Deep River, Ontario KOJ 1PO

Site Location: Miller's Road Landfill Site

Part Lot 6, Conc. 13, Former Twp. of Buchanan

Deep River Town, County of Renfrew

You are hereby notified that I have amended Provisional Certificate of Approval No. A413106 issued on April 23, 1980 and amended on November 16, 1995 for the Deep River Town landfill site, as follows:

- I. For the purpose of this Provisional Certificate of Approval and the terms and conditions specified below, the following definitions apply:
- "Town" means the Deep River Town, County of Renfrew; a)
- "Ministry", or "MOE" means the Ministry of the Environment; b)
- "Director" means the one or more persons who from time to time so designated for the purpose of Section 30 of the Environmental Protection Act;
- "District Manager" means the District Manager, the Ottawa District Office of the MOE Eastern d) Region;
- "Landfill" means Part of Lot 6, Concession 13, Former Township of Buchanan, Deep River e) Town, County of Renfrew;
- "ODWS" means the Ontario Drinking Water Standards; f)
- "RUG" means the Ministry Guideline B-7 (Incorporation of the Reasonable Use Concept into **g**) MOE Groundwater Management Activities); and
- "This Certificate" means this Provisional Certificate of Approval as amended from time to time, h) including all Schedules attached to and forming part of this Certificate.
- II. Condition 1 of this Certificate has been revoked.
- III. Conditions 2 through 7 amended to this Certificate on November 16, 1995, shall re-number as Conditions 21 through 26 under the heading "The Leaf and Yard Waste Composting Facility".
- IV. The second paragraph on the front page shall read as follows: "for the use and operation of a 4.5 ha landfilling area within a 8.55 ha total site area

all in accordance with the following plans and specifications:

as listed in Schedule "A"."

V. TERMS AND CONDITIONS

GENERAL

- The Landfill shall be developed, operated and maintained in accordance with all of the plans and specifications in the documents listed in Schedule "A". Should there be discrepancies between the documents listed in Schedule "A" and these conditions, conditions shall take precedence. Should there be discrepancies among the documents listed in Schedule "A", the document bearing the most recent data shall take precedence.
- 2. Requirements specified in this Certificate are the requirements under the Environmental Protection. Act. Issuance of this Certificate in no way abrogates the Township's legal obligations to take all reasonable steps to avoid violating other applicable provisions of the Act and other legislation and regulations and to obtain any other approvals required by legislation.
- 3. Requirements of this Certificate are severable. If any requirement of this Certificate, or the application of any requirement of this Certificate to any circumstance, is held invalid, the application of such requirement to other circumstances and the remainder of this Certificate shall not be affected thereby.
- 4. The Town shall allow Ministry personnel, or a Ministry authorized representative(s), upon presentation of credentials, to:
 - (a) carry out any and all inspections authorized by Section 156, 157 or 158 of the Act, Section 15, 16, or 17 of the Ontario Water Resources Act, R.S.O. 1990, or Section 19 or 20 of the Pesticide Act, R.S.O. 1990, as amended from time to time, of any place to which this Certificate relates; and, without restricting the generality of the foregoing to:
 - (b) i) enter upon the premises where the records required by the Conditions of this Certificate are kept;
 - ii) have access to and copy, at any reasonable time, any records required by the Conditions of this Certificate;
 - iii) inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices, or operations required by the Conditions of this Certificate; and
 - iv) sample and monitor at reasonable times for the purposes of assuring compliance with the Conditions of this Certificate.

5. All records and monitoring data required by the Conditions of this Certificate must be kept on the site for a minimum period of at least two (2) years.

LANDFILL

- (6.) The Landfill shall be used for the disposal of construction and demolition waste only.
- 7. Waste disposal at the Landfill shall be limited to a 4.5 hectare landfilling area shown on Drawing 1 of Item 4, Schedule "A".
- 8. Within one year of the issuance of this Notice, the Town shall obtain from the Atomic Energy of Canada a lease agreement to use the site for landfilling operations.
- 9. Within one year of the issuance of this Notice, the Town shall delineate and establish a Contaminant Attenuation Zone in order to put the Landfill in compliance with the RUG.
- 10. The Landfill shall be closed when final contours shown on Drawing 2 of Item 4, Schedule "A" and reduced by 0.6 m for final cover, have been reached.

LANDFILL OPERATIONS

- 11. Within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed operation report for the continued use of the Landfill. A report shall include but not be limited to the following subjects: operating hours, supervision, detailed description of daily operations, a detailed contoured site plan, site cross-sections, dust control measures, and site inspections.
- 12. Within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed sludge lagoon decommissioning plan.
- 13. Within one year of the issuance of this Notice, final cover shall be installed in Areas 1 and 4 which shall not receive construction and demolition waste.

GROUNDWATER MONITORING

- 14. Within eight (8) months of the issuance of this Notice, the Town shall install a monitoring well in the northeast corner of the Landfill.
- · 15. Within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated groundwater monitoring program.
 - 16. Within one year of the issuance of this Notice, the Town shall submit for the District Manager's approval the groundwater trigger mechanism which shall include the following: trigger locations,

the list of trigger parameters, trigger concentrations, and the re-sampling procedure.

17. Any changes to the groundwater monitoring program and/or the groundwater trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

SURFACE WATER MONITORING

- 18. Within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated surface water monitoring program.
- 19. Immediately upon the issuance of this Notice, the Town shall implement the surface water trigger mechanism described in Item 6 of Schedule "A".
- 20. Any changes to the surface water monitoring program and /or the surface water trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

CLOSURE PLAN

- 27. Two years before this Certificate is due to expire, the Town shall submit for the Director's approval the Final Closure Plan. The Final Closure Plan shall address:
 - a) Details of any additional cover which may be necessary;
 - b) Details of any additional vegetative plantings which may be necessary;
 - c) Post-closure and end-use plans;
 - d) Plans and schedules for the continued groundwater and surface water monitoring; and
 - e) Plans and schedules for the routine Landfill inspections.

ANNUAL REPORT

- 28. The Town shall submit to the District Manager an Annual Monitoring Report by June 1st of the year following the calendar year covered by the Report. The Annual Monitoring Report shall include the following:
 - a) The results of an annual survey of the waste mound and comparison of the actual capacity used to the capacity approved;
 - b) A plan of the Landfill outlining all groundwater and surface water monitoring locations;
 - c) Tables outlining groundwater monitoring locations, analytical parameters sampled, and frequency of sampling;
 - d) An analysis and interpretation of groundwater and surface water monitoring data, a review of the adequacy of monitoring programs, conclusions of the monitoring data, and recommendations for any changes to monitoring programs that may be necessary;
 - e) An assessment of groundwater quality in relation to the groundwater trigger concentrations, the RUG and the ODWS;
 - f) An assessment of surface water quality in relation to the surface water trigger concentrations and the PWQO;

- g) An assessment of the efficiency of the Contaminant Attenuation Zone;
- h) An update of changes in operations, equipment, or procedures made or produced at the Landfill, and any operating difficulties encountered;
- i) A summary of complaints regarding Landfill operations and the Town's response and action;
- j) Recommendations respecting any proposed change in the operation of the Landfill; and
- k) A statement on compliance with all Conditions of this Certificate.
- 29. Any changes to the Annual Monitoring Report that may be necessary in the future, shall be made subject to the District Manager's approval.
- VI. The following Items have been added to Schedule "A":
- 2. Deep River (Miller's Road) Waste Disposal Site Certificate of Approval A413106 Final Report prepared by Robinson Consultants Inc. and dated February 1998.
 - 3. Hydrogeologic Report Deep River (Miller's Road) Waste Disposal Site prepared by Robinson Consultants Inc. and dated April 2001.
- \[
 \forall 4. Miller's Road Landfill Closure and C&D Waste Operation and Development Plan prepared by Jp2g
 Consultants Inc. and dated August 2001.
 \]
- 5. Deep River Waste Disposal Site Application for Approval for Waste Disposal Site Amendment to C of A A413106 Town of Deep River prepared by Robinson Consultants Inc. and dated April 2002.
- 6. Surface Water Assessment Deep River (Miller's Road) Waste Disposal Site (Revised Sections Only) V prepared by Robinson Consultants Inc. and dated October 2002.

The reasons for this amendment to the Certificate of Approval are as follows:

The reason for Amendment I is to provide definitions of terms used in this Certificate.

The reason for Amendment IV is to define a landfilling area and a total site area.

The reason for Condition 1 is to ensure that the Landfill shall be developed, operated, maintained, monitored and closed in accordance with all of the plans and specifications in the documents listed in Schedule "A". Should there be discrepancies between the documents listed in Schedule "A" and these conditions, conditions shall take precedence. Should there be discrepancies among the documents listed in Schedule "A", the document bearing the most recent data shall take precedence.

The reason for Condition 2 is to ensure that the issuance of this Certificate in no way abrogates the Town's legal obligations to take all reasonable steps to avoid violating other applicable provisions of the *Environmental Protection Act* and other legislation and regulations and to obtain any other approvals required by legislation.

The reason for Condition 3 is to ensure that requirements of this Certificate are severable. If any

requirements of this Certificate, or the application of any requirement of this Certificate to any circumstance, is held invalid, the application of such requirement to other circumstances and the reminder of this Certificate shall not be affected thereby.

- The reason for Condition 4 is to ensure that Ministry personnel shall be able to conduct necessary Landfill inspections, monitoring and sampling.
- The reason for Condition 5 is to ensure that all records and monitoring data shall be kept on-site for a minimum period of two (2) years.
- The reason for Condition 6 is to ensure that the Landfill shall be used for the disposal of construction and demolition waste only.
- The reason for Condition 7 is to ensure that waste disposal at the Landfill shall be limited to a 4.5 hectare landfilling area shown on Drawing 1 of Item 3, Schedule "A".
- The reason for Condition 8 is to ensure that within one year of the issuance of this Notice, the Town shall obtain from the Atomic Energy of Canada a lease agreement to use the site for landfilling operations.
- The reason for Condition 9 is to ensure that within one year of the issuance of this Notice, the Town shall delineate and establish a Contaminant Attenuation Zone in order to put the Landfill in compliance with the RUG.
- The reason for Condition 10 is to ensure that the Landfill shall be closed when final contours shown on Drawing 2 of Item 3, Schedule "A" and reduced by 0.6 m for final cover, have been reached.
- The reason for Condition 11 is to ensure that within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed operation report for the continued use of the Landfill.
- The reason for Condition 12 is to ensure that within four (4) months of the issuance of this Notice, the Town shall submit for the District Manager's approval a detailed sludge lagoon decommissioning plan.
- The reason for Condition 13 is to ensure that within one year of the issuance of this Notice, final cover shall be installed in Areas 1 and 4 which shall not receive construction and demolition waste.
- The reason for Condition 14 is to ensure that within eight (8) months of the issuance of this Notice, the Town shall install a monitoring well in the northeast corner of the Landfill.
- The reason for Condition 15 is to ensure that within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated groundwater monitoring program.
- The reason for Condition 16 is to ensure that within one year of the issuance of this Notice, the Town shall submit for the District Manager's approval the groundwater trigger mechanism which shall include

the following: trigger locations, the list of trigger parameters, trigger concentrations, and the re-sampling procedure.

The reason for Condition 17 is to ensure that any changes to the groundwater monitoring program and/or the groundwater trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

The reason for Condition 18 is to ensure that within six (6) months of the issuance of this Notice, the Town shall submit for the District Manager's approval the updated surface water monitoring program.

The reason for Condition 19 is to ensure that immediately upon the issuance of this Notice, the Town shall implement the surface water trigger mechanism described in Item 6 of Schedule "A".

The reason for Condition 20 is to ensure that any changes to the surface water monitoring program and/or the surface water trigger mechanism that may be necessary in the future, shall be made subject to the District Manager's approval.

The reason for Condition 27 is to ensure that two years before this Certificate is due to expire, the Town shall submit for the Director's approval the Final Closure Plan.

The reason for Condition 28 is to ensure that the Town shall submit to the District Manager an Annual Monitoring Report by June 1st of the year following the calendar year covered by the Report.

The reason for Condition 29 is to ensure that any changes to an Annual Monitoring Report that may be necessary in the future, shall be made subject to the District Manager's approval.

This Notice shall constitute part of the approval issued under Provisional Certificate of Approval No. A413106 dated April 23, 1980

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the <u>Environmental Protection Act</u>, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- The Certificate of Approval number;
- The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
2300 Yonge St., 12th Floor
P.O. Box 2382
Toronto, Ontario

M4P IE4

AND

The Director
Section 39, Environmental Protection Act
Ministry of Environment and Energy
2 St. Clair Avenue West, Floor 12A
Toronto, Ontario
M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted waste disposal site is approved under Section 39 of the Environmental Protection Act.

DATED AT TORONTO this 14th day of November, 2002

THIS	CERTIFICATE WAS MAILED		
ı	NOV. 20, 2002		
oc			
	(Signed)		

Ian Parrott, P.Eng.

Director

Section 39, Environmental Protection Act

EZ/c:

District Manager, MOEE Ottawa
Andrew Buzza, Project Manager, Robinson Consultants Inc.

filo

Notio & D

MINISTRY OF THE ENVIRONMENT

DEC 0 8 1995

PEMOROKE

9 November 1995

APPROVALS BRANCH

3rd Floor

Phone:

(416) 440-3544

Fax:

(416) 440-6973

Mr. Mike Richardson, Town Superintendent Town of Deep River P.O. Box 400, 100 Deep River Road Deep River, Ontario KOJ 1P0

Dear Mr. Richardson:

Re:

Corporation of the Town of Deep River Landfill Site (Miller's Road Landfill Site) Provisional Certificate of Approval No. A 413106

Enclosed is a copy of the Notice of Amendment for the above mentioned Provisional Certificate of Approval. The amendment approves the establishment and the operation of a central leaf and yard composting facility located within the existing landfill site.

It is suggested that this Notice be carefully read in order to ensure that all conditions are met. Please note that all other terms and conditions as outlined in the original Certificate of Approval remain unchanged.

I trust this document is adequate. Should you have any questions or comments concerning the above, please feel free to contact Mr. Osman Ibrahim at (416) 440-3717.

Sincerely,

ORIGINAL SKONED BY

A. Dominski, P.Eng., Supervisor, Waste Unit

Encl. OI/am

cc:

A, Polley, Pembroke District Office

J. Mulder, Eastern Region

Ministry of Environment and Energy

Ministere de l'Environnement et de l'Énergie

NOTICE Page 1 of 4

TO:

The Corporation of the Town of Deep River P.O Box 400, 100 Deep River Road Deep River, Ontario K0J 1P0

You are hereby notified that Provisional Certificate of Approval No. A 413106 dated April 23, 1980 is hereby amended to include the approval of the establishment and operation of a central leaf and yard waste composting facility all in accordance with the application dated June 26, 1995 and the supporting information as provided in the document entitled "Town of Deep River Leaf and Yard Waste Composting Operation", and subject to the following conditions:

- The Leaf and Yard Waste Composting Facility shall be operated in 2. accordance with the application for a Waste Disposal Site submitted June 26, 1995 and supporting information as provided in the document entitled "Town of Deep River Leaf and Yard Waste Composting Operation", and Parts IV and V of Ontario Regulation 101/94, except for paragraphs 16, 18, and 19 of Section 23, Part IV.
- All building and processing or storage areas that are part of the Site 3. shall be located at least 100 m from the boundaries of the Site and from any lake, river, pond, stream, reservoir, spring or well except for the 30 m buffer on the south side of the Site as shown on the Site Development Plan (Figure 2) of the document entitled "Town of River Leaf and Yard Waste Composting Operation", and referenced in item 1 of Schedule "A".
- The maximum capacity of leaf and yard waste which may be received and 4. composted at the Site is limited to 190 tonnes (540 cubic metres) per year. Any additional capacity requires the approval of the Director.
- The Operator shall ensure that the operation of this Site does not 5. impede or is impeded by other activities associated with the landfill site on which this Site is located.
- All waste shall be delivered to the Site by the householder responsible 6. for the waste, or through an approved waste management system, or in compliance with Part II of Ontario Regulation 101/94.
- The composting facility shall cease to function upon final closure of the landfill site and any processed leaf and yard waste shall be 7. utilized or landfilled on or before this date.

NOTICE Page 2 of 4

SCHEDULE "A"

This Schedule "A" forms part of Provisional Certificate of Approval No. A413106 dated April 23, 1980.

1. Letter from the Town of Deep River to the Ministry of Environment and Energy dated June 26, 1995 and enclosed "Application for a Certificate of Approval for a Waste Disposal Site", dated June 26, 1995 and supporting document entitled "Town of Deep River Leaf and Yard Waste Composting Operation" providing site plans, site description and operation information, public consultation and municipal approval.

NOTICE Page 3 of 4

The reasons for the imposition of these conditions are as follows:

- 1. The reason for conditions 2 and 3 is to ensure that the leaf and yard waste composting facility is operated in accordance with the application for this Provisional Certificate of Approval and supporting information; and in accordance with Ontario Regulation 101/94.
- 2. The reason for condition 4 is to ensure that the type and amount of waste deposited in the Site is in accordance with that approved by this Notice of Amendment.
- 3. The reason of condition 5 is to ensure that the Site is properly managed such that it does not impede or is impeded by the operation of the landfill site on which this Site is located.
- 4. The reason for condition 6 is to ensure that the collection and transportation of the waste is conducted in an environmentally acceptable manner in accordance with provincial regulations.
- 5. The reason for condition 7 is to ensure that the property is cleaned up and restored to the satisfaction of the Ministry prior to closure of the landfill site.

NOTICE
Page 4 of 4

In accordance with Section 139 of the <u>Environmental Protection Act</u>, R.S.O. 1990, Chapter E-19, you may by written notice served upon me, the Environmental Appeal Board and the Environmental Commissioner, <u>Environmental Bill of Rights</u>, S.O. 1993, Chapter 28, within 15 days after receipt of this Notice, require a hearing by the Board. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 142 of the <u>Environmental Protection Act</u>, as amended provides that the Notice requiring a hearing shall state:

- The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

- The name of the appellant;
- The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the waste disposal site is located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary, Environmental Appeal Board, 112 St. Clair Avenue West, Suite 502, Toronto, Ontario, M4V 1N3 The Environmental Commissioner, 1075 Bay Street, Suite 505 6th Floor Toronto, Ontario M58 2W5 The Director,
Section 39, Environmental Protection Act,
Ministry of the Environment and Energy,
250 Deviaville Avenue, 3rd Floor,
Toronto, Ontario.
M4S 1H2

This instrument is subject to Section 38 of the <u>Environmental Bill of Rights</u>, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

DATED AT TORONTO this 16th day of November, 1995.

THIS IS A TRUE COPY OF THE ORIGINAL NOTICE SIGNED BY

A. DOMINSKI, P. ENG.

MAILED ON Nov 20 95

BY____

OI/am

From-

09:53am

N _ _ 2-2005

Ministry of the

Environment

A 413106 Provisional Certificate No.

PROVISIONAL CERTIFICATE OF APPROVAL SITE WASTE DISPOSAL

Under The Environmental Protection Act, 1971 and the regulations and subject to limitations thereof, this Provisional Certificate of Approval is issued to:

Town of Deep River Ontario the the οŧ Box 400 River, 0 Corporation P.O. Deep KOJ

of an 8.0 hectare landfilling for the use and operation

فٰک ک 2 귱 الله الله County 星 #A" Buchanan, 3 Schedule 7 ų, all in accordance with the following plans and specifications: "Plan of Part of Lot 6, 'Concession XIII, Township dated March 26, 1965. and attached hereto as Sketch entitled "Deep River Landfilling Site".

Concession 13 Lot 6, A Township S.1/2

Buchanan of Renfrew County

which includes the use of the site only for the disposal of the following categories of waste (NOTE: Use of the site for additional categories of wastes requires a new application and amendments to the Provisional Certificate of cumercial waste which includes the use of the site only for the

and subject to the following conditions:

against title becoming enforceable unless this Certificate including this condition has been registered by the applicant to the appropriate Land Registry Office against title a duplicate registered copy thereof has been returned after carried out at the site condition becoming operation shall be instrument the applicant reasons for and the site a the g 8

оп Аст, 1971

April

Dated this_23rd_day of_

Ministry of the Environment

of the Town of Deep River Ontario Corporation or P.O. Box 400 Deep River, Or KOJ IPO TO:

ο£ theCertificate subject to you **Provisional** issued that been notified has therein. arė hereby A 413106 outlined You No. conditions Approval

Ø conditions these of imposition the for reasons The follows; ια ιν

n of the Certifical Act, 1971 prohibits owners and occurrant they cease to be tenture occupants of might occur as a disposal purposes in order to protect (uture occupant the environment from any hazards which might occur as being disposed of on the site. This prohibition and should be drawn to the attention of future owners and Certificate being registered on title. The reason for the condition requiring registration is that Section 46 of The Environmental Protection A any use being made of the lands after they cease to

this the and O H E E receipt npon after served days notice Board within 15 the Board written ģ a hearing λq Appeal мау require You Environmental Notice,

served upon: should be Notice This

3a E.P.A. Director, ĵo Ministry Section The AND Board, West, The Secretary, Environmental Appeal Ontario. Clair Ave. 5th Floor, Toronto, 1K7 տ փ M4V

Environment,

the

DATED

this

April 0 ħ ďay 23rd

SCHEDULE "A"

じまじ S 3 Ruch نل ه Buchanan, A. .. XIII Lot 6, Concession Township of Buchar O F Part

tract the Township rew, in the Province of of Lot 6, Concession XIII containing therein by tes be the same more or of Buchanan, containing therein by of 21.12 acres be the same more or tract of land may be more particularly theo L Ļ Parcel being of land and premises, situate, lying and being buchanan, in the County of Renfrew, in the Ontario and being composed of part of Lot 6, of the said Township of Buchanan, containing admeasurement an area of 21.12 acres be the swhich parcel or tract of land may be most described as follows: ALL

3

f has thereto: 9 herein PREMISING that the western limit of said Lot of N .20 52' W and relating all bearings herein a bearing

Western f the 2' Walong angle of s said the s 52' W COMMENCING at a survey post planted in tof Lot 6 distant 579.0 feet measured N 20 52 western limit of Lot 6 from the south western 6; limit said w Lot 6;

planted said western survey post the along đ t t 52' W feet ≥ N 20° 5 distance of THENCE ø v Lot limit of

ဌ feet 800.0 ų O distance u M . 80 069 Z THENCE survey post

limit of Planted; to the western ţ,)^O 52' E parallel of 1150.0 feet to t planted; THENCE S 20° a distance of . Б Lot said

less H feet more 800.0 οĘ distance Œ Z ES 69 08' W commencement; 690 THENCE Point of C the ţ Ç

넊 being shown outlined attached. merein described the plan hereto herein THE PARCEL Raccordance with in red

P.006/006

T-356

Nov-02-2005 09:54am

DATED THE 23rd DAY OF

15.6 TER - 6 FR 12: 58

APRIL, 1980

BETWEEN

THE DIRECTOR

-and-

CORPORATION OF THE TOWN OF DEEP RIVER

m

203784

Registry Division of Renfrew (No. 49) 1 CERTIFY that this instrument is registered

as of in the

Land Registry Office ri Pembroke, Ontario.

BX O'Brien REGISTRAR

PROVISIONAL CERTIFICATE

OF APPROVAL

UNDER

THE ENVIRONMENTAL

PROTECTION ACT, 1971

S.1/2 LOT 6, CONCESSION 13

NOW IN THE TOUR OF ON ROCK) TOWNSHIP OF BUCHANAN

COUNTY OF RENFREW

CORPORATION OF THE TOWN OF DEEP RIVER

DEEP RIVER, ONTARIO

KOJ IPO

(hu (.

Appendix B

Ministry Correspondence

From: Ponalo, Thandeka (MECP)

To: <u>Andrea Sare</u>; <u>DMcCarthy@deepriver.ca</u>

Cc: Andrew Buzza

Subject: RE: Site Inspection Response Miller"s WDS

Date: February 8, 2021 2:27:07 PM

Attachments: <u>image001.png</u>

image002.jpg
image003.jpg
image004.jpg

EXTERNAL EMAIL This message originated from outside Jp2g's network. Please use caution when opening attachments or following links.

Hi Andrea,

At the moment, this is satisfactory. However, please be aware that this decision can be reviewed in the future.

Thank you,

Thandeka Ponalo

Senior Environmental Officer
Ministry of the Environment, Conservation and Parks
Ottawa District Office
2430 Don Reid Drive
Ottawa ON K1H 1E1
Tel: 613-521-3450 x249 | Fax: 613-521-5437
Spills Action Centre (SAC): 1-800-268-6060

Thandeka.Ponalo@ontario.ca | www.ene.gov.on.ca

From: Andrea Sare <AndreaS@jp2g.com>

Sent: February 8, 2021 1:29 PM

To: Ponalo, Thandeka (MECP) < Thandeka. Ponalo@ontario.ca>; DMcCarthy@deepriver.ca

Cc: Andrew Buzza <Andrew B@jp2g.com>

Subject: RE: Site Inspection Response Miller's WDS

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Thandeka,

Thank you for the information. At this time we are not sure what the Town's plans are in terms of site process changes. We will make sure that the hours of operation are updated during the next the ECA submission and ensure that they reflect the current operating practices. In the interim, we will continue to use the operating hours that are currently in place.

Trusting this is satisfactory,

Andrea Sare, C.Tech., EP Environmental Technician Jp2g Consultants Inc. Email: andreas@jp2g.com | Web: www.jp2g.com

Cellphone: 613.794.9534 (Primary) T: 613.828.7800 x 241 | F: 613.828.2600

1150 Morrison Drive, Suite 410, Ottawa, Ontario, K2H 8S9

CONFIDENTIAL AND PRIVILEGED INFORMATION NOTICE:

This e-mail, and any attachments, may contain information that is confidential, subject to copyright, or exempt from disclosure. Any unauthorized review, disclosure, retransmission, dissemination or other use of or reliance on this information may be unlawful and is strictly prohibited.

Keep it Clean - Go Green

From: Ponalo, Thandeka (MECP) < Thandeka.Ponalo@ontario.ca>

Sent: February 8, 2021 11:24 AM

To: Andrea Sare < AndreaS@jp2g.com>; DMcCarthy@deepriver.ca

Subject: RE: Site Inspection Response Miller's WDS

EXTERNAL EMAIL This message originated from outside Jp2g's network. Please use caution when opening attachments or following links.

Good morning,

The Ministry has reviewed your response to the Millers Road WDS inspection regarding the operational days at the site. As outlined in the inspection report, the Town is required to amend the operating days in the ECA to align with the Site's operational days. The municipality has proposed to make the amend via a letter request to the District Manager.

However, the ECA only allows the District Manager to amend the operational times at the site under very specific conditions. These conditions are to accommodate seasonal or unusual quantities of waste or to limit operation hours. The Conditions are listed below.

- Condition 3.7 of the ECA states, "With the prior written approval of the District Manager, the time periods may be extended to accommodate seasonal or unusual quantities of waste."
- Condition 3.8 of the ECA states, "The Owner may provide limited hours of operation provided that the hours are posted at the landfill gate and that suitable notice is provided to the public of any change in operating hours."

Therefore, to amend the operational days an application must be submitted to amend the ECA. The Town will be required to amend the operating times the next time the ECA is amended.

During the inspection, the Town was discussing making process changes at the Site.

Are you still considering making changes at the site?

Thank you,

Thandeka Ponalo

Senior Environmental Officer
Ministry of the Environment, Conservation and Parks
Ottawa District Office
2430 Don Reid Drive
Ottawa ON K1H 1E1
Tel: 613-521-3450 x249 | Fax: 613-521-5437
Spills Action Centre (SAC): 1-800-268-6060

Thandeka.Ponalo@ontario.ca | www.ene.gov.on.ca

From: Ponalo, Thandeka (MECP) Sent: January 28, 2021 1:15 PM

To: Andrea Sare < Andrea S@jp2g.com >

Cc: DMcCarthy@deepriver.ca

Subject: RE: Site Inspection Response Miller's WDS

Hi Andrea,

I've had to consultant with the District Manager on the requirements. I have not received a reply as yet, but will provide a reponse as soon as one is available.

Thank you,

Thandeka Ponalo

Senior Environmental Officer
Ministry of the Environment, Conservation and Parks
Ottawa District Office
2430 Don Reid Drive
Ottawa ON K1H 1E1
Tel: 613-521-3450 x249 | Fax: 613-521-5437
Spills Action Centre (SAC): 1-800-268-6060
Thandeka.Ponalo@ontario.ca | www.ene.gov.on.ca

From: Andrea Sare < Andrea S@jp2g.com >

Sent: January 28, 2021 11:36 AM

To: Ponalo, Thandeka (MECP) < <u>Thandeka.Ponalo@ontario.ca</u>>

Cc: DMcCarthy@deepriver.ca

Subject: FW: Site Inspection Response Miller's WDS

CAUTION -- EXTERNAL E-MAIL - Do not click links or open attachments unless you recognize the sender.

Hi Thandeka,

Just following up on the last email I sent (Jan. 14, 2021).

Please let me know if you have any questions, and if we can proceed with submitting a letter to the District Office to amend the ECA's site operational hours?

Thanks,

Andrea Sare, C.Tech., EP Environmental Technician Jp2g Consultants Inc.

Email: andreas@jp2g.com | Web: www.jp2g.com

Cellphone: 613.794.9534 (Primary) T: 613.828.7800 x 241 | F: 613.828.2600

1150 Morrison Drive, Suite 410, Ottawa, Ontario, K2H 8S9

CONFIDENTIAL AND PRIVILEGED INFORMATION NOTICE:

This e-mail, and any attachments, may contain information that is confidential, subject to copyright, or exempt from disclosure. Any unauthorized review, disclosure, retransmission, dissemination or other use of or reliance on this information may be unlawful and is strictly prohibited.

Keep it Clean - Go Green

From: Andrea Sare

Sent: January 14, 2021 12:54 PM

To: Ponalo, Thandeka (MECP) < Thandeka.Ponalo@ontario.ca>

Cc: <u>DMcCarthy@deepriver.ca</u>; Andrew Buzza <<u>andrewb@jp2g.com</u>>

Subject: Site Inspection Response Miller's WDS

Hi Thandeka, Happy New Year!

Attached is the response to Section 5.0 from the most recent Site Inspection Report for the Miller's WDS.

Can you please confirm that it is suitable to submit a letter to the District Office to amend the ECA's site operational hours?

Thank you,

Andrea Sare, C.Tech., EP Environmental Technician Jp2g Consultants Inc.

Email: andreas@jp2g.com | Web: www.jp2g.com

Cellphone: 613.794.9534 (Primary) T: 613.828.7800 x 241 | F: 613.828.2600

1150 Morrison Drive, Suite 410, Ottawa, Ontario, K2H 8S9

CONFIDENTIAL AND PRIVILEGED INFORMATION NOTICE:

This e-mail, and any attachments, may contain information that is confidential, subject to copyright, or exempt from disclosure. Any unauthorized review, disclosure, retransmission, dissemination or other use of or reliance on this information may be unlawful and is strictly prohibited.

Jp2g Consultants Inc.

1150 Morrison Drive, Suite 410 Ottawa, ON K2H 8S9 T 613-828-7800, F 613-828-2600, www.jp2g.com

Jp2g No. 17-6015E

January 14, 2021

Via email

Ministry of the Environment and Climate Change 2430 Don Reid Drive Ottawa, ON K1H 1E1 Thandeka.Ponalo@ontario.ca>

Attention: Thandeka Ponalo

Senior Environmental Officer

Re: Millers Road WDS

Solid Non-Hazardous Waste Disposal Site Inspection Report

ECA No. A413106

Dear Thandeka:

We have been forwarded a copy of your recent Solid Non-Hazardous Waste Disposal Site Inspection Report for the Millers Road Waste Disposal Site, and as requested in Section 5.0, we are providing the following for your review.

- 1. The Town shall amend the operating days in the ECA to align with the Site's operational days.

 *Agreed. The Municipality will amend the days of operation to reflect the Site's operational days. We trust this can be completed within the District, via a letter of request.
- 2. The Town should ensure that all future annual monitoring reports include a section which discusses groundwater-surface water interactions.

Agreed. Future AMRs will include a section which discusses groundwater and surface water interactions.

We trust that the above plan is suitable to address your concerns. Should you have any additional questions, please do not hesitate to contact our office.

Best regards

Yours very truly,

Jp2g Consultants Inc.

Engineers • Planners • Project Managers

Andrea Sare, C.Tech., EP Environmental Technician Andrew Buzza, P.Geo

Andrew Byga

Project Manager | Environmental Services

c.c. Dave McCarthy – Town of Deep River (via email - DMcCarthy@deepriver.ca)

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

Solid Non-Hazardous Waste Disposal Site Inspection Report

Client: Inspection Site Address:	The Corporation of the Town of Deep River Mailing Address: Post Office Box, 400, Deep River, Ontario, Canada, K0J 1P0 Physical Address: 100 Deep River Rd, Deep River, Town, County of Renfrew, Ontario, Canada, K0J 1P0 Telephone: (613)584-2000, FAX: (613)584-3237, email: ccarroll@deepriver.ca Client #: 8142-6QCQG9, Client Type: Municipal Government, NAICS: 221310 Miller's Road Landfill Site Address: Lot: 6, Concession: 13, Geographic Township: BUCHANAN, Deep River, Town, County of Renfrew, K0J 1P0 District Office: Ottawa GeoReference: Map Datum: NAD83, Zone: 18, Accuracy Estimate: 10 -100 metres eg. Topographic Map, Method: Map, UTM Easting: 310030, UTM Northing: 5103290, , LIO GeoReference: Zone: , UTM Easting: , UTM Northing: , Latitude: 46.0629, Longitude: -77.4555 Site #: 4780-53JP72		
Contact Name:	Sean Patterson	Title:	Acting CAO
Contact Telephone:	613 584-2000 ext 108	Contact Fax:	613-584-3237
Last Inspection Date:	2017/11/03		
Inspection Start Date:	2020/10/21	Inspection Finish Date:	2020/10/21
Region:	Eastern		

1.0 INTRODUCTION

On October 21, 2020, Senior Environmental Officers Thandeka Ponalo conducted a Solid Non-Hazardous Waste Disposal Site inspection, at Miller's Road Landfill Site (Site), located at Lot 6, Concession 13, Deep River. This report details the findings of the Solid Non-Hazardous Waste Disposal Site inspection. The Site is presently leased by the Town of Deep River from Canadian Nuclear Laboratories (CNL) formerly Atomic Energy of Canada Limited (AECL). A lease agreement has been in place since 1965. The properties surrounding the Site are comprised of CNL property to the north, south and east. The property to the west is comprised of an unopened road allowance and private land.

The purpose of the Ministry's Solid Non-Hazardous Waste Disposal Site inspection program is to ensure compliance with Ministry legislation, control documents and conformance with policy and guidelines pertinent to active landfill ites.

Specifically, this includes compliance and/or conformance with:

- The Environmental Protection Act (EPA);
- Ontario Regulation 232, Landfilling Sites (O. Reg. 232);
- Regulation 347 General Waste Management;
- Ontario Regulation 101/94, Recycling and Composting of Municipal Waste;
- Environmental Compliance Approvals (ECA) formerly referred to as Certificates of Approval; and
- Orders (Provincial Officer's Orders and/or Director's Orders).

At time of the inspection, a Site tour was conducted and a cursory review of pertinent files at the Ottawa District Office. The findings collected at time of the inspection and office file review have resulted in the writing of this inspection report.

2.0 INSPECTION OBSERVATIONS

Certificate of Approval Number(s):

A413106 amended September 20, 2017.

2.1 FINANCIAL ASSURANCE:

Specifics:

Financial assurance is not required for municipally run waste disposal sites.

2.2 APPROVED AREA OF THE SITE:

Specifics:

The ECA allows for the use and operation in a 4.5 ha landfilling area within an 8.55 ha property. In addition to the 8.55 ha landfill property, 14.14 ha has been registered on title as contaminant attenuation zone establishing a total site area of 22.69 ha.

2.3 APPROVED CAPACITY:

Specifics:

As per Condition 3.4 (1) of the ECA, the Design and Operations Plan is approved for a total capacity of 321,825 cm³ (including waste, daily and interim cover material). Condition 3.4 (2) of the ECA states that the total capacity as identified in Condition No. 3.4 (1) of the ECA does not include the final cover. Condition 3.4 (3) of the ECA states that the theoretical capacity for the Site is 355,950 cm³.

The 2019 Annual Report states the total remaining capacity at the end of 2019 is approximately 84,000 cm³.

2.3.1 LANDFILL OPERATIONS

In accordance with Condition 4.1 of the ECA, only solid non-hazardous Construction and Demolition (C&D) waste can be accepted at the Site.

As per condition 4.10 to 4.15 of the ECA, the Site is approved to accept asbestos waste. Staff stated that they accept asbestos waste on a case by case basis, however, they have not accepted asbestos waste in 2019 or 2020.

2.3.2 ON-SITE ROADS

Condition 3.12 of the ECA states that on-Site roads shall be provided and maintained in a manner that vehicles hauling waste to and onto the Site may travel readily and safely on any operating day. During winter months, when the Site is in operation, roads must be maintained to ensure safe access to the landfill working face. On-Site roads must be cleared of mud, ice and debris which may create hazardous conditions. At time of the inspection, the roads appeared well maintained.

2.3.3 VERMIN, VECTORS, DUST, LITTER, ODOUR, NOISE, TRAFFIC

Condition 3.15 to 3.16 of the ECA states that the Owner shall take all practical steps to prevent the escape of litter from the Site. The Owner shall inspect and collect litter from the Site on a monthly basis from April to November and as needed between December and March. All loose, windblown litter shall be collected and disposed of at the landfill working face. The Site shall be operated and maintained such that the vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

At time of the inspection, litter was not observed on or off the Site. Staff stated that litter is typically not a problem at the Site because of the use of cover and the insusceptibility of C & D waste to blowing wind. Periodic checks are made of the finished and active areas of the Site for litter. If litter becomes an issue, litter fencing or the like would be

[&]quot;Site" refers to Miller's Road Landfill Site

[&]quot;Ministry" refers to the Ontario Ministry of the Environment, Conservation and Parks

[&]quot;ECA" refers to the Environmental Compliance Approval Number A413106

[&]quot;Town" refers to the Town of Deep River

used. Dust was not observed during the inspection and staff reported they had no issues with dust. They have also had no problems with scavenging. Bears were an issue approximately 20 plus years ago and as a result, an electrified "bear fence" was installed. In addition, at the time AECL (now CNL) installed chain link fencing around the gate area that has also acted as a deterrent.

2.3.4 INSPECTIONS & RECORD KEEPING

In accordance with Condition 6.1 of the ECA, an inspection of the entire Site and all equipment on the Site shall be conducted each day the Site is in operation to ensure that the Site is being operated in compliance with the ECA. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the Site, if needed.

Condition 6.2 of the ECA states that a record of the inspections shall kept in a daily log book or a dedicated electronic file that includes:

- (a) the name and signature of person that conducted the inspection;
- (b) the date and time of the inspection;
- (c) the list of any deficiencies discovered;
- (d) the recommendations for remedial action; and
- (e) the date, time and description of actions taken.

The daily log for the Site was requested and staff provided the records along with the volume records sheet for daily acceptance of waste.

Condition 6.3 (1) of the ECA states that a record shall be kept in the daily log book for any refusal of waste shipments, the reason(s) for refusal, and the origin of the waste, if known. Staff stated there have been no waste refusals in recent years.

2.3.5 TRAINING

Condition 5.1 of the ECA requires a training plan for all employees that operate any aspect of the Site be developed and implemented by the Operator. Staff stated that the municipality contracts out all landfill site operational activities. As the municipality does not actively staff the Site, their workplace training typically includes but is not limited to WHMS which is mandated by the Ministry of Labour to ensure workers are informed about risks that they may encounter at the workplace. They expect the operational consultants to be skilled in the operation of the heavy equipment that they operate, either by training or years of hands on experience. Additionally, their staff should be acquainted with the ECA and operations of landfilling for the Site. If the operational contractors have additional training information, it will be forwarded. No further training information was provided.

2.3.6 SPILLS

In accordance with Condition 3.20 of the ECA, all spills and upsets shall be immediately reported to the Ministry's Spills Action Centre (SAC) and shall be recorded in a log as to the nature of the spill or upset, and the action taken for clean-up, correction and prevention of future occurrences.

2.4 ACCESS CONTROL:

Specifics:

In accordance with Condition 3.5 of the ECA, only waste that is generated within the boundaries of the Town of Deep River Valley and the Town of Laurentian Hills shall be accepted at the Site. No waste shall be received for disposal at this Site from outside the approved service area. Staff stated they confirm residency by asking for proof of the user's address

Condition 3.6 of the ECA states that the Site shall operate on Tuesday and Saturday from 9:00 a.m. to 12:00 p.m. At time of the inspection, it was found that the Site operates from Tuesday through to Saturday from 9:00 a.m. to 12:00 p.m. Staff stated that the Site has always operated from Tuesday through Saturday and there must have been an error when the ECA was amended in 2014.

• The Town shall amend the ECA to reflect the correct operational times. See Section 5.0 below.

Condition 3.14 of the ECA requires that all loads of waste must be properly inspected by trained Site personnel prior to acceptance at the Site and waste vehicles must be diverted to appropriate areas for waste disposal. Staff stated that on-Site attendants verify the source of the incoming loads by requesting proof of residency. They then direct the user to the appropriate location to unload. In most instances, the loads are inspected at the gate or near the active

face if the attendant is away from the gate

2.4.1 SIGNAGE

In accordance with Condition 3.10 of the ECA, a sign must be posted at the main entrance which displays the following information:

- Name of the landfill and name of the Owner/Operator;
- ECA Number;
- Days and hours of operation and public use;
- Contact telephone number at the Town of Deep River;
- Service Area for the Site:
- Types of waste accepted and prohibited:
- Overview of landfill complaints procedure, including a phone number for registering a complaint;
- Unauthorized entry is prohibited; and
- A warning against dumping wastes outside the Site.

At the time of the inspection, a sign posted at the entrance/exit to the Site displayed all the information required. Compliance with days and hours of operation are discussed above.

2.4.2 SITE SECURITY

Condition 3.11 of the ECA requires that during non-operating hours, the Site entrance and exit gates shall be locked and the Site shall be secured against access by unauthorized persons.

Staff confirmed that the entrance to the landfill site is locked during non-operating hours.

2.5 COVER MATERIAL:

Specifics:

In accordance with Condition 4.16 (i) of the ECA, daily cover shall be applied by the end of each working day, the entire working face shall be compacted and covered with a minimum thickness of 150 mm of soil cover or an approved thickness alternative cover material.

2.6 WASTE BURNING:

Specifics:

Condition 4.3 (1) of the ECA states that burning of waste is not permitted at the Site with the exception of the material under condition 4.3 (2). Condition 4.3 (2) permits only the burning of clean wood and brush. However, the burning of waste is prohibited at the Site under the agreement with CNL. At time of the inspection, no signs of burning were observed.

2.7 GROUNDWATER/SURFACEWATER IMPACT:

Specifics:

2.7.1 GROUNDWATER

It is the responsibility of the Owner to ensure the Site's groundwater parameters at the property boundary meet those as calculated by Guideline B-7: Reasonable Use Guideline and that the Site's surface water parameters on and off-Site meet those as stated in the Provincial Water Quality Objectives (PWQO).

The 2019 Annual Report states that the Site is interpreted to be in compliance with Guideline B-7. The most recent memorandum dated January 4, 2018, stated that the Site is in compliance with Guideline B-7 as determined by the Reasonable Use Concept (RUC) assessment at monitoring wells 96-1S, 96-1D, 95-3S and 95-3D. Iron and manganese concentrations exceeded the RUC values, however they are deemed to be at natural concentrations and not as a result of landfilling activities. No increasing trends for manganese and iron concentrations have been observed over time. All other leachate Indicator Parameters (LIP) concentrations were found to be low as part of the regulatory assessment. The memo recommended iron and manganese should be included in the RUC and trigger assessments in future monitoring activities, for any future leachate-related impacts that may occur. It also stated that iron and manganese are included as B-7 parameters.

Additionally, the memo stated that continued ground and surface water monitoring is recommended as per the ECA and future monitoring reports should include a discussion to understand groundwater – surface water interaction.

After a review of the 2019 Annual Report, it was found that a discussion groundwater – surface water interaction was not included. Staff stated that annual monitoring reports do not typically have a section dedicated to groundwater – surface water interaction. They stated that the details are however discussed in various sections throughout the report. In the most recent 2019 Annual Report, surface water and groundwater interactions were compared in Table 15 of Section 10.5. Surface water station SW2 was compared to leachate monitoring well (95-6) as it is the first surface water sampling point to leave the landfill site. Comparative parameters included the defined leachate parameters for the Site. Results indicated that all parameters values for SW2 were lower than values for monitoring well 95-6. Only exceedances to PWQO/ODWS were found for iron at SW2. Further analysis of the bedrock topography near surface water stations is found in Section 10.5, and spatial distribution graphs are found in Appendix I. Moving forward they can include a specific section on surface – groundwater interactions.

 The Town should ensure that all future annual monitoring reports include a section which discusses groundwater – surface water interactions. See section 5.0 below.

2.7.2 SURFACE WATER

The surface water review for the 2019 Annual Report is pending.

2.8 LEACHATE CONTROL SYSTEM:

Specifics:

There is no leachate control system in place at the Site. The Site functions as a naturally attenuating site.

2.9 METHANE GAS CONTROL SYSTEM:

Specifics:

There is no methane gas control system in place; however, Condition 3.22 of the ECA states that the Owner shall ensure that all buildings or structures at the Site are free of any possible landfill gas accumulation. If necessary, the Owner shall provide adequate ventilation systems to relieve landfill gas accumulations in the buildings or structures at the Site.

2.10 OTHER WASTES:

Specifics:

No hazardous waste observed on-Site.

3.0 REVIEW OF PREVIOUS NON-COMPLIANCE ISSUES

The previous inspection conducted on February 28, 2017, found the following non-compliance issues,

- Daily cover was not applied as frequently as required by Condition 4.16.
- Roads were not maintained to ensure safe access to the landfill working face.
- the operator failed to maintain records, in accordance with Condition 6 of the ECA.

4.0 SUMMARY OF INSPECTION FINDINGS (HEALTH/ENVIRONMENTAL IMPACT)

Was there any indication of a known or anticipated human health impact during the inspection and/or review of relevant material, related to this Ministry's mandate?

No

Specifics:

Was there any indication of a known or anticipated environmental impact during the inspection and/or review of relevant material?

Nο

Specifics:

Was there any indication of a known or suspected violation of a legal requirement during the inspection and/or review of relevant material which could cause a human health impact or environmental impairment?

Specifics:

Was there any indication of a potential for environmental impairment during the inspection and/or the review of relevant material?

Nο

Specifics:

Was there any indication of minor administrative non-compliance?

Yes

Specifics:

- Days of operation do not match the operations days outlined in the ECA
- The 2019 Annual Report did not include a discussion of the groundwater surface water interaction as recommended in the memorandum dated January 4, 2018.

5.0 ACTION(S) REQUIRED

The Town shall amend the operating days in the ECA to align with the Site's operational days.

andeka Ponalo

2. The Town should ensure that all future annual monitoring reports include a section which discusses groundwater – surface water interactions.

6.0 OTHER INSPECTION FINDINGS

There are no other inspection findings

7.0 INCIDENT REPORT

Applicable 8811-BVPRYF

8.0 ATTACHMENTS

Signature

PREPARED BY:

Environmental Officer:

Name: Thandeka Ponalo
District Office: Ottawa District Office

Date: 2020/11/27

REVIEWED BY:

District Supervisor:

Name: Charlie Primeau

District Office: DWMD Ottawa Office

Date: 2020/12/22

Signature:

File Storage Number: SI RE SO RU 610

Note:

"This inspection report does not in any way suggest that there is or has been compliance with applicable legislation and regulations as they may apply to this facility. It is, and remains, the responsibility of the owner and/or the operating authority to ensure compliance with all applicable legislative and regulatory requirements"

We want to hear from you. Please tell us about the quality of your interaction with our staff. You can provide feedback at 1-888-745-8888.

Ministry of the Environment and Climate Change

P.O. Box 22032 Kingston, Ontario K7M 8S5 613/549-4000 or 1-800/267-0974 Fax: 613/548-6908

Minist⊡re de l'Environnement et de l'Action en mati⊡re de changement climatique

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

January 4, 2018

TO: Emily Tieu

Senior Environmental Officer

Ottawa District Office Eastern Region

FROM: Obai Mohammed

Hydrogeologist

Technical Support Section

Eastern Region

RE: 2016 Annual Monitoring Report ☐ Miller S Road Waste Disposal Site (WDS)

Lot 6, Concession 13, Geographic Township of Buchanan

Township of Deep River, County of Renfrew

Environmental Compliance Approval (ECA) Number A413106

Purpose

I have reviewed the 2016 Annual Monitoring Report (AMR) for Millers Road Waste Disposal Site (WDS) prepared by Jp2g Consultants Inc. (Jp2g) on behalf of The Corporation of the Town of Deep River and dated May 2017. The current review is limited to hydrogeological aspects of the report. I offer the following comments for your consideration:

Summary

- Reasonable Use Guideline B-7 applies to all operating waste disposal sites and those closed after 1986. Thus, Guideline B-7 applies to Miller Road WDS.
- The site is in compliance with Guideline B-7 as determined by the Reasonable Use Concept (RUC) assessment at monitoring wells 96-1S, 96-1D, 95-3S and 95-3D.
- An approximately 14 hectare parcel of land immediately to the west of the landfill site
 was purchased and registered on title as a Contaminant Attenuation Zone (CAZ).
- Iron and manganese concentrations exceeded the RUC values, however they are
 deemed to be at natural concentrations and not as a result of landfilling activities. No
 increasing trends for manganese and iron concentrations have been observed over time.
 All other Leachate Indicator Parameters (LIP) concentrations were found to be low as
 part of the regulatory assessment.
- Iron and manganese should be included in the RUC and trigger assessments in future monitoring activities, for any future leachate-related impacts that may occur.
- The direction of groundwater from the site is determined to be south east towards
 Maskinonge Lake. Groundwater mounding under the landfilling area is causing some
 radial flow in the vicinity of Area 2 towards the west.

- The leachate impact is measured by elevated inorganic concentrations (alkalinity, hardness, calcium, chloride, TDS, DOC and selected metals). Groundwater leaving the site from Area 4 (southeast) will be contained with the CAZ in this direction. Any groundwater impacts migrating to the southeast would likely discharge to surface water, and therefore the intent of Guideline B-7 in this direction is met.
- Impact west of Area 2 is also characterized by elevated organic parameters in the groundwater. The vertical impact in this direction is restricted to the deeper groundwater. The horizontal extent of impact measures as far as monitoring well 95-4 but not as far as wells 95-3 and 96-1.
- The water quality from wells located further to the west from the site (95-3, 95-5 and 96-1S and 96-1D) is characterized by low levels of inorganic parameters and organic parameters below detections limits. The groundwater at these locations is not impacted by the Waste Disposal Site.
- Organic sampling did not reveal any exceedances of ODWS with the exception of vinyl chloride at monitors 07-3D and 95-6, consistent with historical results. Vinyl chloride was not revealed outside of monitors 07-3D and 95-6 and therefore is not migrating off-site.
- None of the sampled residential wells exceeded ODWS/OG for the LIP concentrations.
 The landfill therefore is not influencing the water quality of the residential wells. It is
 recommend to include the residential wells on a 3 year basis with the next sampling
 scheduled for 2018. I support this recommendation.
- Continued ground and surface water monitoring is recommended as per the amended Certificate of Approval A413106 dated April 4, 2014. Future monitoring reports should include a discussion to understand groundwater □ surface water interaction.

Environmental Compliance Approval

The Deep River (Millers Road) waste disposal site (the site) operates under ECA A413106 issued in April, 1980 and most recently amended April, 2014. The site is licensed for the use and operation of a 4.5 hectare landfill within a total area of 8.55 hectares. Additional 14.14 hectares has been registered on title as Contaminant Attenuation Zone (CAZ) establishing a total site area of 22.69 hectares. The landfill operates as a naturally attenuating site. The site is used entirely for the disposal of construction and demolition waste and it is understood that no radioactive waste is disposed at the site. The site does not contain engineered control systems and therefore is considered a natural attenuating landfill site.

Site Description

The site is located on Lot 6, Concession 13, Township of Deep River east of Highway 17 along Miller Side Road. The site is presently leased by the Town of Deep River from Canadian Nuclear Laboratories (CNL) formerly Atomic Energy of Canada Limited (AECL). The waste disposal site is made up of four areas comprising a total area of 8.55 hectares. Landfilling within Areas 1 and 2 (3.22 hectares) has been cleared and used for waste disposal. The northerly portions of Areas 3 and 4 (5.33 hectares) are approximately 5 meters lower in elevation than Areas 1 and 2 and are heavily wooded. A site plan that includes the location of all monitoring wells is provided in Figure 2 and the CAZ is shown in Figure 3.

The site is located within the Maskinonge Lake Basin. The basin drains to Maskinonge Lake, which in turn drains via Chalk Lake to the Ottawa River. Surface water features in the vicinity of the site include an un-named ⊥andfill Creek that is located approximately 100 meters south east of the site and Spring Creek that originates west of the site and passes by the site to the south. The site is characterized by relatively flat terrain.

The drainage from the site flows mostly south-southeast towards Maskinonge Lake. There are no land use concerns or water users observed downstream of the site. Currently, the nearby residences are located up gradient (approximately 500 meters) of the waste disposal site and potential impact on these water supplies is not anticipated. It also is expected that Spring Creek will act as a hydraulic boundary to any leachate migrating southwestward according to Jp2g.

Geology

Jp2g determined the geology to be as follows:

- Till with gravelly sand and silt in Areas 2, 3 and 4 with till thickness ranging from 0 to 1.75 m;
- Fine-grained sand with trace silt in Areas 1 and 2 and extending south to Spring Creek with thickness generally greater than 10.7 m; and,
- Precambrian felsic metasedimentary bedrock with depth to bedrock ranging from 0 meters at the surface to approximately 30 meters.

Hydrogeology

Jp2g determined the hydrogeological conditions to be as follows:

- Groundwater flow in the overburden is influenced by underlying bedrock topography and is predominantly to the east and southeast;
- Groundwater flow in the vicinity of Area 2 flows southwest under a low hydraulic gradient possibly related to groundwater mounding in this area;
- Local groundwater flow from the north of Area 3 is north towards a wetland:
- The groundwater flow leaving the southern portion of Area 4 flows immediately to the southeast and eventually to Maskinonge Lake:
- Hydraulic conductivity values range between 1.3 x 10⁻² to 6.95 x 10⁻⁵ cm/s;
- Historical horizontal gradients reported in previous AMRs ranged from 0.001 in Area 2 to 0.02 in Areas 3 and 4. The higher gradient values are reportedly influenced by the dipping bedrock surface and topography;
- Vertical gradients are variable across the site as shown in Table 3 of the report; and,
- The average linear velocity is 2 m/year south of the landfill and 0.06 m/year southwest from the western property line.

Background Groundwater Quality

Background groundwater quality has been monitored at monitoring wells 91-2 and 95-5, located south and northwest of the site, respectively, and are considered representative of background water quality. The 2016 chemical analysis from these wells indicates that all parameters concentrations are less than Ontario Drinking Water Standards (ODWS), and no impacts from landfilling activities are detected.

Leachate

Wells 95-6 and 07-3D were used to characterize leachate conditions. Both monitors typically reveal the highest concentrations and are deemed to be representative of leachate parameter concentrations. Monitoring well 95-6 is located in the immediate down gradient flow path from the fill area of the site at the south end and monitoring well 07-3D is located along the northwest property line of Area 2. Table 6 outlines the 2016 range of leachate concentrations from monitoring wells 95-6 and 07-3D.

In 2016, elevated concentrations of alkalinity, boron, barium, calcium, hardness, iron, potassium, magnesium, manganese, sodium and TDS were observed compared to concentrations measured in background wells and these serve as leachate indicator parameters (LIP) at the site. Concentrations above ODWS were observed for iron, manganese, DOC, and TDS at both leachate monitors during the 2016 monitoring year.

Volatile organic compounds (VOCs) analysis results indicated that only vinyl chloride (VC) concentrations have exceeded the ODWS at both leachate monitors in 2016, consistent with previous years. VC was not present at other locations revealed in the assessment outside of monitoring wells 07-3D and 95-6 and therefore is not migrating off-site.

Downgradient Groundwater Quality

On-site downgradient monitoring wells

The downgradient groundwater quality is monitored at the site by monitoring wells 91-5, 96-3, 85-C, 88-2S, 88-2D, 85-D and 85-Y. Their locations are provided on Figure 9. All of these wells are located between the licensed fill area and the perimeter of the buffer zone. Monitoring wells 88-2S, 88-2D, 85-Y and 85-D are located in the immediate downgradient flow path from Area 4 in an area of steep hydraulic gradient. Monitoring well 91-5 is located along the western perimeter of the site within an area of a low hydraulic gradient. Monitoring wells 85-C and 96-3 are located along the southern perimeter of the waste disposal site and are considered to be in the direction of groundwater flow originating from the southwest corner of Area 1. During the 2016 monitoring events, samples were collected from the following monitoring locations: 91-5S, 91-5D, and 96-3. Table 7 outlines concentrations from monitoring wells that are greater than ODWS and reflective of Leachate impacts.

Minor leachate impact is recognized along the western property line at monitoring station 91-5D. Impact at this location is characterized by elevated levels of chloride and sodium greater than background levels. Iron and manganese concentrations were found to be at levels greater than background and ODWS at monitor 91-5D location. The shallow setting, 91-5S, reveals hardness to exceed background values and the iron concentration was found to be exceeding the ODWS. As the chloride values at 91-5S are in-line with background values it is interpreted that this location does not reveal impact from the waste site. Iron and manganese values at monitor 91-5 were attributed by Jp2g to the overburden geology in the area, despite that none of both compounds were found to be exceeding the ODWS at the background monitors in 2016. The historical trends of selected chemical concentrations from monitors 91-5D and 96-3 do not reveal any increasing trends in concentrations.

Off-site downgradient monitoring wells

Groundwater samples collected from monitors 07-2S, 07-2D, located southeast of Area 1 within the CAZ to the south, in an area with a steep hydraulic gradient, revealed concentrations of iron and manganese that are greater than ODWS. TDS concentration was exceeding the ODWS at monitor 07-2D during the fall 2016 sampling event. Monitoring wells 07-2S and 07-2D have also been compared to Provincial Water Quality Objectives (PWQOs) to determine the potential for contaminants to reach the Landfill Creek from the groundwater in the vicinity of monitoring well 07-2S and 07-2D. The results indicate iron and barium at both shallow and deep settings, and boron at the deep setting exceeded the PWQOs.

Jp2g noted that barium and iron exist in the historical background concentrations and therefore are poor parameters in assessing landfill impact. I disagree with this statement since barium is found recently and historically in background monitors at concentrations lower by one order of magnitude than barium concentrations measured in 2016 at monitors 07-2S and 07-2D. Further, boron is revealed to exist at levels above PWQOs at this location. The presence of boron in the deep setting indicate impact from the landfill site in the deep overburden aquifer. It is recommended by Jp2g that water quality from monitoring wells 07-2S and 07-2D continue to be compared to PWQOs to assess any potential impacts groundwater migrating from the landfill may have on the local surface water environment. I support this recommendation.

Groundwater samples collected from monitors 95-3S, 95-3D, 95-4S, 95-4D, 96-1D, 96-1S, 07-FS, 07-FD, 08-1S and 08-1D, located to the west within the CAZ, revealed that the major component of off-site leachate impact is focussed in the vicinity of monitoring wells 07-3, 07-F and to a lesser extent 08-1 and 95-4. Similar to the groundwater south of the site the deeper groundwater on balance reveals parameters with the higher chemical concentrations. Chemical concentrations dissipate rapidly moving west from the site as evidenced by the low chemical concentrations in the other monitoring wells that are located on the property recently purchased by the municipality (95-3 and 96-1). The groundwater quality at monitoring wells located to the west within the CAZ does not reveal any increasing trends in concentrations with the exception of slight increasing trends in chloride and conductivity concentrations at monitoring well 95-4D, and alkalinity, hardness, calcium and barium concentrations at monitoring well 08-1S.

Residential monitoring wells

Condition 14 of the ECA requires that groundwater supply wells in the vicinity of the site are sampled. The last sampling event was completed during the 2015 program at four (4) residential wells along Millers Road near the landfill site. The location of the supply wells is not shown within the site plan. The results of the residential groundwater sampling are shown in Table 10. None of the sampled residential wells LIP concentrations exceeded ODWS. Residential sampling in 2015 included the analysis of benzene, 1,4-dichlorobenzene, dichloromethane, toluene and vinyl chloride. All parameters revealed concentrations that were less than ODWS.

It is interpreted that the landfill is not impacting residential wells water quality, thus sampling was not included in the 2016 monitoring program. It is recommend to include the residential wells on a 3 year basis with the next sampling scheduled for 2018. I concur with this.

Regulatory Evaluation

Guideline B-7 applies to operating waste disposal sites and those closed after 1986. Therefore. Guideline B-7 applies to Miller Road WDS. The parameters used in this assessment of Guideline B-7 include: alkalinity, boron, barium, chloride, DOC, sodium, iron, manganese, VC and TDS. Jp2g compares the calculated Reasonable Use Concept (RUC) concentrations of the aforesaid parameters to the groundwater quality results at monitoring wells located along or beyond the western landfill boundary and included: 07-3S, 07-3D, 07-FS, 07-FD, 91-5S, 91-5D, 95-3S, 95-3D, 95-4S, 95-4D, 95-5, 96-1S and 96-1D. Impacts to the groundwater quality in the southeast downgradient direction will be contained within the contaminant attenuation zone, hence, wells to the south and south east are not considered in the RUC assessment. Any groundwater impacts migrating to the southeast would likely discharge to surface water, and therefore the intent of Guideline B-7 in this direction is met. All parameters concentrations were less than the RUC except for manganese and iron during spring monitoring event at monitoring well 96-1D. The report noted the presence of naturally occurring manganese and iron throughout the area. No increasing trends for manganese and iron concentrations have been observed over time. Due to the low values of all other LIP concentrations, and the stability of manganese and iron concentrations over time since 2012, Jp2g attributed manganese and iron concentrations to the local area mineralogy, and accordingly concluded that the site is interpreted to be compliant with Guideline B-7. I concur with this conclusion.

Groundwater ☐ Surface water Interaction

Vertical hydraulic gradients exist variably across the site as shown in Table 3. The report did not discuss the groundwater □ surface water interaction, and as such it is unknown if potentially impacted groundwater could discharge to surface. Future monitoring reports should include a discussion to understand groundwater □ surface water interaction. A number of surface water features are located near the landfill site. These include Landfill Creek, Spring Creek, and Maskinonge Lake to the southeast and a wetland to the northeast and downgradient of Area 3. There is potential for surface water impact due to surface water runoff and groundwater discharge. Results from monitoring wells 07-2S and 07-2D (located north of Landfill Creek) indicate a potential groundwater pathway for these contaminants to reach Landfill Creek.

An MOECC Surface Water Scientist should continue to be consulted with respect to surface water management at this site.

Trigger Mechanisms and Contingency Plans

The groundwater trigger mechanism indicates that if the concentration of any parameter used in the assessment of Guideline B-7 (i.e. alkalinity, boron, barium, chloride, DOC, sodium, iron, manganese, VC and TDS) exceeds the calculated RUC along the western limit of the designated CAZ area (96-1S and D and 95-3S and D) over four (4) consecutive groundwater monitoring events, a contingency plan would be activated. A trigger mechanism is not required south east of the site as the property is comprised of restricted federal lands (i.e. Canadian Nuclear Laboratory property) and the MOECC has indicated that contaminants will be maintained within the CAZ in this direction. The contingency plan involves conducting additional sampling and investigation to determine the source and extent of impacts, and to identify an acceptable mitigation/remediation program, should one be required. The specifics of the contingency plan will be dependent on the nature and extent of the impact. I concur with the proposed trigger mechanisms and contingency plan proposed.

Jp2g recommended that iron and manganese be removed as trigger values in the compliance assessment. I do not agree with this recommendation. Iron and manganese were reported exceeding the ODWS at monitors 07-2S and 07-2D, located southeast of Area 1 within the CAZ to the south, compared to their background concentrations. I recommend to continue monitoring iron and manganese as trigger values, for any future leachate-related impacts that may occur.

Landfill Gas

Methane was not detected in any of the monitored wells or the on-site attendants shed during the 2016 monitoring events. The onsite risks associated with landfill gas associated with this site are beyond the scope of my review. Landfill gas monitoring should continue to be conducted, and the need for landfill gas mitigation should continue to be assessed and discussed in future monitoring reports.

Groundwater Monitoring Program

The approved monitoring program under the ECA dated April 4, 2014 is based on the supporting documentation for the Expansion Application, Section 7.0 of the Design and Operations Report, Jp2g letter dated January 8, 2014 and ECA Condition 7.6 (2). No changes are proposed for the approved groundwater monitoring program. Groundwater monitoring should be continued on a semi-annual basis (summer and fall), as part of the regular monitoring program at the site.

Obai Mohammed, P.Eng. OYM/ob

ec:

Greg Faaren Peter Taylor Lauren Forrester Tara Macdonald

File GW RE DE 01 02 C13 (Miller® Road WDS) OM/IDS 2404-AS8K6V C:

Ministry of the Environment and Climate Change

P.O. Box 22032 Kingston, Ontario K7M 8S5

613/549-4000 or 1-800/267-0974

Fax: 613/548-6908

Minist⊡re de l'Environnement et de l'Action en mati⊡re de changement climatique

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-8

613/549-4000 ou 1-800/267-0974

Fax: 613/548-6908

M E M O R A N D U M May 17, 2017

TO: Tammy Watson

Senior Environmental Officer

Ottawa District Office Eastern Region

FROM: Lauren Forrester

Surface Water Specialist Technical Support Section

Eastern Region

RE: Contingency Plan

Miller Road (Deep River) Waste Disposal Site

Lot 6, Concession 8, Geographic Township of Buchanan Environmental Compliance Approval (ECA) No. A413106

As requested, I have reviewed the *Miller's Road Waste Disposal Site Contingency Plan*, prepared by Jp3g Consultants Inc. and dated January 2015. For the purpose of this review, I have also consulted the comments of groundwater reviewer T. Guo, dated March 28, 2017. I offer the following comments with respect to surface water matters.

Background

The landfill site is presently leased by the Town of Deep River from Atomic Energy of Canada Limited. The site has been a waste disposal site for the municipality since approximately 1965 and operates under ECA No. A413106 as a naturally attenuating site. The total site area is approximately 8.55 ha and is divided in to four Areas. Areas 1 and 2 are cleared and are used for waste disposal. Areas 3 and 4 are approximately 5 metres lower in elevation than Areas 1 and 2 and are currently heavily wooded. The Town has acquired lands to the southeast and west which serve as contaminant attenuation zone for the landfill.

A Trigger Mechanism was established for this site as per Amended ECA No. A413106 issued April 4, 2014 and is described in Item 6 of Schedule A of that approval (Robinson Consultants, 2002). Contingency options are also described (please see enclosure). A Design and Operations Report was prepared by Jp2g in March 2013, but does not describe surface water trigger mechanism or contingency plans. As such, it is my interpretation that the Trigger Mechanism and Contingency plans (Item 6 of the Approval) have remained relevant up to this point.

Surface Water Regime

The site is located northwest of Maskinonge Lake. A drainage divide runs east-west through the approximate centre of the site. Spring Creek and the unnamed Landfill Stream both occur in close proximity to the landfill site. Spring Creek originates up-gradient and west of the site and passes under Miller's Road approximately 300 metres west of the access road to the site entrance. Spring Creek meanders south to the site in an eastward direction to Maskinonge Lake, Ottawa River Basin. The Landfill Stream originates southeast of the site and meanders south-easterly until it meets up with Spring Creek approximately 0.5 km southeast of the site.

Drainage from the site flows mostly south-southeast towards Maskinonge Lake and eventually to the Ottawa River. It is anticipated that Spring Creek will act as a hydraulic boundary to any leachate migrating south-westward and that groundwater is may discharge to Landfill Stream.

Previous review by Bruce Metcalf (2014) found that Spring Creek was not significantly impacted at that time. Landfill Creek was interpreted to be not significantly impacted by leachate, but with signs of possible leachate influence at the downstream station (SW4 and SW5).

Leachate is characterized based on results from wells 95-6 and 07-3D. Leachate indicator parameters include alkalinity, boron, barium, hardness, iron, potassium, manganese, sodium, chemical oxygen demand (COD), dissolved organic carbon (DOC), and total dissolved solids (TDS). Volatile organic compounds (VOCs) have also been monitored in these wells. Various VOCs have been detected, including vinyl chloride exceeding Ontario Drinking Water Quality Standards from both wells.

Proposed Surface water Trigger and Contingency

Trigger Mechanism:

Surface water monitoring occurs three times per year at seven locations for this site. It appears that several modifications are proposed to the Trigger Mechanism, previously established by Robinson Consultants (2002). The following trigger mechanism is proposed:

- SW-6 (upstream of the confluence of Landfill Stream and Spring Creek) is proposed as a trigger location.
- Trigger parameters include un-ionized ammonia and chloride (75th percentile).
- Jp2g define an exceedance for any listed parameter as the numerical elevation of an analytical value above the trigger concentration or above the background concentration at the up-gradient station SW-1 if higher than the trigger concentration.
- Jp2g propose that four consecutive exceedances for any listed trigger parameter at SW-6 should be deemed to be caused by the landfill and would trigger the preparation of a contingency plan for submission to the MOECC shortly after the detection of the fourth exceedance.

Contingency Plan:

My understanding is that the contingency plan would consist of tiered actions, as follows:

- Following the fourth exceedance of a trigger concentration, an assessment of existing water quality data would be undertaken to evaluate the need for further surface water / biological study;
- 2. If exceedances are deemed to be caused by the landfill, detailed surface water / biological study would be undertaken to determine if trigger exceedance cause acceptable or unacceptable quality / biological impact on the receiving watercourse;
- 3. The resulting report would be submitted to the MOECC and would include recommendations for:
 - a. Site closure (or) continued operation with the design / construction of appropriate engineered facilities;
 - b. Proposed timelines for installation of recommended remedial facilities;
 - c. Proposed water quality monitoring program.

If impacts are deemed to be acceptable, Jp2G recommend the continuation of the routine sampling program without mitigation with respect to the specific trigger exceedance.

If impacts are deemed to be unacceptable, Jp2G recommend that remedial plans be implemented after the next result exceeding the trigger value during routine sampling. I do not agree with this approach.

Discussion

The proposed trigger evaluation location (SW-6) is consistent with the existing trigger mechanism and remains acceptable to the reviewer; however, the limitation of trigger parameters to chloride and unionized ammonia is a concern. Jp2g have excluded parameters that occasionally exceed the PWQO in background (SW1) for consideration as trigger parameters. I recommend that, for leachate indicator parameters found in excess of applicable PWQO or CWQG at the background monitoring location, the 75th percentile concentration from background should be considered as the trigger concentration.

The proposal to initiate contingency planning only after four consecutive exceeds could result in impacts going on for over a year prior to any actions being taken. This is a concern. The consultant should provide the rational for this proposed timeline for implementing contingency measures. Consideration should be given to confirmatory re-sampling following trigger concentration exceedances. For example, following two consecutive exceedances of a trigger concentration, confirmatory resampling could be carried out within 30 days as a component of a typical tiered contingency plan.

The consultant has not proposed a timeline for the submission of the proposed report on the contingency measures to the MOECC. The plan would benefit from the inclusion of set timelines for any proposed contingency actions (i.e. within 30 days of a confirmed trigger exceedance).

The proposed contingency plan is generally reasonable; however, if impacts are deemed to be unacceptable based on additional study, remedial measures should not be delayed. Remedial measures should be implemented as soon as is practical, not only additional exceedances. I also propose that potential recommendations within the report to the MOECC may include modifications to the trigger mechanism and contingency plan.

SUMMARY OF RECOMMENDATIONS

- Trigger concentrations should be established for landfill indicator parameters with Provincial Water Quality Objectives (PWQO) (or Canadian Water Quality Guidelines (CWQG) as applicable). Where the concentration of a leachate indicator parameter for which a PWQO / CWQG has been established exceeds the guideline value at upstream monitoring stations, the trigger concentration should be considered as the 75th percentile concentration from background. Please note, 75th percentile values should be updated as sampling data become available.
- I do not support the proposed change to the trigger mechanism to require four trigger concentration exceedances (rather than two) prior to the activation of contingency measures.

- As described above, timelines should be set out for the activation of confirmatory sampling and/or contingency actions once the prescribed number of trigger exceedances has occurred.
- If additional study is carried out and identifies unacceptable impacts to surface water, remedial measures should not be delayed pending additional exceedances, but should commence as soon as is practical following approval of the District Manager
- I note that the possible outcomes of water quality evaluation should include the option to propose modifications to the trigger mechanism.

If you have any questions about these comments, please feel free to contact me.

"Original Signed By"

Lauren Forrester, M.Sc. LF/dv

Encl: Surface Water Trigger Mechanism (Robinson Consultants, 2002)

ec: Peter Taylor, Technical Support Manager
Greg Faaren, Water Resources Unit Supervisor
Tara MacDonald, Ottawa District Supervisor

c: SW RE DE 03 06 13 ☐ Deep River (Miller® Road) LFS SW 13 01 07 02 SP ☐ Spring Creek, Ottawa River Basin (Central) LF/IDS No. 0667-AKJHJC

5.6 Surface Water Trigger Mechanism

The environmental monitoring program will be used to identify the time at which contingency plans may need to be implemented, if ever. The 'triggering mechanism' for the landfill site is based on the MOE Eastern Region's 'Interim Guidance Document Surface Water Monitoring Trigger Mechanism For Waste Disposal Sites (July 2002).

The extend of groundwater impact and the Reasonable Use Policy has been based on choride and TDS values. The parameters to be considered as trigger mechanisms for surface water impact are chloride and unionized ammonia.

The proposed trigger values are defined as the 75th percentile value of the recommended trigger parameters from the background surface water location. The trigger values are as follows:

Chloride 30.5 Unionized Ammonia 0.01

The current values from monitoring station SW-6 are below the proposed trigger values.

Tier 1 Trigger Level

Any two consecutive surface water samples from the routine annual monitoring program that exceed the trigger values or other parameters which are considered to be excessively high at the compliance station SW-6 may trigger the Tier II monitoring as indicated below. The Tier II sampling is to be completed within 30 days subsequent to an assessment that will be provided to the MOE to determine the necessity of Tier II monitoring.

Tier II Trigger Level

Tier II monitoring will consist of consecutive monthly surface water sampling for four locations located between the landfill and the compliance of the Landfill Creek and Spring Creek (SW-2, SW-3, SW-6 and SW-7). The list of parameters will be as in the routine sampling as well as "toxic indicator" parameters. The Tier II monitoring results shall be provided to the MOE District Manager as soon as they are available. Any two consecutive surface water samples from the Tier II monitoring program that exceed values as indicated above, will trigger the implementation of the appropriate contingency plan (s) and Tier III monitoring as outlined below.

If the above Tier II monitoring does not show further exceedances, then monitoring may return to the routine program.

Tier III Trigger Level

Within 30 days of the triggering of Tier III (ie. Two consecutive monthly exceedances), the Town will provide to the MOE District Manager a detailed work plan and implementation schedule for an appropriate contingency to control leachate and Tier III monitoring program to verify the effectiveness of the contingency. Following approval from MOE, these will be immediately implemented.

5.7 Contingency Options

Potential contingency actions that would be viable are as follows:

- a) collection and treatment of contaminated groundwater or surface water below the drop towards SW-2, and /or
- b) pumping and treatment of contaminated groundwater from purge wells.

The following provides a review of each of the above contingency measures, describing the concept and indicating its technical feasibility. Any one of these are considered to be viable at this site, or in combinations depending on the circumstances.

5.7.1 Primary Contingency Plan

Low Permeability Final Cover

The current natural attenuation design of the site assumes infiltration rates and leachate production equivalent to the natural infiltration rate in the surrounding sandy soils. This is a conservation approach, but a practical one as well since there is no source of fine-grained (ie. Clay) soils on-site from which to construct a low-permeability final cover. (The cut and fill for the site have been balanced to provide for a sand final cover.) However, if unexpected leachate impacts were detected, then one straightforward solution would be to import fine grained soils and/or synthetic membranes and construct a low permeability final cover (that could be progressively installed). This is technically feasible since there is experience with these types of covers at landfill sites all across Ontario. A cover of this type could be easily several orders of magnitude lower in permeability than the native sand material.

Leachate Re-Infiltration

Leachate re-infiltration would be a reasonable and viable contingency on a short-term basis or in conjunction with other contingencies noted above. Leachate could be collected at points of discharge, such as at the base of the waste mound along the buffer area adjacent to the rail line. French drains and other standard drainage works could be used. Then, the leachate could be pumped back to the landfill footprint area and re-infiltrated via ponds, trenches or infiltration galleries. Leachate re-circulation can provide effective control for certain leachate types. Typical problems such as odours and visibility may not be an issue at this site because it is fairly isolated.

Collection and Treatment of Contaminated Water at the Base of the Escarpment

Similar to the leachate re-infiltration contingency discussed above, this technique would allow for the collection of leachate at easily assessable points of discharge as noted above. However, the leachate could instead be collected, probably in temporary holding tanks, then treated off-site. The Deep River Sewage Treatment Plant would likely be a suitable treatment facility, based on the successful experience with leachate treatment at other sewage treatment plants in the province. However, purpose built treatment or pre-treatment systems, either on-site or off-site, are also technically viable with current technology.

Pumping and Treatment of Contaminated Ground Water From Purge Wells

Purge wells are a proven method of removing contaminated groundwater for treatment at landfill sites. The uniform characteristics of the surficial sand deposit at this site should lend itself to effective purge well design, although numerous wells might be needed because of the high permeability of the unit. On the other hand, only partial removal of the leachate might be needed to allow the natural attenuation concept to return to its designed function. In terms of treatment, the discussion above regarding use of the sewage treatment plants, or purpose-built treatment or pre-treatment also applies here.

7.0 DISCUSSION AND RECOMMENDATIONS

Surface water sampling has been completed upstream and downstream from the landfill site in both Spring Creek and the Landfill Creek. The chemical values at monitoring station SW-1 are deemed to be reflective of background conditions. All samples exhibit parameters which exceed Provincial Water Quality Objectives. Impact is present in the Landfill Creek located to the southwest of the site. The impact is characterized by elevated metal concentrations as well as iron precipitation on the stream bed. Surface water trigger mechanisms have been identified at monitoring station SW-6.

Ministry of the Environment and Climate Change

P.O. Box 22032 Kingston, Ontario K7M 8S5

613/549-4000 or 1-800/267-0974

Fax: 613/548-6908

Minist⊡re de l'Environnement et de l'Action en mati⊡re de changement climatique

C.P. 22032 Kingston (Ontario) K7M 8S5

613/549-4000 ou 1-800/267-0974

Fax: 613/548-6908

MEMORANDUM

March 28, 2017

TO: Tammy Watson

Senior Environmental Officer

Ottawa District Office Eastern Region

FROM: Thomas Guo

Hydrogeologist

Technical Support Section

Eastern Region

RE: Contingency Plan

Millers Road Waste Disposal Site

Lot 6, Concession XIII, Township of Deep River Environmental Compliance Approval: A413106

I have reviewed the hydrogeologically pertinent sections of the document entitled Miller Road Waste Disposal Site, Contingency Plan prepared by Jp2g Consultants Inc. (Jp2g) and dated January 2015.

The report presents the details of contingency plan for the Miller Road Waste Disposal Site to address Condition 8.2 of the ECA. I offer the following comments for your consideration.

Environmental Compliance Approval (ECA)

The landfill operates as a naturally attenuating site. The site is used entirely for the disposal of construction and demolition waste and it is understood that no radioactive waste is disposed at the site.

Background

The Miller Road Waste Disposal Site is presently leased by the Town of Deep River from Canadian Nuclear Laboratories (CNL) formerly Atomic Energy of Canada Limited (AECL) and has been the landfill Site for the Municipality since 1965.

In response to an Application for an Amended Certificate dated April 2002, the MOE issued ECA No. A413106 dated November 14, 2002. The supporting documentation listed as items 2 to 6 on Schedule \square A \square described the operation and development and monitoring requirements of the C \square D waste disposal Site. The landfilling of domestic waste ceased in July 2002 and the designated areas within the 4.5 ha landfilling area have received C \square D waste within the design contours. As required under Conditions 11 and 12, an Operations Report and Sludge Lagoon

Decommissioning Plan dated November 2003 was filed providing further detail on site operations. As a part of the expansion application, filed in March 2013, an updated Design and Operations report was completed by Jp2g Consultants Inc.

Site Setting

The site is located on Baggs Road in Part of Lot 6, Concession XIII, in former Geographic Township of Buchanan, now Town of Deep River.

The site lies in the Ottawa-Bonnechere graben, a rift valley that was generated by tension faulting. In the region around the site, the Ottawa River occupies the fault zone that defines the northeastern boundary of the graben; the southwestern boundary of the rift valley lies approximately 60 km southwest near the Bonnechere River, but there are a number of smaller or secondary faults within the graben.

The site is located within the Maskinonge Lake Basin. The basin drains to Maskinonge Lake, which in turn drain via Chalk Lake to the Ottawa River. Surface water features in the vicinity of the site include an unnamed \(\pm\) and fill Creek \(\pm\) that is located approximately 100 m southeast of the site and Spring Creek that originates west of the site and passes by the site to the south.

<u>Geology</u>

Jp2g determined the geology to be as follows:

- Till with gravelly sand and silt in Areas 2, 3 and 4 with till thickness ranging from 0 to 1.75 m;
- Fine-grained sand with trace silt in Areas 1 and 2 and extending south to Spring Creek with thickness generally greater than 10.7 m; and,
- Precambrian felsic metasedimentary bedrock.

Hydrogeology

Jp2g determined the hydrogeological conditions to be as follows:

- Groundwater flow in the overburden is influenced by underlying bedrock topography and is predominantly to the east and southeast;
- Groundwater flow in the vicinity of Area 2 flows southwest under a low hydraulic gradient possibly related to groundwater mounding in this area;
- Local groundwater flow from the north of Area 3 is north towards a wetland;
- Hydraulic conductivity values range between 1.3 x 10⁻² to 6.95 x 10⁻⁵ cm/s;
- Horizontal gradients range from 0.001 in Area 2 to 0.02 in Areas 3 and 4. The higher gradient values are reportedly influenced by the dipping bedrock surface and topography;
- The average linear velocity is 60 m/year south of the landfill and 7.5 m/year southwest from the western property line; and,
- The conceptual contaminant transport movement at the site is through the overburden from the northwest to the southeast with a slight component

Background Groundwater quality

Wells 91-2 and 95-5 are located south and northwest of the site, respectively, and are considered representative of background water quality. Current sampling from these wells indicates that all parameters meet Ontario Drinking Water Quality Standards (ODWQS) and no impacts from landfilling activities are detected.

Leachate

Wells 95-6 and 07-3D were used to characterize leachate. Elevated concentrations of alkalinity, boron, barium, hardness, iron, potassium, manganese, sodium, chemical oxygen

demand (COD), dissolved organic carbon (DOC) and total dissolved solids (TDS) are present and these serve as leachate indicator parameters at the site. Volatile Organic Compounds (VOCs) were also monitored at these wells in 2012 and numerous VOCs were detected at both wells with vinyl chloride levels exceeding ODWQS at both wells.

Groundwater Surface Water Interaction

There is potential for surface water impact due to surface water runoff and groundwater discharge. Results from monitoring wells 07-2S and 07-2D (located north of Landfill Creek) indicate a potential groundwater pathway for these contaminants to reach Landfill Creek.

Existing Leachate Management

Leachate generated from the landfill is managed through natural attenuation. CAZs exist to the southeast and to the west of the landfill site. Jp2g states that all leachate generated at the landfill site is attenuated within the CAZ.

There are currently no surface water control features at the site. The land surrounding the site is vegetated and surface water in the vicinity of the site infiltrates the glaciofluvial coarse textured overburden. Surface water monitoring is completed at the site to ensure that the leachate is not negatively impacting the local surface water environment.

Groundwater Monitoring Program

Groundwater monitoring occurs two times a year and includes: Monitoring Wells: 91-2, 91-5 \square D, 95-3 \square D, 95-4 \square D, 95-5, 95-6, 96-1 \square D, 96-3, 07-2 \square D, 07-3 \square D, 07-F \square D, and 08-1 \square D.

Currently analyzed parameters are: alkalinity, chloride, conductivity, nitrite, nitrate, TDS, total Kjeldahl nitrogen, hardness, calcium, magnesium, potassium, sodium, aluminium, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, silicon, strontium, thallium, titanium, vanadium and zinc.

Groundwater Trigger Mechanism

The proposed trigger mechanism for the Miller S Road Waste Disposal Site is recommended by Jp2g as the exceedance of 75 □ of MOECC Reasonable Use Guideline (RUG) B-7 limits along the western limit of the designated CAZ (i.e. monitoring well 96-1 S □ D) where the exceedance of parameters used in the RUG assessment is observed over four (4) consecutive groundwater monitoring events.

A trigger mechanism is not required southeast of the site as the property is comprised of restricted federal lands (i.e. CNL property) and MOECC has indicated that contaminants will be maintained within the CAZ in this direction.

In the event that chemical values from the designated monitoring station (96-1 S□D and any new stations) exceed the trigger mechanism values (during four (4) consecutive sampling events), a tier type sampling program will be initiated. The three tier monitoring program is listed below:

Tier I Trigger Level

Any four (4) consecutive groundwater samples from the routine annual monitoring program that exceed the trigger values may trigger the Tier II monitoring as indicated below. Subsequent to the exceedance, an assessment will be provided to the MOECC to determine the necessity of Tier II monitoring.

Tier II Trigger Level

Tier II monitoring consists of consecutive monthly groundwater sampling of the compliance well (96-1). The list of parameters will be as the routine sampling. The Tier II monitoring results shall be provided to the MOECC District Manager as soon as they are available. Any two (2) consecutive groundwater samples from the Tier II monitoring program that exceed values as indicated above, will trigger the implementation of the appropriate contingency plan(s) and Tier III monitoring as outlined below. If the above Tier II monitoring does not show further exceedances, or, if in the opinion of the district manager the monitoring may return to the routine program.

Tier III Level

Within 60 days of the triggering of Tier III (i.e. two consecutive monthly exceedances), the Town will provide to the MOECC District Manager a detail work plan and implementation schedule for an appropriate contingency plan to control leachate and Tier III monitoring program to verify the effectiveness of the contingency, or alternatively, rational for the cessation of tiered monitoring.

Groundwater Contingency Plan

Under the RUG, the owner of a waste disposal site is responsible for preventing unacceptable off-property groundwater impacts. Should the groundwater monitoring program indicate the existence of, or potential for, unacceptable impacts, the owner shall prepare and present a mitigation plan for the approval of the MOECC. In this event, actions taken by the Town of Deep River to prevent or remediate the off property impacts could consist of:

- a) Acquisition of additional land to bring the site in compliance with the RUG;
- b) Gaining control over the contaminated groundwater to bring the site into compliance; or,
- c) Developing and implementing groundwater control/treatment measures to bring the site into compliance with the RUG.

Conclusions and Recommendations

The proposed trigger mechanism and contingency plan is acceptable. However, based on the previous comments provided by the MOECC, monitoring well 95-3 should be included in the compliance well list for the proposed trigger mechanism and contingency plan. Dissolved organic carbon (DOC) and vinyl chloride (VC) should be included in the analyzed parameter list and be used as the parameters for the RUG assessment, trigger mechanism and contingency plan.

Thomas Guo, M. Eng, P. Geo.

TG/dv

15 Jamo

ec: Peter Taylor, Technical Support Manager Greg Faaren, Water Resources Supervisor Kyle Stephenson, Groundwater Group Leader

c: Dale Gable, Supervisor, Approvals Services Unit, EAB Lauren Forrester, Surface Water Specialist File No. GW RE DE 01 02 (Miller Road WDS □ A413106) TG/IDS □ 0342-AKVL3P

ENGINEERS ■ PLANNERS ■ PROJECT MANAGERS

January 8, 2014

Ministry of the Environment Operations Division Floor 12A 2 St. Clair Ave West Toronto, ON via email only Dale.Gable@ontario.ca

Attention: Mr. Dale Gable, P.Eng

Re: Application for Approval of Waste Disposal Site

Expansion of Millers Road Landfill Site Town of Deep River, County of Renfrew MOE Reference Number 0772-96NNMW

Our Project No. 2106142B

Dear Sir:

We are in receipt of your letter dated December 23, 2013 regarding the Millers Road Expansion Project. As requested, we are pleased to provide this letter in response to your concerns. For clarity, we have addressed your comments in the order that they appear in your letter.

Section 3.2 indicates that in place waste at the Site is 215,825 cubic meters. Section 3.4 indicates that the theoretical capacity for the Site is 355,950 cubic meters. Section 3.4 also indicates the design of the expanded landfill is not intended to utilize the remaining capacity theoretical capacity of the Site. It is unclear the rationale for this statement.

It is a statement of fact only, suggesting that when an additional 100,000m³ is added to the site, the total landfill volume is less than the theoretical volume which was established in previous reports (items 3 and 4, Schedule "A" of the ECA).

Whether or not the expansion was vertical or horizontal, the Township had ample available capacity to apply under the Environmental Protection Act to seek to utilize and amend the current approved footprint that capacity. There was no reason for the Town to undertake an environmental screening process at this time.

It is our understanding that with respect to correspondence from Ms. Alida Mitton and Ms. Vicki Mitchell of the Ontario Ministry of the Environment that an ESP was required. Re: Ms. Mitton (Letter dated August 18, 2010; attached)

"The Town is proposing to expand the total waste disposal volume of Millers Road Waste Disposal Site by 40,000 m3; but not more than 100,000 m³. This project will proceed under Ontario Regulation 101/07 made under the *Environmental Assessment Act*. This project is exempt from Part II of the *Environmental Assessment Act* provided the Town completes the Environmental Screening Process as per Ontario Regulation 101/07.

Re: Ms. Mitchell (email correspondence dated November 29, 2011; attached)

"Thank you for informing Lance Larkin and me about the proposed landfill site expansion project. It is the Ministry's position that the Ontario Environmental Assessment Act does not apply to the proposed landfill site expansion based on our understanding that the project will be Implemented on lands that are owned by a federal Crown Corporation; namely Atomic Energy of Canada Limited. Although it is the Ministry's position that the Ontario Environmental Assessment Act, and thus Ontario Regulation 101/07, would not apply to the proposed expansion, MOE environmental compliance approvals would still be required. We understand that the project is undergoing a federal environmental assessment, and request that the Town continue to share the information developed in support of the federal EA with MOE staff. We would like to ensure that the expansion of the site as proposed during the federal EA review will meet MOE standards and that there will not be undue delay at the MOE environmental compliance approval stage"

This statement suggests that in fact an ESP under Ontario Regulation 101/07 would be required if not for the fact that the site is on Federal Land.

As a result of Ms. Mitchell's email, a Provincial Environmental Screening Process project was not required. At that time however, there was a requirement to complete a Federal EA which was completed, and at the request of the MOE we provided documentation for their files. Nearing the end of the process, the Federal Government had a "Policy Change" and as a result a Federal EA was not required for small projects in which this was classified. The Federal EA was however completed, reviewed by the Federal scientists and subsequently approved.

With regards to the ESP, it appears that the undertaking did not take into account the 100,000 expansion from the theoretical capacity amount, therefore, the ESP is considered to be incomplete. As a result, it may be premature for the ministry to approve a 100,000 cubic metre expansion on top of the theoretical capacity.

We are not asking for an expansion of 100,000m³ on top of the theoretical capacity. We have merely stated that the total volume when adding 100,000m³ would be less than the theoretical volume.

As a result, the theoretical capacity will remain the same until the ESP is updated to consider the expansion using the theoretical capacity as the Site baseline. In the meantime, given the proposed capacity is still within the theoretical capacity, the ministry can continue the review from an EPA perspective.

The ESP requirements have been satisfied through the Federal EA process, proposing to increase the capacity by 100,000m³. The EPA application identified a baseline design capacity of 221,825m³ in the D&O report March 2013 (which referenced the D&O report dated April 2001, Item 4 Schedule "A" of ECA No. A413106). The final design capacity proposal is 321,825m³ so the ECA application requests an amendment to Condition 10 of the ECA which limits the volume to 215,825m³.

Section 5.6 discusses final cover material. Final cover should be low-permeable soil. This requirement can be addressed through a Condition in the ECA.

We agree that this requirement can be considered through a Condition in the ECA. We would however suggest that the use of low-permeable soil should not be required. This site is based on natural attenuation and as long as the site remains compliant with MOE Guideline B-7 locally available native soils should be satisfactory. In the event that contingencies are required the use of low-permeable material could be considered.

Section 5.6 indicates that the concentration of the substances in the Soil should not exceed the concentrations exceeded in Table 3 in O. Reg. 153/04. It should be noted that the Regulation is specifically for Record of Site Condition sites, in which this site does not apply.

This statement is based on similar wording contained in the Sample Application Package prepared by the EAAB in 2008, MOE document PIBS 6839e01. The intent is to ensure that the final cover material contaminant levels are acceptable.

Regulation 232/98 has specific requirements for surface water management requirements. The design does not incorporate the requirements. Section 5.7 indicates that a trigger mechanism is in place to ensure performance. Please provide the rationale for not including the surface water requirements into the design.

There is no on-site surface water drainage or discharge at the site to any nearby water body. Any precipitation at the site will migrate vertically through more porous overburden material until intersected by the groundwater table. As a result, surface water controls are not required. This issue is further addressed in Section 3.4.4 of the Environmental Assessment Screening Report for the Expansion of the Deep River (Millers Road) Waste Disposal Site as follows:

3.4.4 Storm Water Management

3.4.4.1 Construction

No special storm water management measures are required for the expansion. The base of the landfill is located above the water table. Any storm water accumulating will rapidly infiltrate.

3.4.4.2 Operations

The landfill will be designed to direct storm water away from the landfill area. Design measures to direct water away from the landfill may include a system of drainage swales. It is anticipated that storm water will rapidly infiltrate due to the high permeability of local soils.

No impacts on streams/wetlands from storm water management are expected. Runoff from the fill area would typically infiltrate the subsurface as a result of the high permeability of the sands. The nearest stream/wetland is Spring Creek and the Un-named creek located to the southeast from the site. The runoff path length from the landfill site to Un-named stream is approximately 100 m with a very low average slope.

There is, as described in Section 9 of the Environmental Monitoring Report two nearby surface water features. As indicated above, there is no direct surface discharge to either of these two features. In recent years, the Ministry of the Environment Technical Support Section has reviewed the annual reports and more specifically the surface water content;

August 7, 2007, review of 2006 Annual Report September 7, 2010, review of 2009 Annual Report December 9, 2011, review of 2010 Annual Report

All reviews have confirmed that "the surface water quality was determined not to be adversely impacted". The results do not suggest the Triggering of Tier II Level surface water monitoring to be required at the landfill.

As the proposed expansion is not changing the landfill foot print and is intended to continue only with essentially inert waste we would suggest that the current monitoring and sampling protocol is sufficient.

We would suggest that any changes could be addressed though conditions in the Certificate.

Section 6.2.4 describes the waste acceptance procedures. The section does not provide a description on waste that is rejected or inadvertently accepted. Can you please provide details on waste rejection and procedures/locations for storage of waste that should not have been accepted at the site.

The site attendant at the gate and/or office will inspect the waste load and direct to the appropriate drop off area. Rejected loads will be directed to the nearby Baggs Road Waste Disposal Site. The Baggs Road site is the other landfill site that serves the municipality. Materials accepted at the Baggs Road WDS are listed at the following web address:

http://northrenfrewlandfill.com/wasteaccepted.html

Waste loads that are inadvertently accepted will be stockpiled and transferred to the Baggs Road Site during the next working day in which both sites are open.

The following changes to the monitoring program:

- i. VOC analysis should be added to deep overburden intervals at monitoring locations 96-1 and 95-3 in addition to 95-6, 07-3D and 07-3S (as monitored in 2012); and,
- ii. Monitoring well 96-2 should be added to the monitoring program (monitored for at least the inorganic list) in order to better understand the distribution of contaminants in the main flow Direction towards Maskinonge Lake.

We do not object to adding the above to the monitoring program

Given its presence in groundwater at high levels to the west of the site, vinyl chloride should be included as a Guideline B-7 parameter. Vinyl chloride is not detectable at the compliance boundary well (96-1) and will not impact compliance at this time however this parameter should be included in the assessment moving forward. Given that local flow is westward from the western end of the site, the ministry is recommending that monitoring wells at location 95-3 should also be included as compliance monitoring wells.

We do not object to adding vinyl chloride as a Guideline B-7 parameter. We do not however agree that the wells located at 95-3 should be included as compliance monitoring wells. Compliance wells are typically located along property lines to assist in assessing off-site impact. Monitoring well 95-3 will not accomplish this. Monitoring well 95-3 could however be considered in the future as a trigger location.

It is recommended that groundwater supply wells within 500 metres of the site be sampled twice per year in 2014 and 2015 (2 years) with samples analysed for the inorganic list and VOCs. Based on a file search, two (2) wells were sampled in the 80's and the ministry recommends that samples should be collected again from nearby groundwater users to confirm that landfill impacts do not influence bedrock wells west of the site.

We will incorporate the sampling of the two nearest residences in the 2014 and 2015 monitoring program.

I trust that the above information is satisfactory and adequately addresses your concerns. We look forward to reviewing a copy of the draft Environmental Compliance Approval. Should you require clarification or have any further questions, please do not hesitate to contact the undersigned.

Yours truly,

Jp2g Consultants Inc.

Engineers • Planners • Project Managers

Andrew Buzza. P.Geo Project Manager

AB/jlp

Cc:

- Sean Patterson: Town of Deep River via email spatterson@deepriver.ca
- Kyle Straberger: MOE Ottawa District Office via email kyle.straberger@ontario.ca

Appendix B Government Agencies and Their Areas of Interest

This information is a subset of the Government Review Team list that is provided to applicants/proponents at the start of their planning process. This is for information only, and the particular agency or ministry must be contacted to determine if they have a mandated interest in the proposal.

AGENCY/MINISTRY	TYPE OF PROJECT/ POTENTIAL AREAS OF INTEREST
FEDERAL AGENCIES	THE TO BE STATES ASSOCIATED TO THE STATES OF
Canadian Environmental Assessment Agency	Undertakings that: • will require federal approvals, financing; • are on or abutting federal lands; • will require federal funding.
Canadian Transportation Agency	Undertakings with the potential to affect railway lines or property.
Indian and Northern Affairs Canada	Undertakings with the potential to affect:Aboriginal communities;traditional territories, and reserves;lands/waters surrounding reserves.
Environment Canada	 Undertakings with the potential to: result in the deposit of deleterious substances into fisheries water; affect migratory birds; affect federal wetlands; affect natural wildlife areas and national parks; cause transboundary effects on air or water quality; endanger or threaten species at risk.
Fisheries and Oceans Canada	Undertakings in or near water that have the potential to: • harmfully alter disrupt or destroy fish or fish habitat; • impact passage of fish around migration barriers; • impact provision of sufficient water flows; • result in the destruction of fish by means other than fishing (blasting); • impact aquatic species at risk.
Health Canada	Undertakings with human health implications.
Transport Canada	Undertakings that:

AGENCY/MINISTRY	TYPE OF PROJECT/ POTENTIAL AREAS OF INTEREST
PROVINCIAL AGENCIES & MINI	STRIES
GO Transit	Undertakings with the potential to affect GO Transit service or property.
Ontario Realty Corporation	Undertakings whose associated lands are adjacent or proximate to lands owned by the Ministry of Energy and Infrastructure.
Niagara Escarpment Commission	Undertakings in or with the potential to affect the Niagara Escarpment Planning Area.
Ministry of Aboriginal Affairs	For identification of Aboriginal communities potentially affected by an undertaking. Also for undertakings with the potential to affect Crown land and resource usage.
Ministry of Agriculture, Food and Rural Affairs	 Undertakings with the potential to affect: prime agricultural areas (areas of classes 1–3 agricultural soils); specialty crop areas; agricultural uses, agriculture-related uses and secondary uses on farms.
Ministry of Culture	Undertakings that may affect properties having recognized or potential cultural heritage value or interest, which may include: • built heritage resources; • cultural heritage landscapes; • areas of archaeological potential; • undertakings whose associated lands are adjacent or proximate to lands owned by the Royal Botanical Gardens, the McMichael Canadian Collection, or owned or protected by the Ontario Heritage Trust.
Ministry of Tourism	Undertakings with the potential to affect sport/recreational areas or tourist facilities.
Ministry of Education (consult local school board) Ministry of Training, Colleges and Universities (consult local institution)	Undertakings with the potential to affect school/institution, building property, or staff and students.
Ministry of Community Safety and Correctional Services	Undertakings with the potential to have a direct physical impact on a Correctional Services correctional centre, jail or a detention centre.
Ontario Provincial Police	Undertakings with the potential to have a direct physical impact on an Ontario Provincial Police correctional centre, jail or detention centre.
Ministry of Economic Development and Trade	Undertakings which involve investments in large-scale manufacturing facilities or co-generation projects.

AGENCY/MINISTRY	TYPE OF PROJECT/ POTENTIAL AREAS OF INTEREST
Ministry of Energy and Infrastructure	Undertakings with energy implications, including renewable energy such as small hydro or wind. Undertakings within an area covered by the Growth Plan for the Greater Golden Horseshoe or the <i>Places to Grow Act, 2005</i> .
Ministry of Health and Long-Term Care (Local Medical Officers of Health)	Undertakings with potential health impacts such as groundwater contamination and air quality impacts.
Ministry of Municipal Affairs and Housing	Undertakings that:
Ministry of Natural Resources	 Undertakings that may have a potential effect on: permanent and intermittent watercourses or water bodies; rare, vulnerable, threatened, endangered or otherwise significant species; Areas on Natural and Scientific Interest or an Environmentally Significant Area; mineral aggregate resources; Crown land/resources; provincially significant wetlands.
Ministry of Northern Development, Mines and Forestry	Undertakings that may potentially affect:
Ministry of Transportation	 Undertakings within: any study area for a transportation corridor or route planning project; 800 metres of any existing/designated provincial highway or other provincial transportation facility; adjacent to Ministry of Transportation property (i.e. patrol yards, carpool lots, etc.).
OTHER	
Ontario Power Generation	Undertakings that could potentially directly affect an Ontario Power Generation generating site.
Hydro One Networks Inc.	Undertakings that could potentially directly have an impact on Hydro One facilities or plants (includes transmission/distribution lines or transformer/distribution stations).

AGENCY/MINISTRY	TYPE OF PROJECT/ POTENTIAL AREAS OF INTEREST
Local Conservation Authority	 Undertakings with the potential to affect: area in and adjacent to watercourses (including valley lands), wetlands, shorelines of inland lakes and the Great Lakes-St. Lawrence System and other hazard lands;
	fish and fish habitat;drinking water sources;sensitive natural features;hydrology and storm water.

Note: Municipalities and Aboriginal peoples, while not formally on the Government Review Team, are consulted about a class environmental assessment project if it is located in their municipality or community or if it may affect their municipality or community as required by the Environmental Assessment Act.

CONTENT COPY OF ORIGINAL

(Optional) Letter Description:

Ministry of the Environment

Operations Division Floor 12A 2 St Clair Ave W Toronto ON M4V 1L5 Fax: (416)314-8452 Telephone:

December 23, 2013

Ministère de l'Environnement

Division des Opérations Étage 12A 2 av St Clair O Toronto ON M4V 1L5 Télécopieur : (416)314-8452

Téléphone:

Michelle Larose, CAO/Clerk
The Corporation of the Town of Deep River
Post Office Box, No. 400
Deep River, Ontario
K0J 1P0

Dear Ms. Larose:

Re: Application for Approval of Waste Disposal Sites Expansion of Miller's Road Landfill Site Deep River Town, County of Renfrew MOE Reference Number 0772-96NNMW

I have been assigned to review your application submission for Environmental Compliance Approval (ECA) No.A413106 (Miller Road Waste Disposal Site) in which you are requesting approval for a capacity expansion for the Site.

I have completed my initial review of the application and the supporting documentation prepared by Jp2g Consultants dated March 2013. Based on my initial review, I am providing the following comments:

Design and Operations

- 1. Section 3.2 indicates that in place waste at the Site is 215,825 cubic meters. Section 3.4 indicates that the theoretical capacity for the Site is 355,950 cubic meters. Section 3.4 also indicates the design of the expanded landfill is not intended to utilize the remaining capacity theoretical capacity of the Site. It is unclear the rationale for this statement. Whether or not the expansion was vertical or horizontal, the Township had ample available capacity to apply under the Environmental Protection Act to seek to utilize and amend the current approved footprint that capacity. There was no reason for the Town to undertake an environmental screening process at this time. With regards to the ESP, it appears that the undertaking did not take into account the 100,000 expansion from the theoretical capacity amount, therefore, the ESP is considered to be incomplete. As a result, it may be premature for the ministry to approve an 100,000 cubic metre expansion on top of the theoretical capacity. As a result, the theoretical capacity will remain the same until the ESP is updated to consider the expansion using the theoretical capacity as the Site baseline. In the meantime, given the proposed capacity is still within the theoretical capacity, the ministry can continue the review from an EPA perspective.
- 2. Section 5.6 discusses final cove material. Final cover should be low-permeable soil. This requirement can be addressed through a condition in the ECA.
- 3. Section 5.6 indicates that the concentration of the substances in the Soil should not exceed the concentrations exceeded in Table 3 in O. Reg. 153/04. It should be noted that the Regulation is specifically for Record of Site Condition sites, in which this site does not apply.
- 4. Regulation 232/98 has specific requirements for surface water management requirements. The design does not incorporate the requirements. Section 5.7 indicates that a trigger mechanism is in place to ensure performance. Please provide the rationale for not including the surface water requirements into the design.
- 5. Section 6.2.4 describes the waste acceptance procedures. The section does not provide a description on waste that is rejected or inadvertently accepted. Can you please provide details on waste rejection and procedures/locations for storage of waste that should not have been accepted at the Site.

CONTENT COPY OF ORIGINAL

Groundwater

- 6. The following changes to the monitoring program:
 - i. VOC analysis should be added to deep overburden intervals at monitoring locations 96-1 and 95-3 in addition to 95-6, 07-3D and 07-3S (as monitored in 2012); and,
 - ii. Monitoring well 96-2 should be added to the monitoring program (monitored for at least the inorganic list) in order to better understand the distribution of contaminants in the main flow direction towards Maskinonge Lake.
- 7. Given its presence in groundwater at high levels to the west of the site, vinyl chloride should be included as a Guideline B-7 parameter. Vinyl chloride is not detectable at the compliance boundary well (96-1) and will not impact compliance at this time however this parameter should be included in the assessment moving forward. Given that local flow is westward from the western end of the site, the ministry is recommending that monitoring wells at location 95-3 should also be included as compliance monitoring wells.
- 8. It is recommend that groundwater supply wells within 500 metres of the site be sampled twice per year in 2014 and 2015 (2 years) with samples analysed for the inorganic list and VOCs. Based on a file search, two (2) wells were sampled in the 80's and the ministry recommends that samples should be collected again from nearby groundwater users to confirm that landfill impacts do not influence bedrock wells west of the site.

Please provide a response to the items above which require a response by no later than January 16, 2014. Please copy the District Office in your correspondence.

If you have any questions regarding the above, please contact me at the above phone number.

Yours truly,

Dale Gable Acting Supervisor

c: District Manager, MOE Ottawa Andrew Buzza, Jp2g Consultants Inc. е

е

е

MEMORAND M

December 3, 2013

TO: K. Straberger

Sr. Environmental Officer Ottawa District Office Eastern Region

FROM: K. Stephenson

ydrogeologist

Technical Support Section

Eastern Region

RE: - 2012 Annual Monitoring Report

- Proposed Site Expansion

Miller's Road Waste Disposal Site

Lot 6, Concession III, Township of Deep River Environmental Compliance Approval A413106

Purpose

I have reviewed the following reports related to the Miller's Road Waste Disposal Site (site):

- "2012 Annual Monitoring Report, Deep River (Miller's Road) Waste Disposal Site" dated May, 2012 and completed by Jp2g Consultants Inc. (Jp2g) on behalf of The Corporation of the Town of Deep River (Town);
- "Environmental Assessment Screening Report for The Expansion of the Deep River (Miller's Road) Waste Disposal Site" dated June 2012 and prepared by Jp2g;
- "Environmental Monitoring Report, Deep River (Miller's Road) Waste Disposal Site Proposed Site Expansion" dated March 2013 and prepared by Jp2g; and,
- "Design and Operations Report, Miller's Road Waste Disposal Site" dated March 2013 and prepared by Jp2g.

I reviewed the reports to determine site compliance with Guideline B-7 and to provide comments on the proposed expansion of the site. I have organized this memorandum into three sections dealing with the annual report, the environmental assessment submitted to support the expansion and the proposed landfill design and operations report. I have provided a summary in each section for your consideration.

1. 2012 Annual Monitoring Report (AMR)

Environmental Compliance Approval (ECA)

The Deep River waste disposal site (site) operates under ECA A413106 issued in April, 1980 and last amended November 2009. The site is located on Lot 6, Concession III, Township of Deep River. The site is licensed for the use and operation of a 4.5 hectare landfill within a total area of 8.55 hectares. A condition was added as part of the 2009 amendment to ensure that an extended Contaminant Attenuation one (CA) would be established by June 1, 2010. I understand that this condition has been met. The landfill operates as a naturally attenuating site. The site is used entirely for the disposal of construction and demolition waste and it is understood that no radioactive waste is disposed at the site.

Geology

Jp2g determined the geology to be as follows:

- Till with gravelly sand and silt in Areas 2, 3 and 4 with till thickness ranging from 0 to 1.75 m;
- Fine-grained sand with trace silt in Areas 1 and 2 and extending south to Spring Creek with thickness generally greater than 10.7 m; and,
- Precambrian felsic metasedimentary bedrock.

ydrogeology

Jp2g determined the hydrogeological conditions to be as follows:

- Groundwater flow in the overburden is influenced by underlying bedrock topography and is predominantly to the east and southeast;
- Groundwater flow in the vicinity of Area 2 flows southwest under a low hydraulic gradient possibly related to groundwater mounding in this area;
- Local groundwater flow from the north of Area 3 is north towards a wetland;
- ydraulic conductivity values range between 1.3 x 10⁻² to 6.95 x 10⁻⁵ cm/s;
- orizontal gradients range from 0.001 in Area 2 to 0.02 in Areas 3 and 4. The higher gradient values are reportedly influenced by the dipping bedrock surface and topography;
- Vertical gradients are variable across the site as shown in Table 3 of the report; and,
- The average linear velocity is 60 m/year south of the landfill and 7.5 m/year southwest from the western property line.

Background Water uality

Wells 91-2 and 95-5 are located south and northwest of the site, respectively, and are considered representative of background water quality. Current sampling from these wells indicates that all parameters meet Ontario Drinking Water Standards (ODWS) and no impacts from landfilling activities are detected.

Leachate uality

Wells 95-6 and 07-3D were used to characterize leachate. Elevated concentrations of alkalinity, boron, barium, hardness, iron, potassium, manganese, sodium COD, DOC and TDS are present and these serve as leachate indicator parameters at the site. Volatile Organic Compounds (VOCs) were also monitored at these wells in 2012 and numerous VOCs were detected at both wells with vinyl chloride levels exceeding ODWS at both wells.

Downgradient Water uality

Leachate impacts are evident at the following wells monitored in 2012: 07-2S, 07-2D, 91-5D, 91-5S, 95-4D, 95-4S, 07-FS, 07-FD, 07-3S, 07-3D, 08-1D, 08-1S and 96-1D.

Consistent VOC impacts have been observed at the following monitoring wells: 88-3D, 95-6, 07-FD, 07-2S, 07-3D and 08-1D.

Monitoring results generally show greater impacts to deeper groundwater as compared to shallow groundwater.

Full chemistry results could not be located for monitoring well 96-1 beyond those shown in Table 8 of the report. Full results should be included in the next report.

All impacted groundwater that has been identified in the report is contained within the CA.

Future reports should include a more detailed discussion on organic results (section 5.7 of the annual monitoring report).

Guideline B-7

The site is in compliance with Guideline B-7 within the overburden aquifer.

Given its presence in groundwater at high levels to the west of the site, vinyl chloride should be included as a Guideline B-7 parameter. Vinyl chloride is not detectable at the compliance boundary well (96-1) and will not impact compliance at this time however this parameter should be included in the assessment moving forward. Given that local flow is westward from the western end of the site, it is my opinion that monitoring wells at location 95-3 (shallow and deep) should also be included as compliance monitoring wells (this will also not impact compliance at this time based on 2012 results).

Iron and manganese are not included as Guideline B-7 parameters at this site based on the presence of these parameters in background water. Guideline B-7 limits should be derived for these parameters in future reports. It is acknowledged that naturally elevated levels of these parameters can be present however, these parameters are also good leachate indicators and, as such, they should be considered as part of the Guideline B-7 assessment.

There are no bedrock wells at the site however Jp2g has indicated that they have assumed that groundwater in bedrock would flow to the east and on to federal land that is restricted for development. As such, Jp2g does not see the need to complete an assessment of groundwater in bedrock.

The bedrock surface is variable and dips steeply to the west near the western end of the site. It is also evident that there are leachate impacts in deep overburden extending to the west of the landfill. The bedrock surface influences groundwater flow direction and there is potential for impacted groundwater to reach bedrock and move with groundwater in bedrock. I understand the position from Jp2g however, as a precaution, I recommend that groundwater supply wells within 500 metres of the site are sampled twice per year in 2014 and 2015 (2 years) with samples analysed for the inorganic list and VOCs (it is noted that groundwater supply wells in the area are generally completed in bedrock). Based on a file search, two (2) wells (presumably along Miller's Road) were sampled in the 80's and it is my opinion that samples should be collected again from nearby groundwater users to confirm that landfill impacts do not influence bedrock wells west of the site.

I recommend that the site plan in future reports show the entire CA areas to the west and south of the site.

Trigger Mechanisms and Contingency Plans

Trigger mechanisms and contingency plans are presented in section 7.0 of the report. The plans are acceptable provided that additional compliance wells discussed above are included in the trigger mechanism going forward.

Groundwater Monitoring Program

The recommended groundwater monitoring program is presented in Section 10.0 of the annual report. I support the program and I recommend the following changes to the monitoring program:

- VOC analysis should be added to deep overburden intervals at monitoring locations 96-1 and 95-3 in addition to 95-6, 07-3D and 07-3S (as monitored in 2012); and,
- Monitoring well 96-2 should be added to the monitoring program (monitored for at least the inorganic list) in order to better understand the distribution of contaminants in the main flow direction towards Maskinonge Lake.

It would also be helpful if a table could be included in future reports showing the details of the proposed groundwater monitoring program (wells, water level measurement, sampling, parameters, frequency, etc.).

- 5 -

Groundwater – Surface Water Interaction

A number of surface water features are located near the landfill site. These include Landfill Creek, Spring Creek, and Maskinonge Lake to the southeast and a wetland to the northeast and downgradient of Area 3. There is potential for surface water impact due to surface water runoff and groundwater discharge. Results from monitoring wells 07-2S and 07-2D (located north of Landfill Creek) indicate a potential groundwater pathway for these contaminants to reach Landfill Creek.

2012 AMR Summary

- The site is in compliance with Guideline B-7 in the overburden unit.
- Given its presence in groundwater at high levels to the west of the site, vinyl chloride should be included as a Guideline B-7 parameter. Vinyl chloride is not detectable at the compliance boundary well (96-1) and will not impact compliance at this time however this parameter should be included in the assessment moving forward. Given that local flow is westward from the western end of the site, it is my opinion that monitoring wells at location 95-3 should also be included as compliance monitoring wells (this will also not impact compliance at this time based on 2012 results).
- Iron and manganese are not included as Guideline B-7 parameters at this site based on the presence of these parameters in background water. Guideline B-7 limits should be derived for these parameters in future reports. It is acknowledged that naturally elevated levels of these parameters can be present however, these parameters are also good leachate indicators and, as such, they should be considered as part of the Guideline B-7 assessment.
- As a precaution, I recommend that groundwater supply wells within 500 metres of the site are sampled twice per year in 2014 and 2015 (2 years) with samples analysed for the inorganic list and VOCs. Based on a file search, two (2) wells (presumably along Miller's Road) were sampled in the 80's and it is my opinion that samples should be collected again from nearby groundwater users to confirm that landfill impacts do not influence bedrock wells west of the site.
- Full chemistry results could not be located for monitoring well 96-1 beyond those shown in Table 8 of the report. Full results should be included in the next report.
- The site plan in future reports should show the entire CA areas to the west and south of the site.
- Future reports should include a more detailed discussion on organic results (section 5.7 of the AMR).
- Recommendations presented in the "Groundwater Monitoring Program" above should be addressed by the Town / Jp2g.

- There is potential for surface water impact due to surface water runoff and groundwater discharge.

2. Environmental Assessment Report

The Environmental Assessment Report indicates the following information relevant to potential groundwater impacts at the site resulting from expansion:

- Atomic Energy of Canada Limited staff has determined, pursuant to Section 5(1)(C) of the Canadian Environmental Assessment Act (CEAA) that a Federal EA is required for this project. The Millers Road waste disposal site is on AECL's Chalk River Laboratory Property and is presently leased by the Town of Deep River from AECL. The proposed expansion of the waste disposal site will require that AECL extend the lease to the Town of Deep River.
- This proposal is to increase the approved landfilling capacity by 40,000 m³ but not more than 100,000 m³. The landfill will continue to accept C&D wastes only. The current and proposed landfilling area expansion is located on the existing footprint. The proposed expansion is not to increase the areal extent of the site but rather to extend the life of the site.
- The Ontario Ministry of the Environment has determined that the Ontario Environmental Assessment Act does not apply to the proposed waste disposal site expansion because the project will be implemented on lands that are owned by a federal Crown Corporation; namely Atomic Energy of Canada Limited.
- The Ontario Ministry of the Environment has determined that although the Ontario Environmental Assessment Act, and thus Ontario Regulation 101/07, do not apply to the proposed expansion, environmental compliance approvals will still be required.
- The site has been in operation for a period of over 40 years. Leachate plumes have been identified and are currently managed through the adoption of Contaminant Attenuation Zones (CAZ). Contaminant attenuation zones exist to the east, south east, and to the west of the Miller's Road WDS. The intent of the expansion is to increase the site volume by extending the height of the waste mound, as opposed to increasing the size of the areal extent of the landfill footprint. As a result, the leachate plumes will likely not vary in areal extent. The overall major direction of groundwater flow and plume delineation is to the south east. There is a component of flow to the west as result of groundwater mounding. The flow in a western direction, while not confirmed through head measurements is evident by the presence of a weak leachate plume in this direction. The extent of the plume will be continuously monitored to ensure the extent of the plume remains within the CAZ. In addition, the site is licensed to accommodate essentially inert C&D wastes. This will not increase the strength of documented plumes. The annual monitoring and reporting of the site incorporates an assessment of the 'trigger values' to assist mitigation of off-site impacts.

- As per MOE regulations the site will be monitored for compliance with Guideline B-7 Reasonable Use Concept.
- No mitigation measures, additional to monitoring as per the Certificate of Approval, are required at this time.
- Localized change in groundwater flow may occur as a result of emplacement of waste increasing the height of the waste mound. Any change is anticipated to be minor. For normal operations it is estimated that the leachate will be maintained within the CAZ. Transfer and emplacement activities will be done according to the operational procedures. Leachate will be maintained within the CAZ. The placement of C&D waste only will not increase the strength of the existing leachate plume. Monitoring will continue to confirm the extent of the leachate plume.

The proposed expansion is acceptable to me, from a groundwater perspective, provided that recommendations provided for the AMR (above) are incorporated into the ongoing groundwater monitoring plan.

3. Design and Operations Report

The Design and Operations Report is acceptable from a groundwater perspective provided that recommendations provided for the AMR (above) are incorporated into the ongoing groundwater monitoring plan.

K. Stephenson, M.Sc., P.Eng.

KMS/sh

ec: D. Gable

V. Mitchell

B. Metcalfe

G. Dagg-Foster

P. Taylor

T. MacDonald

E. Tieu

c: FC/File GW 01 02 RE DE

KMS/IDS 1008-98E W3, 1533-98DSK

Ministry of the Environment

P.O. Box 22032 Kingston, Ontario K7M 8S5 613/549-4000 or 1-800/267-0974

Fax: 613/548-6908

Minist□re de l'Environnement

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

09 December 2011

TO: Lance Larkin

Senior Environmental Officer

Ottawa District Office

Eastern Region

FROM: Bruce Metcalfe

Senior Environmental Officer

Water Resources Unit, Surface Water Group

Technical Support Section

Eastern Region

RE: 2010 Annual Monitoring Report

Deep River (Miller's Road) Waste Disposal Site

Lot 6, Concession 13, Geographic Township of Buchanan

Town of Deep River

Certificate of Approval No. A413106

I have reviewed the noted report dated May 2011 which was prepared by Jp2g Consultants Inc. (Jp2g) for the Town of Deep River and the following comments are offered relative to surface water impact concerns.

Background Information

The landfill site is presently leased by the Town of Deep River from Atomic Energy of Canada Limited (AECL) and has been the waste disposal site for the Town of Deep River since approximately 1965. The waste disposal site is made up of four areas comprising a total area of 8.55 hectares. The landfilling area within southern Areas 1 and 2 (3.22 hectares) has been cleared and used for waste disposal. The northerly portions of Areas 3 and 4 (5.33 hectares) are approximately 5 metres lower in elevation than Areas 1 and 2 and are identified to currently be heavily wooded. The properties to the west of the site have been recently purchased by the municipality for the purpose of Contaminant Attenuation Zones (CAZ). The Miller's Road landfill site operates under Certificate of Approval No. A413106 and is licensed to receive the disposal of construction and demolition waste only. The landfill site functions as a natural attenuation site.

Surface Water Regime

A drainage divide runs east-west through the approximate center of the site. There are two surface water features in close proximity to the landfill site identified as Spring Creek and an unnamed creek (a.k.a. Landfill Creek). Spring Creek originates upgradient and west of the landfill site, and passes under Miller's Road approximately 300 metres west of the access road to the site entrance. Spring Creek meanders south of the site in an eastward direction ultimately discharging to Maskinonge Lake. The Landfill Creek originates southeast downgradient of the site and meanders south-easterly until it meets up with Spring Creek approximately 0.5 km southeast of the site. Drainage from the site flows mostly south-southeast towards Maskinonge Lake. Jp2g has determined that Spring Creek likely functions as a hydraulic boundary to any landfill leachate migrating south-westward from the site.

Leachate Quality Characterization

Landfill leachate quality characterization is monitored at groundwater sample well locations 95-6 and 88-3D (replaced as 07-3D). Monitoring well 95-6 is located in the immediate downgradient flow path from the active fill area at the south end of the site and well 88-3D (now 07-3D) which is located along the northwest property line of landfill Area 2. Leachate indicator parameters (LIP) for the Miller's Road landfill site have been determined by Jp2g to include alkalinity, boron, barium, calcium, chloride, COD, iron, hardness, potassium, manganese, magnesium, sodium and TDS.

2010 Surface Water Sampling Program

Surface water samples were collected on three occasions during 2010 on May 10 (spring), August 10 (summer) and October 10 (fall). Samples were collected at locations upstream and downstream of the landfill site from both Spring Creek and the unnamed creek (a.k.a. Landfill Creek).

Spring Creek □Upstream Background (SW-1)

Surface water station SW-1 monitors Spring Creek upgradient of the landfill site and is accepted to define background surface water quality that is un-impacted by the landfill site.

The surface water quality at SW-1 during 2010 was characterized having levels of BOD5 (< 1 – 1 mg/L), COD (30 – 43 mg/L), Dissolved Oxygen (3.49 – 9.54 mg/L), Alkalinity (14 – 35 mg/L), pH (7.13 – 7.45), Conductivity (131 -138 μ S/cm), Chloride (27 – 36 mg/L), Total Ammonia (<0.02 – 0.06 mg/L), Un-ionized Ammonia (< 0.02 mg/L), Nitrates (<0.10 – 0.45 mg/L), Total Phosphorus (0.01 – 0.04 mg/L), Turbidity (7.0 -.2.5 t.u.) and Phenols (<0.001 mg/L).

Provincial Water Quality Objective (PWQO) exceedances were limited to aluminum (0.08 mg/L, slightly exceeded 0.075 mg/L – Oct. 10/10), iron (0.58 – 0.76 mg/L, exceeded 0.30 mg/L), total phosphorus (0.04 mg/L, slightly exceeded 0.03 mg/L - May 10/10) and dissolved oxygen (3.49 mg/L, less than 4.00 mg/L – August 10/10).

• The majority of the 2010 data shows the upstream background surface water quality of Spring Creek to be relatively un-impacted but with iron concentrations routinely exceeding the PWQO.

Landfill Creek □**Downstream Impact (SW-2)**

The unnamed creek (a.k.a. Landfill Creek) monitoring station SW-2 is located where the stream emerges approximately 90 metres downgradient southeast of the landfill site. Sample station SW-2 is the surface water sampling station downstream closest to the waste disposal site.

The surface water quality at SW-2 during 2010 was characterized having levels of BOD5 (<1 mg/L), COD (<5 – 10 mg/L), Dissolved Oxygen (3.42 – 11.93 mg/L), Alkalinity (190 – 210 mg/L), pH (7.9 – 8.1), Conductivity (289 - 411 μ S/cm), Chloride (8 – 9 mg/L), Total Ammonia (<0.02 mg/L), Un-ionized Ammonia (< 0.02 mg/L), Nitrates (<0.10 – 0.10 mg/L), Total Phosphorus (< 0.01 mg/L), Turbidity (0.8 -.2.3 t.u.) and Phenols (<0.001 mg/L).

PWQO exceedance was limited to iron (0.38 - 0.49 mg/L, slightly exceeded 0.30 mg/L) and dissolved oxygen (3.42 mg/L, less than 4.0 mg/L - August 10/10).

• The surface water quality of Landfill Creek immediately downstream of the landfill during 2010 appeared to be not significantly impacted by the landfill site.

Landfill Creek □**Downstream Impact (SW-6)**

The unnamed creek (a.k.a. Landfill Creek) sampling station SW-6 is located approximately 340 metres downstream of sample station SW-2 and is approximately 40 metres upstream of its confluence with Spring Creek.

The surface water quality at SW-6 during 2010 was characterized having levels of BOD5 (<1 - 1 mg/L), COD (8 - 15 mg/L), Dissolved Oxygen (2.37 - 13.50 mg/L), Alkalinity (184 - 190 mg/L), pH (7.9 - 8.1), Conductivity (343 - 466 μ S/cm), Chloride (19 - 20 mg/L), Total Ammonia (0.24 - 0.35 mg/L), Un-ionized Ammonia (< 0.02 - 0.04 mg/L), Nitrates (0.22 - 0.27 mg/L), Total Phosphorus (< 0.01 - 0.02 mg/L), Turbidity (2.0 - 10.6 t.u.) and Phenols (<0.001 mg/L).

PWQO exceedances occurred for un-ionized ammonia (0.04 mg/L, exceeded 0.02 mg/L – May 10/10), boron (0.24 mg/L, slightly exceeded 0.20 mg/L), iron (0.45 – 2.49 mg/L, exceeded 0.30 mg/L) and dissolved oxygen (2.37 mg/L, significantly less than 4.0 mg/L – August 10/10).

The surface water quality at sample station SW-6 during 2010 was shown to be relatively more impacted than at sample station SW-2, which is closer the landfill site. Boron concentrations though only slightly higher than its PWQO was notably consistently and historically present at SW-6. Iron concentrations were also observed to be slightly higher at SW-6 than levels at sample station SW-2. The reviewer is in agreement with Jp2g's assessment which has interpreted that given the absence of boron concentrations at surface water stations immediately south of waste disposal site it is likely the contribution of boron in surface water is from source(s) other than the waste disposal site.

• Overall, the majority of water quality data at downstream sample station SW-6 did not indicate the creek to be adversely impacted during 2010.

Spring Creek - Downstream Impact (SW-7)

Sampling station SW-7 monitors the surface water quality of Spring Creek approximately 10 metres downstream of the confluence of the Landfill Creek. The surface water quality at SW-7 during 2010 was characterized having levels of BOD5 (< 1 – 1 mg/L), COD (13 – 25 mg/L), Dissolved Oxygen (1.93 – 14.13 mg/L), Alkalinity (86 – 125 mg/L), pH (8.3 – 8.6), Conductivity (244 - 262 μ S/cm), Chloride (19 – 23 mg/L), Total Ammonia (0.08 – 0.17 mg/L), Un-ionized Ammonia (< 0.02 mg/L), Nitrates (0.14 – 0.22 mg/L), Total Phosphorus (< 0.01 – 0.03 mg/L), Turbidity (2.3 – 6.5 t.u.) and Phenols (<0.001 mg/L).

PWQO exceedances occurred for iron (0.38 - 1.00 mg/L), exceeding 0.30 mg/L, pH (8.6. exceeded 8.5) and dissolved oxygen (1.93 mg/L), significantly less than 4.0 mg/L - August 10/10).

• Iron concentrations were observed to consistently exceed the PWQO and the dissolved oxygen concentration of 1.93 mg/L for the August 2010 sampling event was observed to be significantly below the PWQO of 4.0 mg/L. It is unlikely that the landfill site was a significant contributor, if any, to the impacted water quality observed at the Spring Creek sample station SW-7. Regarding the low dissolved oxygen levels this was observed to be a consistent impact observed at all surface water stations upstream and downstream of the landfill site which were monitored during the August 2010 sampling event.

Surface Water Trigger

The downstream surface water trigger monitoring station is at Landfill Creek sample station SW-6 located upstream of the confluence with terminal receiving Spring Creek.

The surface water trigger mechanism parameters are chloride and un-ionized ammonia and based on the upstream 75th percentile background concentration. The trigger concentration for chloride is 32 mg/L and for un-ionized ammonia is 0.02 mg/L (the PWQO). The 2010 current chloride

and un-ionized ammonia concentrations at sample station SW-6 were below the trigger values. Therefore, the sampling results do not suggest the triggering of Tier II level surface water monitoring to be required for the landfill site.

Summary and Recommendations

The reviewer is in agreement with the landfill site owner's assessment that the surface water quality data for the 2010 sampling year for the Deep River (Miller's Road) waste disposal site which identified some limited impact to be observed in Landfill Creek downstream southeast of the landfill site; however, the surface water quality was determined to be not adversely impacted. The 2010 sampling results do not suggest the triggering of Tier II level surface water monitoring to be required for the landfill site.

The reviewer is in agreement with the landfill site owner's recommendation that surface water monitoring for the Deep River (Miller's Road) waste disposal site be continued as specified in the 2010 Annual Report recommendations.

Bruce Metcalfe BWM/sh

ec: Peter Taylor

Tara MacDonald

B.W. Metcalle

c: Frank Crossley

Bruce Metcalfe (1813-8JKPL6 \ X-ref. 4757-867Q52

File SW RE DR C13 03 06, Deep River (Miller's Road) WDS, Town of Deep River

File SW-07-02-13-01-01, Maskinonge Lake, Ottawa River Basin

Andrew Buzza

From: Mitchell, Vicki (ENE) < Vicki.Mitchell@ontario.ca>

Sent: Tuesday, November 29, 2011 2:51 PM **To:** khayat@deepriver.ca; andrewb@jp2g.com

Cc: Larkin, Lance (ENE)

Subject: Millers Road Landfill Site Expansion, Town of Deep River

Dear Mr. Hayat and Mr. Buzza,

Thank you for informing Lance Larkin and me about the proposed landfill site expansion project.

It is the Ministry so position that the Ontario Environmental Assessment Act does not apply to the proposed landfill site expansion based on our understanding that the project will be implemented on lands that are owned by a federal Crown Corporation; namely Atomic Energy of Canada Limited.

Although it is the Ministry position that the Ontario Environmental Assessment Act, and thus Ontario Regulation 101/07, would not apply to the proposed expansion, MOE environmental compliance approvals would still be required.

We understand that the project is undergoing a federal environmental assessment, and request that the Town continue to share the information developed in support of the federal EA with MOE staff. We would like to ensure that the expansion of the site as proposed during the federal EA review will meet MOE standards, and that there will not be undue delay at the MOE environmental compliance approval stage.

Vicki Mitchell Environmental Assessment Coordinator Ministry of the Environment, Eastern Region

1259 Gardiners Road, P.O. Box 22032, Kingston, ON K7M 8S5

(613) 540-6852

Ministry of the Environment

P.O. Box 22032 Kingston, Ontario K7M 8S5 613/549-4000 or 1-800/267-0974

Fax: 613/548-6908

Minist□re de l'Environnement

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

August 29, 2011

TO: L. Larkin

> **Environmental Officer** Ottawa District Office **Eastern Region**

FROM: T. Praamsma

Hydrogeologist

Technical Support Section

Eastern Region

RE: 2010 Annual Monitoring Report

Miller Road Waste Disposal Site

Lot 6, Concession XIII, Township of Deep River

Certificate of Approval A413106

Purpose

I have reviewed the □2010 Annual Monitoring Report Miller □ Road Waste Disposal Site □dated May, 2011, which was completed by Jp2g Consultants Inc. (Jp2g) on behalf of The Corporation of the Town of Deep River to determine site compliance with Guideline B-7.

Summary

- The Miller's Road Waste Disposal Site (site) is an operating Waste Disposal Site. Guideline B-7 applies to operating waste disposal sites and sites that closed after 1986, thus Guideline B-7 applies.
- The site is in compliance with Guideline B-7 since the acquisition of a 14 hectare parcel of land to the west of the site. The CAZ is owned by AECL and is leased to the municipality. The Certificate of Approval (CofA) should be amended to reflect the Contaminant Attenuation Zone (CAZ).
- Further work should be undertaken to define groundwater conditions in the bedrock.
- The potential exists for surface water impact to occur. Wells 07-2S and 07-2D should be used as indicator wells for groundwater-surface water interaction in Landfill Creek.

- A groundwater trigger mechanism and contingency plan should be presented in the next annual report.
- The groundwater monitoring program recommended by Jp2g is acceptable.

Certificate of Approval

The Deep River Waste Disposal Site (site) operates under CofA A413106 issued in April, 1980 and last amended November, 2009. The site is located on Lot 6, Concession XIII, Township of Deep River. The site is licensed for the use and operation of a 4.5 hectare landfill within a total area of 8.55 hectares. A condition was added to the 2009 amendment to ensure that an extended CAZ would be established by June 1, 2010. The landfill operates as a naturally attenuating site.

Geology

Jp2g determined the geology to be as follows:

- Till with gravelly sand and silt in Areas 2, 3 and 4 with till thickness ranging from 0 to 1.75m.
- Fine-grained sand in Areas 1 and 2 and extending south to Spring Creek with thicknesses greater than 10.7m.
- Precambrian felsic metasedimentary bedrock.

Hydrogeology

Jp2g determined the hydrogeological characteristics to be as follows:

- Groundwater flow in the overburden is influenced by underlying bedrock topography and is predominantly to the southeast;
- Hydraulic conductivity values range between 1.3 x 10-2 to 6.95 x 10-5 cm/s;
- Horizontal gradients range from 0.001 in Area 2 to 0.02 in Areas 3 and 4. The higher gradient values are reportedly influenced by the dipping bedrock surface and topography;
- Vertical gradient calculations indicate downward movement of groundwater, expect near the creek where upward flow is apparent; and
- The average linear velocity is 60 m/year south of the landfill and 10m/year southwest from the western property line.

Further work should be undertaken to define groundwater conditions in the bedrock.

Background Water Quality

Wells 91-2 and 95-5 are located south and northwest of the site, respectively, and are considered representative of background water quality. Current sampling from these wells indicates that all parameters are within ODWS and no impacts from landfilling activities are detected.

Leachate Quality

Wells 95-6 and 07-3D were used to characterize leachate conditions. Elevated concentrations (above ODWSOG) were observed for iron, manganese, DOC, and TDS. Concentrations of these parameters are elevated compared to concentrations measured in background wells. VOC impacted groundwater is reported to be in some of the western monitors but the results were not included in the report. Two sets of the inorganic analyses were provided instead. Next year, please provide the results of VOC analyses.

Downgradient Water Quality

Leachate impacts are evident at the following monitoring wells: 91-5D, 91-5S, 96-3, 03-1, 07-2D, 07-2S, 07-3D, 07-3S, 95-4D, 95-4S, 96-1D, 07-FD, 07-FS, 08-01D, and 08-01S.

VOCs have impacted the following monitoring wells: 88-3D, 95-6, 07-FD, 07-2D, 07-3D, and 08-10.

All impacted groundwater that has been identified in the report is contained within a CAZ.

Groundwater □Surface Water Interaction

A number of surface water features are located near the landfill site. These include Landfill Creek, Spring Creek, and Maskinonge Lake to the southeast and a wetland to the northeast and downgradient of Area 3. There is potential for surface water impact due to surface water runoff and groundwater discharge.

Wells 07-2S and 07-2D, located north of Landfill Creek, are impacted by DOC, TDS, iron, and Manganese. In addition 07-2S has elevated alkalinity and 07-2D is impacted by aluminium, vinyl chloride and benzenes. Results from these wells indicate a potential groundwater pathway for these contaminants to Landfill Creek.

Regulatory Compliance

Overburden Aquifer

The site is in compliance with Guideline B-7 within the overburden aquifer. The Municipality acquired an approximately 14 hectare parcel of land located immediately west of the site for the purpose of a CAZ as per Condition 31 of the amended Certificate.

Bedrock Aquifer

Site compliance with Guideline B-7 within the bedrock aquifer cannot be determined at this time. At least three bedrock monitoring wells should be constructed to determine the hydrogeological characteristics of the bedrock aquifer at the site. Three monitoring wells should provide enough data to calculate groundwater flow direction in the deep aquifer along with water quality data for the bedrock on site.

Trigger Mechanisms and Contingency Plans

Future trigger mechanisms and contingency plans were not discussed in this report. Three options (source containment or removal, establishing a CAZ, installing a pump and treat groundwater recovery system) were discussed to bring the site into compliance with Guideline B-7. The Municipality chose to create a CAZ by acquiring a 14 hectare parcel of land immediately west of the site. The CAZ is owned by AECL and is leased to the municipality. It is not clear that the lease is sufficient to create a CAZ.

A groundwater trigger mechanism and contingency plan should be presented in the next annual report.

Groundwater Monitoring Program

Jp2g recommends groundwater monitoring to remain as per the normal operating procedures of the site. This is acceptable.

Landfill Gas

26

Landfill gas monitoring was not reported for this site.

T. Praamsma, M.Sc., P.Geo.

TP/gl

T. MacDonald (Acting Supervisor)
P. Taylor ec:

B. Metcalfe c:

File GW 03-03 Miller Road WDS, Geographic Twp DERI (A413106) TP/IDS 7330-867Q6T

Ministry of the Environment

P.O. Box 22032 Kingston, Ontario K7M 8S5 613/549-4000 or 1-800/267-0974

Fax: 613/548-6908

Minist□re de l'Environnement

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

07 September 2010

TO: L. Larkin

Senior Environmental Officer

Ottawa District Office

Eastern Region

FROM: B. W. Metcalfe

Senior Environmental Officer

Water Resources Unit, Surface Water Group

Technical Support Section

Eastern Region

RE: 2009 Annual Report

Deep River (Miller's Road) Waste Disposal Site

Part Lot 6, Concession 13, Former Township of Buchanan

Township of Deep River

Certificate of Approval A413106

I have reviewed the noted report dated May 2010 prepared by Jp2g Consultants Inc. for the Town of Deep River. The following comments are offered relative to surface water impact concerns.

Background Information

The landfill site is presently leased by the Town of Deep River from Atomic Energy of Canada Limited and has been the waste disposal site for the municipality since approximately 1985. In December 2005 the Town of Deep River and Atomic Energy of Canada put in place a new lease agreement for the operation of the waste disposal site.

The waste disposal site is made up of four areas comprising a total area of 8.55 ha. The landfilling area within southern Areas 1 and 2 (3.22 ha) has been cleared and used for waste disposal. The northerly portions of Areas 3 and 4 (5.33 ha) are approximately 5 m lower in elevation than Areas 1 and 2 and are currently heavily wooded.

The landfill site operates under Certificate of Approval No. A413106 and is licensed to receive the disposal of construction and demolition waste only.

Surface Water Regime

A drainage divide runs east-west through the approximate centre of the site. There are two surface water features in close proximity to the landfill site. They are Spring Creek and the unnamed Landfill Creek. Spring Creek originates upgradient and west of the landfill site, and passes under Miller's Road approximately 300 metres west of the access road to the site entrance. Spring Creek meanders south of the site in an eastward direction to Maskinonge Lake. The Landfill Creek originates southeast of the site and meanders south-easterly until it meets up with Spring Creek approximately 0.5 km southeast of the site. Drainage from the site flows mostly south-southeast towards Maskinonge Lake. Spring Creek is anticipated that it will act as a hydraulic boundary to any leachate migrating south-westward.

Leachate Quality Characterization

Landfill leachate quality characterization was monitored at groundwater sample well locations 95-6 and 88-3D (replaced as 07-3D). Monitoring well 95-6 is located in the immediate down gradient flow path from the active fill area of the site at the south end and well 88-3D (now 07-3D) is located along the north west property line of Area 2.

Leachate indicator parameters (LIP) for the landfill site have been determined to include alkalinity, boron, barium, calcium, chloride, COD, iron, hardness, potassium, manganese, magnesium, sodium, sulphate, DOC, and TDS.

2009 Surface Water Sampling Program

Surface water samples were collected on three occasions in 2009. Samples were collected from upstream and downstream of the landfill site in both Spring Creek and the Landfill Creek.

2009 Surface Water Quality Impact Assessment

Spring Creek □**Upstream Background (SW-1)**

Surface water station SW-1 is located upgradient of the landfill site monitoring Spring Creek and which is accepted to characterize background surface water quality un-impacted by the landfill site.

The surface water quality at SW-1 was characterized having levels of BOD5 (< 1 mg/L), Alkalinity (11-21 mg/L), field pH (7.7-8.1), field Conductivity ($97-147 \mu\text{S/cm}$), Chloride (17-35 mg/L), Total Ammonia (<0.02-0.03 mg/L), Nitrates (<0.10-0.10 mg/L), Total Phosphorus (0.02-0.06 mg/L) and Turbidity (1.0-2.0 t.u.).

PWQO exceedance was limited to aluminum (0.11- 0.12 mg/L, slightly exceeded 0.075 mg/L), iron (0.48 – 0.90 mg/L, slightly exceeded 0.30m mg/L), total phosphorus (0.06 mg/L, exceeded 0.03 mg/L).

The nature of surface water quality impact showed that iron is the most prevalent parameter which exceeds the Provincial Water Quality Objective (PWQO).

Landfill Creek □**Downstream Impact (SW-2)**

Monitoring station SW-2 is located where the Landfill Creek emerges south east of the landfill site. The water quality at SW-2 historically is characterized by observance of iron precipitate and the presence of leachate.

The surface water quality at SW-2 was characterized having levels of BOD5 (< 1 mg/L), Alkalinity (187 - 209 mg/L), field pH (7.9 – 8.0), field Conductivity (338 – 490 μ S/cm), Chloride (8 – 11 mg/L), Total Ammonia (<0.02 mg/L), Nitrates (<0.10 mg/L), Total Phosphorus (<0.01 – 0.01 mg/L) and Turbidity (0.3 - .3.8 t.u.).

PWQO exceedance was limited only to iron (0.49 mg/L, slightly exceeded 0.30m mg/L).

Landfill Creek □**Downstream Impact (SW-4)**

Sample station SW-4 monitors the downstream surface water quality of Landfill Creek located at Miller's Road situated approximately 130 metres downstream of sample station SW-2.

The surface water quality at SW-4 was characterized having levels of BOD5 (< 1-2 mg/L), Alkalinity (187 - 200 mg/L), field pH (7.6 – 7.9), field Conductivity (429 – 531 μ S/cm), Chloride (18 – 20 mg/L), Total Ammonia (0.35 – 0.40 mg/L), Nitrates (0.16 – 0.21 mg/L), Total Phosphorus (0.01 – 0.02 mg/L) and Turbidity (7.6 -.11.9 t.u.).

PWQO exceedance occurred only for boron (0.24 - 0.34 mg/L, slightly exceeded 0.20 mg/L), and iron (2.2 - 3.73 mg/L, notably exceeded 0.30 mg/L).

Downstream Surface Water Quality

The nature of downstream surface water quality impact showed that iron is the most prevalent parameter which routinely exceeds the Provincial Water Quality Objective (PWQO). For the 2009 sampling events the iron concentrations routinely exceeded the PWQO of 0.30 mg/L at the Spring Creek upstream background sample station SW-1 (0.48 – 0.89 mg/L) and also at all Landfill Creek downstream surface water sampling stations with levels ranging from 0.73 mg/L (SW-3) to 3.73 mg/L (SW-4). The background iron concentrations at SW-1 averaged 0.71 mg/L

while Landfill Creek downstream sample stations showed 8 of 12 samples (67%) having iron concentrations exceeding 1.0 mg/L with average concentrations of 0.49 mg/l (SW-2), 0.80 mg/L (SW-3), 2.73 mg/L (SW-4), 1.73 mg/L (SW-5), and 1.31 mg/L (SW-6).

Boron was also identified to marginally exceed the PWQO of 0.20 mg/L at Landfill Creek downstream sample stations SW-4 (0.24- 0.34 mg/L), SW-5 (0.24 – 0.32 mg/L), and SW-6 (0.23 – 0.33 mg/L).

Surface Water Trigger

The downstream surface water trigger monitoring station is at Landfill Creek sample station SW-6 situated just upstream of the confluence with Spring Creek.

The surface water trigger mechanism parameters are chloride and un-ionized ammonia and based on the upstream 75th percentile background concentration. The trigger concentration for chloride is 32 mg/L and for un-ionized ammonia is 0.02 mg/L (the PWQO). The 2009 current chloride and un-ionized ammonia concentrations at sample station SW-6 were below the trigger values. Therefore, the sampling results do not suggest the triggering of Tier II level surface water monitoring to be required for the landfill site.

Summary and Recommendations

The reviewer is in overall agreement with the consultant's surface water quality impact assessment presented in the 2009 Annual Monitoring Report.

The consultant's assessment of groundwater quality has confirmed the presence of a leachate plume leaving the site to the southeast in the direction of the Landfill Creek. The overall direction of groundwater flow has been determined to be towards Maskinonge Lake.

The nature of surface water quality impact showed that iron is the most prevalent parameter which exceeds the Provincial Water Quality Objective (PWQO). Iron concentrations routinely exceeded the PWQO of 0.30 mg/L both upstream of the landfill site in Spring Creek and also at all downstream surface water sampling stations in Landfill Creek which did show iron concentrations to be consistently higher than the upstream background levels.

The surface water trigger mechanism parameters are chloride and un-ionized ammonia and the sampling results for at the compliance downstream surface water sample station SW-6 showed there was no requirement for the triggering of the Tier II level surface water monitoring for the landfill site in 2009.

The majority of the surface water quality data for the 2009 sampling year did not indicate an adverse impact occurring to the downstream surface water quality of the Landfill Creek or Spring Creek.

The reviewer is in agreement with the consultant's recommendations for the continued surface water monitoring program as presented in the 2009 Annual Report for the Deep River (Millers Road) Waste Disposal Site.

Bruce Metcalfe
BWM/gl

- c: S. Kinney
 - P. Kehoe
 - B. Metcalfe (Aba2010\aba3910.mem) 5182-867Q8H \ X-re. 4757-867Q52 File SW 05-04, Deep River (Miller's Road) Landfill Site, Township of Deep River File 13-01-01, Maskinonge Lake, Ottawa River Basin

Ministry of the Environment

P.O. Box 22032 Kingston, Ontario K7M 8S5 613/549-4000 or 1-800/267-0974 Fax: 613/548-6908

Ministère de l'Environnement

C.P. 22032 Kingston (Ontario) K7M 8S5 613/549-4000 ou 1-800/267-0974 Fax: 613/548-6908

August 18, 2010

Jp2g Consultants Inc. 1150 Morrison Drive, Suite 410 Ottawa, Ontario K2H 8S9

Attention:

Mr. Andrew Buzza

Project Manager

Dear Mr. Buzza:

Re:

Town of Deep River

Millers Road Waste Disposal Site

Proposed Expansion – C of A No. A413106

I have reviewed the Work Plan for Millers Road Waste Disposal Site Expansion Project, Town of Deep River, submitted by your firm dated July 2010.

The Town is proposing to expand the total waste disposal volume of Millers Road Waste Disposal Site by 40,000 m³; but not more than 100,000 m³. This project will proceed under Ontario Regulation 101/07 made under the *Environmental Assessment Act*. This project is exempt from Part II of the *Environmental Assessment Act* provided the Town completes the Environmental Screening Process as per Ontario Regulation 101/07.

This type of project is a self-assessment process and therefore the proponent is responsible for determining the contact list of government review agencies for the Notice of Commencement. I have attached a list of possible agencies that you might consider contacting.

MOE recommends that proponents contact the relevant agencies to determine whether there are potentially affected Aboriginal communities in the project area. The up-to-date list of agency contacts is maintained on the Environmental Assessment and Approvals Branch website at the following link:

http://www.ene.gov.on.ca/en/eaab/aboriginal-resources.php?print=1

Once identified, it is recommended that you provide notification directly to the Aboriginal communities who may be affected by the project and provide them with an opportunity to participate in the planning of the project.

Your proposed work plan appears to meet the requirements of the Environmental Screening Process as per MOE's Guide to Environmental Assessment Requirements for Waste Management Projects.

If you have any questions concerning these comments, please contact me at 613-540-6861 or by email at alida.mitton@ontario.ca.

Yours truly,

Alida Mitton Divisional Program Specialist Program Services Section Eastern Region AM/gl Ministry of the Environment

Eastern Region
Ottawa District Office
2430 Don Reid Drive
Ottawa ON K1H 1E1
Fax: (613)521-5437
Tel: (613) 521-3450

Ministère de l'Environnement

Direction régionale de l'Est Bureau du district d'Ottawa 2430 Chemin Don Reid Ottawa ON K1H 1E1 Télécopleur: (613)521-5437 Tél:(613) 521-3450

April 23, 2009

VIA FAX & MAIL.

Mr. Belo Csomor, Superintendent The Corporation of the Town of Deep River 100 Deep River Rd Deep River, Ontario, K0J 1P0

Dear Sir.

RE: Miller's Road Landfill (Certificate of Approval - A413106) - Off-site groundwater non-compliance

Please find attached for your perusal the groundwater review of the latest documents provided to the Ministry. The reviewer recommends that the process to acquire the necessary contaminant attenuation zone (CAZ) lands proceeds in a timely manner upon completion of one further groundwater sampling event to confirm the apparent trends. The reviewer also provided clear direction regarding the extent of the necessary CAZ lands.

As such, I am revising the direction provided in my February 11, 2009 letter to accommodate sampling during the summer of 2009 and an evaluation of the results. Consequently, it is requested that an application be submitted by September 1, 2009 to the Director, Section 39 of the Environmental Protection Act, detailing the extent of the CAZ required to bring the site back into compliance. Please note that the 2008 Annual Report to be submitted by June 1, 2009 must also provide an update of the steps/actions taken to resolve the above matter.

The Ministry continue to considers the above work as a VAP in accordance with the Compliance Policy (May, 2007) and will monitor progress for compliance.

Should you have any comments, questions or concerns, please contact me directly at (613) 521-3450 extension 229 (1-800-860-2195x229) or marc.lesieur@ontario.ca.

Yours truly,

Marc-Etienne Lesieur

Senior Environmental Officer Ottawa District Office

File Storage Number: SI RE BH C13 610
c. Bob Putzlocher, MOE
Andrew Buzza, P.Geo., Jp2g Consultants (via fax only - 613-828-2600).

Ministry of the Environment

Ministère de l'Environnement

P.O. Box 22032 Kingston, Ontario K7M 895 613/549-4000 or 1-800/267-0974 Fex: 613/548-6908

C.P. 22032 Kingston (Ontario) K7M 8S5 613/548-4000 ou 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

March 31, 2009

TO:

Marc-Etienne LeSieur

Senior Environmental Officer

Ottawa District Office

FROM:

Robert Putzlocher Hydrogeologist

Technical Support Section

Eastern Region

Re:

Off-site Groundwater Quality Investigation

Miller's Road Waste Disposal Site

Lot 6, Concession XIII, Twp of Deep River (Buchanan)

A413106

I have reviewed the document titled "Report on Off-Site Groundwater Quality Characteristics, Deep River (Miller's Road) Waste Disposal Site", prepared by Jp2g Consultants and dated December, 2008. The following comments are provided with respect to groundwater issues.

Background

The report was prepared in response to concerns regarding the presence of leachate impacted groundwater along the western site boundary. Recent annual monitoring reports have indicated that levels of organic contaminants in groundwater are above ODWS at wells along the property boundary and within the off-site road allowance. Further site investigation was completed in 2008 in accordance with a work plan to characterize off-site groundwater quality.

Work completed in 2008 included the construction of a new bi-level monitoring well (08-01) and the installation of additional monitoring intervals in 4 other wells (91-5, 95-3, 94-4, and 07-F). Groundwater samples were retrieved from each well and analyzed for VOC's.

Results

Sampling results were consistent with recent surveys and confirmed the elevated concentration of VOC's (primarily chlorinated solvent) at boundary and off-site wells. The compound with the highest concentration was vinyl chloride (VC): 123 ppb at 07-3D; 11.2 ppb at 95-6; 8.3 ppb at 07-FD; and 8.0 ppb at 08-1D. Each of these values exceeds the ODWS of 2 ppb.

Consultant's Recommendations

The consultant identifies the non-compliance issues related to off-site groundwater quality and provides potential mitigation measures: source removal; contaminant migration control; or establishment of a Contamination Attenuation Zone (CAZ). The report states that the Municipality has begun investigating the potential for acquiring a CAZ to the west of the landfill site and that this measure would be fully explored before considering other options.

In a letter dated February 17, 2009, the consultant provides a workplan for bringing the site into compliance. This proposed timeline allows time for the completion of four (4) rounds of groundwater sampling and evaluation prior to delineating and formally incorporating a CAZ through the C of A process.

Groundwater Unit Comments

The further site characterization has confirmed leachate impact to off-site groundwater resources above regulatory limits. The nature of the contaminant and site characteristics suggests the presence of either PCE or TCE which has migrated off-site at depth to the west of the property boundary. The high levels of final anaerobic dechlorination product (vinyl chloride) and lesser concentrations of other breakdown compounds (cis- and trans DCE) indicates that the parent compound(s) have been present for considerable time.

Near the western property boundary, the borehole logs show that the bedrock surface declines steeply in the upgradient direction (southwest). It is likely that at some point a DNAPL phase of contaminant migrated along this pathway and offsite. Vinyl chloride is the lightest and most mobile compound associated with chlorinated solvents and it is also the most toxic.

I concur that the acquisition of a CAZ is an appropriate mitigation measure. Neither source removal or migration control is practical at this site. The source zone is either very deep and complexly distributed or it may be present only as residual within the porous overburden or fractured bedrock. Monitoring indicates that the extent of off-site contamination in the upgradient and there is currently considerable CAZ available in the downgradient direction—therefore migration control would not be a preferred option.

Acquiring a CAZ would bring the impacted zone into the control of the site owner and into compliance. While I agree that more sampling is beneficial, I am not certain that it is required in order to outline the CAZ extents – unless further well installation is proposed. Examining results from the current monitoring network, contaminant trends are apparent.

- There have been 7 sampling events since October 2000 at 88-3D/07-3D. The presence of VC is consistent with a steady increase of concentrations.
- Downgradient at 95-6 VC has increased from 0.3 ppb in 2004 to 11.2 ppb in 2008.
- Upgradient wells 95-4 and 95-3 have consistently been non-detect for VOC's.
- There has only been one sampling event at new downgradient wells 08-1 and 07-FD and these show similar lower (but above ODWS) concentrations of VC.

It is obvious that a CAZ needs to incorporate the area of new wells and should extend westward to some point between 95-4 and 08-1. Unless VC appears at 95-4 or if a new well between 08-1 and 95-4 were to provide further information, the most precautious and possibly expedient action would be to bring 95-4 into a CAZ as a boundary monitoring well.

I suggest that the process for acquiring the CAZ proceed as quickly as possible and that the results of one further sampling event be evaluated for any significant variation from the current understanding at the site.

Robert Putzlocher, P. Eng

C: Peter Taylor (Water Unit Supervisor)
Paul Kehoe (Ottawa District Office)
Laurel Grills (Surface Water Unit)

File GW-03-03 (Buchanan) DE RI (A413106) / IDS 1578-7P6MLR

Ministry of the Environment

Eastern Region
Ottawa District Office
2430 Don Reid Drive
Ottawa ON K1H 1E1
Fax: (613)521-5437
Tel: (613) 521-3450

Ministère de l'Environnement

Direction régionale de l'Est Bureau du district d'Ottawa 2430 Chemin Don Reid Ottawa ON K1H 1E1 Télécopieur: (613)521-5437 Tél:(613) 521-3450

February 11, 2009

VIA FAX & MAIL.

Mr. Belo Csomor, Superintendent The Corporation of the Town of Deep River 100 Deep River Rd Deep River, Ontario, K0J 1P0

Dear Sir:

RE: Miller's Road Landfill (Certificate of Approval - A413106) - Off-site groundwater non-compliance.

This letter acknowledges receipt of the document entitled "Report on Off-Site Groundwater Quality Characteristics, Deep River (Miller's Road) Waste Disposal Site, December 2008" prepared by Jp2g Consultants Inc. for the Town of Deep River (Town). Submission of the report was part of a Voluntary Abatement Plan (VAP) to bring the subject site back into compliance as detailed in my correspondence of August 6, 2008. Please note that the report has been submitted to the Technical Support Section for a scientific review.

It is my understanding that the Town has initiated the process of investigating the acquisition of additional contaminant attenuation zone (CAZ) to bring the site into compliance and that an update of the CAZ acquisition would be provided to the Ministry twice yearly with the first update to be concurrent with the 2008 Annual Report to be submitted by June 1, 2009.

I am of the opinion that the above schedule and workplan do not provide a sufficiently detailed timeline to bring the site back into compliance. In addition, it should be noted that the acquisition of a CAZ will require an amendment to the site Certificate of Approval. As such, it is requested that an application be submitted by **June 1, 2009** to the Director, Section 39 of the *Environmental Protection Act*, detailing the extent of the CAZ required to bring the site back into compliance. Please note that the 2008 Annual Report to be submitted by June 1, 2009 must also provide an update of the steps/actions taken to resolve the above matter.

The Ministry continue to considers the above work as a VAP in accordance with the Compliance Policy (May, 2007) and will monitor progress for compliance.

Should you have any comments, questions or concerns, please contact me directly at (613)

521-3450 extension 229 (1-800-860-2195x229) or marc.lesieur@ontario.ca. Yours truly,

Marc-Etienne Lesieur

Senior Environmental Officer

Ottawa District Office

File Storage Number: SI RE BH C13 610

c. Bob Putzlocher, MOE

Andrew Buzza, P.Geo., Jp2g Consultants (via fax only - 613-828-2600).

MAR-13-2008 10:24

MIN OF THE ENVIRONMENT

Ministry of the Environment

Ottawa District Office

2490 Don Reid Drive Onewa ON K1H 1E1

Telephone: (613) 521-3450 Fax: (613) 521-5437 Ministère de l'Environnement

Bureau de district d'Onewe

2430, promenade Don Reld Onawa ON K1H 1E1

Téléphone: (613) 521-3450 Télécopieur: (613) 521-5437 613 521 5437 P.02

(1006)

Ontario

March 13, 2008

Mr. Belo Csomor, Superintendent.
The Corporation of the Town of Deep River
P.O. Box 400
100 Deep River Road
Deep River, Ontario, K0J 1P0

Re.

Western boundary work program Miller's Road Landfill – (A413106).

Dear Mr. Csomor:

This acknowledges receipt of the letter dated January 17, 2008 prepared by Jp2g Consultants Inc. regarding the impacted groundwater detected along the western property boundary at the subject site.

Please note that attached to my correspondence of November 7, 2007, I provided the Town with a Ministry groundwater review. The Ministry reviewer noted the following: "Adjacent land to the west is privately owned. Along the western site boundary, concentrations of chloride do not exceed Reasonable Use criteria. However, concentrations of vinyl chloride, ethylbenzene, and nitrate are above ODWS at border monitoring wells. The next annual monitoring report should provide a thorough evaluation of groundwater quality at the western site boundary and make recommendations for addressing the cross-border contaminant migration."

I note that the January 17, 2008 letter provides a work program and recommendations to be implemented in 2008 to address the above issue. In the interim, I concur that the work program and recommendations be implemented to address to above situation. However, it is requested that a detailed schedule be provided in the 2007 Annual Report regarding the work to be implemented in 2008.

Furthermore, please note that the January 17, 2008 letter and the 2007 Annual Report to be submitted to the Ministry by June 1, 2008 in accordance with Condition 28 of the Certificate of Approval will be forwarded to the Technical Support Section for a scientific evaluation. As such, please take all reasonable steps to ensure that the 2007 Annual Report contain all relevant information, discussion and recommendations regarding the above. Upon review of the documents, the Ministry may require further action to be taken.

Should you have any comments, questions or concerns, please contact me directly at (613) 521-

3450 extension 229 (1-800-860-2195x229) or marc.lesieur@ontario.ca.

Sincerely,

Marc-Etienne LeSieur

Senior Environmental Officer

File: SI RE BH C13 610

c. B. Putzlocher, MOE

A. Buzza, Jp2g Consultants (via fax only 613-828-2600).

P.03

MIN OF THE ENVIRONMENT

613 521 5437

Ministry of the Environment

P.O. Box 22032 Kingelon, Onterio K7M 985 613/549-4000 or 1-800/267-0874 Fax: 813/548-6908

Ministère de l'Environnement

C.P. 22032 Kingalon (Onfario) K7M 655 613/549-4000 ou 1-600/267-0974 Fax: 613/548-6908

MEMORANDUM

29 October 2007

TO:

Marc-Etienne LeSieur

Senior Environmental Officer

Ottawa District Office

Eastern Region

FROM:

Robert Putzlocher

Hydrogeologist
Technical Support Section

Eastern Region

RE:

2006 Annual Monitoring Report

Miller's Road Waste Disposal Site

Lot 6, Concession XIII, Township of Deep River (Buchanan)

A413106

Purpose

I have reviewed the document titled "2006 Annual Report Deep River (Miller's Road) Waste Disposal Site", prepared by Jp2g Consultants and dated May, 2007. The following comments are provided with respect to groundwater issues.

Summary

- The Reasonable Use evaluation does not appropriately address the presence of contaminants above ODWS along the western border of the site.
- The consultant has previously recommended that a CAZ be established along the western border. This issue should be addressed.
- The potential exists for surface water impacts to occur. Nume; ous surface water features are located downgradient of the waste area and vertical migration of leachate is limited due to the geology.
- The consultants recommended well rehabilitation and groundwater monitoring program is acceptable.

MIN OF THE ENVIRONMENT

613 521 5437

P.04

Certificate of Approval

The Miller's Road Waste Disposal Site operates under Certificate of Approval No. A413106 issued in April, 1980 and last amended in November, 2005. The C of A allows landfilling on a 4.5 hectare site within a total site area of 8.55 hectares. Included in the 2004 amendments were requirements for establishing a Contamination Attenuation Zone and for applying final cover to 2 of the 4 waste area quadrants. The landfill operates as a naturally attenuating site.

-2-

Geology

The consultant determined the geology to be:

- Till with gravelly sand and silt in Areas 2, 3 and 4. The till thickness ranges from 0 to 1.75 metres.
- Fine-grained sand in Areas 1 and 2 and extending south to Spring Creek. The sand thickness is at least 10.7 metres.
- Precambrian, felsic metasedimentary bedrock.

Hydrogeology

Groundwater flow in the overburden is influenced by underlying bedrock topography and is predominantly to the south-southeast. The report states that the land surface also slopes toward the northwest and that there is a drainage divide running roughly north-south across the centre of the site. It is not clear if this influences groundwater movement near the current active area (Area 2).

Background Water Quality

Wells 91-2 and 95-5 are located south and northwest of the site, respectively and are considered representative of background water quality. Current sampling from these wells indicates that all parameters are within ODWS and no impacts from landfill activities are detected.

Leachate Water Quality

Monitoring well 95-6 is located in the southeast corner of the site and directly downgradient of the waste area. The water quality in this well shows elevated concentrations of numerous typical leachate indicator parameters when compared to background water quality.

MIN OF THE ENVIRONMENT

613 521 5437

P.05

Downgradient Water Quality

Leachate impacts are evident at the following monitoring wells: 88-3D, 88-3S, 89-2D, 89-2S and 91-5. The consultant has interpreted the presence of two leachate plumes associated with waste disposal in Areas 2 and 4.

- j -

From Area 4, leachate impacts are observed at and beyond the southern limit of the site. Impacts south of the site are characterized by elevated concentrations of chloride and TDS and are interpreted to be migrating with groundwater flow to the southeast. In addition to chloride and TDS, a number of other elevated parameters are measured along the western border near Area 2. These include nitrate, BTEX, and VOC's. Notably vinyl chloride was found to be present in 88-3D at a concentration of 15.8 ug/L and nitrate at 88-3S at 15.4 mg/L. These are well above the ODWS of 2 ug/L and 10 mg/L, respectively.

The direction of contaminant migration along the western boundary is unclear. The consultant suggests that it is in a westerly direction. However, groundwater elevations in both overburden and bedrock indicate that flow is toward the southeast. It may be that water quality along the western site boundary is influenced by radial flow due to groundwater mounding in the waste area. Impacts do appear to be dissipated within a short distance westward as no contaminants are detected at either of 95-5, 95-4, or 96-1. Still, the presence of viryl chloride in the deep interval of 88-3 is a concern. Vinyl chloride is a breakdown product of more fully chlorinated compounds (e.g., PCE and TCE). Such parent products may have been present at some point but have now been degraded. Vinyl chloride is more persistent and has the lowest ODWS.

Characteristics of leachate from Area 2 differ from those at Area 4. The high concentrations of nitrate, BTEX, and VOC's apparent along the western boundary are not observed in the leachate characterization well at Area 4 (95-6). Most of these parameters are detected at 88-3. The report states that 88-3 will be replaced. Following results of groundwater sampling at the replacement wells, it may be appropriate to install a leachate characterization well in Area 2.

Groundwater-Surface Water Interaction

A number of surface water features are located near the landfill size. These include an unnamed creek, Spring Creek, and Maskinonge Lake to the southeast and a wetland to the northeast and downgradient of Area 3. There is potential for surface water impact due to surface water runoff and groundwater discharge.

Guideline B-7

Reasonable Use Guideline B-7 applies to this waste disposal site operation. The consultant provides Reasonable Use criteria for chloride only. While chloride is a prime indicator of

MIN OF THE ENVIRONMENT

613 521 5437

4

TOWN OF DEEP RIVER

leachate derived impacts, it is generally the case that a variety of common leachate indicator parameters are evaluated for Reasonable Use evaluation. The report references a November 2003 document that outlined monitoring locations and trigger met hanisms for characterization or and/or remedial actions at the site. This document was not reviewed by the Technical Support Section. The next annual monitoring report should provide a justification for the current method of Reasonable Use evaluation.

It is understood that a Contamination Attenuation Zone has been extending from the south and east site boundaries to Spring Creek and Maskinonge Lake (in accordance with C of A Condition 9). This zone should be delineated on a site plan figure in the main report. Impacts to groundwater quality in the southeast downgradient direction will be contained within this zone.

Adjacent land to the west is privately owned. Along the western site boundary, concentrations of chloride do not exceed Reasonable Use criteria. However, concentrations of vinyl chloride, ethylbenzene, and nitrate are above ODWS at border monitoring wells. The next annual monitoring report should provide a thorough evaluation of groundwater quality at the western site boundary and make recommendations for addressing the cross-border contaminant migration.

The consultant has previously recommended that a CAZ be established along the western border. The present report does not contain this recommendation; it should, however, be considered.

Groundwater Monitoring Program

A survey of all monitoring wells was conducted in 2006. It was determined that a number of wells required replacement. I support the recommendation to replace the identified wells. Any wells that cannot be rehabilitated should be abandoned in accordance with O.Reg. 903.

The consultant proposes that the current groundwater monitoring program continue with twice per year sampling at selected monitoring wells. The program is acceptable for parameters and frequency.

Robert Putzlocher, P. Eng

RP/gl

c: Peter Taylor (Water Unit Supervisor)
Paul Kchoe (Ottawa District Office)
Laurel Grills (Surface Water Unit)
File GW-03-03 (Buchanan) DE RI (A413106) / IDS 2108-3UKM4

MIN OF THE ENVIRONMENT

613 521 5437

P.07

Ministry of the Environment

Ottawa District Office

2430 Don Reid Drive Ottawa ON K1H 1E1

Talaphone: (\$13) 521-3450 Fax: (\$13) 521-5437 Ministère de l'Environnement

Bureau de district d'Ottawa

2430, promenada Don Reid Ottawa ON K1H 1E1

Téléphone: (613) 521-3450 Télécopieur: (613) 521-5437

August 29, 2007

Town of Deep River P.O. Box 400 100 Deep River Road Deep River, Ontario KOJ 1P0

Attention:

Belo Csomor, Superintendent.

Reference:

2006 Annual Report - Miller's Road - CofA# A413106

Waste Disposal Site - Town of Deep River

Dear Mr. Csomor:

Please find attached the surface water review of the 2006 Annual Report of the subject site. A groundwater review is pending and will be provided to you once available.

Please note that the Ministry's reviewer is in agreement with your consultant recommendations regarding the 2007 surface water monitoring program and evaluation. Please peruse the attached review for additional details.

Should you have any comments, questions or concerns, please contact me directly at (613) 521-3450 extension 229 (1-800-860-2195x229) or marc.lesieur@ontario.ca

Sincerely,

Marc-Etienne LeSieur

Senior Environmental Officer

Attachment

File: SI RE DE C13 610

c. B. Metcalfe, MOE

MIN OF THE ENVIRONMENT

613 521 5437

P.08

Ministry of the Environment

P.O. Box 22032 Kingston, Onterlo K7M 8S5 613/549-4000 or 1-800/267-0974 Fax: 613/548-6908 Winistère de l'Environnement

C.P. 22032 Kingston (Ontario) K7M BS5 613/549-4000 nu 1-800/267-0974 Fax: 613/548-6908

MEMORANDUM

TO:

Marc-Etienne LeSieur

Senior Environmental Officer

Ottawa District Office

Eastern Region

FROM:

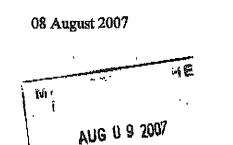
Bruce Metcalfe

Senior Environmental Officer (Surface Water)

Technical Support Section

Eastern Region

RE:


2006 Annual Report

Deep River (Miller's Road) Waste Disposal Site

Part Lot 6, Concession 13, Former Township of Buchanan

Township of Deep River

Certificate of Approval A413106

I have reviewed the noted report dated May 2007 prepared by Jp22 Consultants Inc. for the Town of Deep River. The following comments are offered relative to surface water impact concerns.

Background Information

The landfill site is presently leased by the Town of Deep River from Atomic Energy of Canada Limited and has been the waste disposal site for the municipality since approximately 1985. In December 2005 the Town of Deep River and Atomic Energy of Canada put in place a new lease agreement for the operation of the waste disposal site.

The waste disposal site is made up of four areas comprising a total area of 8.55 ha. The landfilling area within southern Areas 1 and 2 (3.22 ha) has been cleared and used for waste disposal. The northerly portions of Areas 3 and 4 (5.33 ha) are approximately 5 metres lower in elevation than Areas 1 and 2 and are currently heavily wooded.

The landfill site operates under Certificate of Approval No. A412106 and is licensed to receive the disposal of construction and demolition waste only.

Surface Water Regime

There are two surface water features in close proximity to the landfill site. They are Spring Creek and the unnamed Landfill Creek. Spring Creek originates upgradent and west of the landfill site, and passes under Miller's Road approximately 300 metres west of the access road to the site

- 2 -

TOWN OF DEEP RIVER

entrance. Spring Creek meanders south of the site in an eastward direction to Maskinonge Lake. The Landfill Creek originates southeast of the site and meanders south-easterly until it meets up with Spring Creek approximately 0.5 km southeast of the site. Drainage from the site flows mostly south-southeast towards Maskinonge Lake. It is anticipated that Spring Creek will act as a hydraulic boundary to any leachate migrating south-westward.

Surface Water Sampling Program

During 2006 surface water samples were collected from both Spring Creek and Landfill Creek during the months of May, August and October. Seven surface water sampling stations were monitored and identified as follows:

- SW-1: Spring Creek, located upgradient of the site and representative of background quality.
- SW-2: Landfill Creek, located downstream southeast of the site.
- SW-3: Landfill Creek, located approximately 100 metres southeast downstream of SW-2.
- SW-4: Landfill Creek, located approximately 200 metres downstream of SW-3.
- SW-5: Landfill Creek, located approximately 200 metres downstream of SW-4.
- SW-6: Landfill Creek, located approximately 80 metres upstream of the confluence with Spring Creek.
- SW-7: Spring Creek, located approximately 20 metres downstream of the confluence with Landfill Creek.

Surface Water Impact Assessment

Surface water samples collected for 2006 were analyzed for general inorganic chemistry and metals parameters. Field parameters measured for each sampling event included stream flow, pH, dissolved oxygen, conductivity and temperature. Surface water samples were compared to Provincial Water Quality Objectives (PWQO).

Spring Creek Background Surface Water Quality (SW-1)

For the purpose of surface water impact assessment the water quality at sample station SW-1 (culvert crossing Miller's Road) is considered to be representative of background surface water quality unaffected by landfill leachate.

MIN OF THE ENVIRONMENT

613 521 5437

P.10

-3-

During 2006 general chemistry water quality at SW-1 was characterized having BOD (<1 mg/L), COD (39 – 68 mg/L), pH (7.93 – 8.09), conductivity (102 – 181 μ S/cm), chlorides (18 -31 mg/L), TKN (0.54 – 0.76 mg/L), and total phosphorus (<0.01 – 0.03 mg/L).

PWQO exceedances occurred for aluminum (0.08 - 0.16 mg/L), exceeding 0.075 mg/L), iron (0.68 - 1.11 mg/L), exceeding 0.30 mg/L), and dissolved oxygen (2.84 - 4.96 mg/L), less than 5.0 mg/L).

Landfill Creek Downstream of Site (SW-2)

Surface water sample station SW-2 monitors the downstream water quality of Landfill Creek closest to the site's southern boundary.

During 2006 general chemistry water quality at SW-2 was characterized having BOD (<1 mg/L), COD (<5 - 5 mg/L), pH (7.48 - 7.67), conductivity (388 - 467 μ S/cm), chlorides (10 -14 mg/L), TKN (<0.05 - 0.23 mg/L), and total phosphorus (0.03 - 0.11 mg/L).

PWQO exceedances occurred for iron (1.54 – 4.36 mg/L, exceeding 0.30 mg/L), total phosphorus (0.09 – 0.11 mg/L, exceeding 0.03 mg/L), and zinc (0.04 mg/L, exceeding 0.0.02 mg/L).

Landfill Creek Downstream Surface Water Trigger Location (SW-6)

Surface water sample station SW-6 monitors the downstream water quality of Landfill Creek just before it discharges to Spring Creek, Sample station SW-6 was also identified to be the site contingency plan surface water trigger monitoring station.

During 2006 general chemistry water quality at SW-6 was characterized having BOD (<1 mg/L), COD (9 - 14 mg/L), pH (6.91 - 7.7), conductivity (444 \cdot 461 μ S/cm), chlorides (20 mg/L), TKN (0.28 - 0.47 mg/L), and total phosphorus (0.02 - 0.04 mg/L).

PWQO exceedances occurred for iron (0.31 - 2.84 mg/L), exceeding 0.30 mg/L), and total phosphorus (0.04 mg/L), exceeding 0.03 mg/L).

The parameters identified as trigger mechanisms for surface water impact are chloride and unionized ammonia. The trigger parameter concentrations are based on the 75th percentile background concentrations which are for chloride (31.45 mg/L) and unionized ammonia (0.01 mg/L), which is less than the PWQO of 0.02 mg/L).

The sample results for the 2006 surface water monitoring were determined to be below the trigger concentrations and therefore a Level II monitoring program was not required to be triggered for the landfill site.

MIN OF THE ENVIRONMENT

613 521 5437

P. 11

-4-

Summary

- The surface water monitoring program conducted by the landfill site owner during 2006 was considered to be acceptable to the reviewer.
- The reviewer is in overall agreement with the consultant's recommendations presented in the 2006 Annual Report.
- The impact to the downstream surface water regime from the landfill site was considered to be minimal. The sample results for the 2006 surface water monitoring were determined to be below the trigger concentrations and therefore a Level II monitoring program was not required to be triggered for the landfill site.
- The landfill site surface water monitoring program for 2007 should continue as had been conducted in 2006.

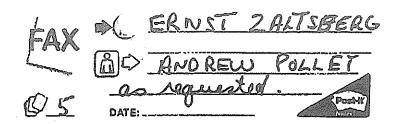
Bruce Metcalfe BWM/sh

e: Bob Putzlocher

Peter Taylor

Paul Kehoe

Bruce Metcalfe (Aba2007\aba4007.mem) 2108-73UKM4


File SW-05-04, Deep River (Miller's Road) Landfill Site, Township of Deep River

File 13-01-01, Maskinonge Lake, Ottawa River Basin

Ministry of the Environment

133 Dalton Avenue P O Box 820 Kingston ON K7L 4X6 winistère de l'Environnement

133 avenue Dalton C P 820 Kingston ON K7L 4X6

18 May 2001

MEMORANDUM

TO:

Andrew Polley

Senior Environmental Officer

Ottawa District Office

Eastern Region

FROM:

Bob Putzlocher

Hydrogeologist

Water Resources Unit Technical Support Section

Eastern Region

RE:

Hydrogeologic Report

Deep River (Millers Road) Waste Disposal Site

Certificate of Approval #A413106

W

I have completed a hydrogeological review of the "Deep River (Miller's Road) Waste Disposal Site, Certificate of Approval #A413106, Hydrogeologic Report" prepared by Robinson Consultants and offer the following comments. It is understood this report was prepared as an annual monitoring report and in response to previous comments on the report "Deep River (Miller's Road) Waste Disposal Site, Certificate of Approval #A413106, Final Report" dated February 1998. The 1998 report was in support of an application for revision to Provisional C of A #413106 and in order to address Ministry concerns of off-site contamination of groundwater and surface water as stated in the compliance inspection report prepared by Andrew Polley, Senior Environmental Officer, Ottawa District Office on July 11, 1997.

515-5494000

The site has been used for waste disposal by the Town of Deep River since 1965. It is located in Lot 6, Concession XIII, formerly Township of Buchanan now in the Town of Deep River. The 8.55 ha property is owned by Atomic Energy of Cauada Limited (AECL) and leased by the Town for landfilling purposes. Property to the west of the site is privately owned and separated from the site by an unopened municipal road. Lands to north, south and east of the landfill are owned by AECL.

For convenience, the site is subdivided into four areas. Numbering of the areas begins with Area 1 in the southwest quadrant and continues clockwise to Area 4 in the southeast quadrant. Over a twenty year period from 1965 to 1985 approximately 2 ha of the site were used for landfilling of domestic and commercial wastes. Between 1986 and 1989 a trench and cover

0761 CG (08/95)

method of operation was employed in Area 2. Construction and demolition waste was disposed in Area 3, while a portion of Area 4 was utilized for disposal of water treatment and sewage sludge. Between 1989 and 1991 a trench and cover operation was continued in the northeasterly portion of Area 4, until excavation was restricted due to large boulders, bedrock and a high watertable. In 1991 the method of operation in Area 4 was revised to a modified area method. The recognition of a 30 m buffer within the extent of the leased land reduces the 8.55 ha area to 5.55 ha. Although historic operations have deposited waste within the 30 m buffer, the buffer zone has been recently observed. A 1997 Capacity Study delineates the areal limits of waste disposal indicating a 4.45 ha footprint. The Site Development and Operations Plan (1997) suggests future landfilling be restricted to a 2.0 ha area.

Geology

The site is underlain by Precambrian, felsic metasedimentary bedrock. Bedrock outcroppings occur throughout the site and are numerous in the northern portion. The bedrock surface topography slopes steeply in an easterly direction in the southern portion of the site. A thick deposit of fine grained fluvial sand is present over most of Areas 1 and 2 and is generally between 10 and 30 m in thickness. A thin veneer of till is found in parts of Areas 2, 3, and 4 with thicknesses ranging from 0 to 1.75 m.

Hydrogeology

Water level monitoring has shown that groundwater flow in the shallow overburden is strongly influenced by the underlying bedrock topography which creates a groundwater divide at the site. Flow from Area 4 is in a southeasterly direction toward Maskinonge Lake. From Area 1 and the southern portion of Area 2, groundwater flow is southerly but may at times have a westerly influence. The direction of flow from the north eastern corner of the site will be northeasterly toward a wetland. In all areas, vertical hydraulic gradients are weak and groundwater flow is primarily horizontal. Surface water bodies that are potential groundwater discharge areas include Spring Creek and Landfill Creek to the south of the site and Maskinonge Lake to the southeast.

Guideline B-7 Compliance

For purposes of determining impacts of waste disposal, water quality in areas considered unaffected by human activity is measured. Wells 91-2 and 95-5 are located south and northwest of the site respectively and are considered representative of background water quality. Current sampling from these wells indicates levels of aluminum in excess of Ontario Drinking Water Standards (ODWS). Past results have shown ODWS exceedances of iron, manganese, and Total Dissolved Solids (TDS). It is noted that it is not uncommon for these parameters to naturally occur in excess of ODWS.

- 3 -

Off-site parameters exceeding ODWS are found in various other locations. Aluminum concentrations are high throughout the area in Wells 85-A, 85-B, 89-1, 95-3, 95-5, 96-1, and 91-3. Iron levels are high in Wells 85-B, 89-1, 95-3, 95-5, and 91-3 and elevated manganese levels are found in Wells 85-B and 89-1. Each of these monitoring wells are located in areas which are not considered impacted by leachate.

The consultant has interpreted the presence of two distinct leachate plumes associated with waste disposal Areas 2 and 4. From Area 4, leachate impacts are observed at and beyond the southern limit of the site. The 2000 sampling program shows parameters exceeding Reasonable Use (RU) concentrations along the southern boundary are aluminum, alkalinity, iron, manganese, and TDS. Along the western border, near Area 2, parameters exceeding RU are aluminum, alkalinity, nitrate, barium, iron, manganese, and TDS.

Within the monitoring report, the leachate plume originating from Area 4 is characterized by concentrations of chloride and TDS. The plume is demonstrated as evolving in the direction of groundwater flow (SE). Concentration contours of chloride and TDS are depicted although it is unclear how such contours can be drawn when only two wells in the immediate area were included in the recent sampling program. Similarly, the plume from Area 2 is represented by chloride and TDS contours and is oriented in a southwesterly direction. However, the existence of a westerly component of flow has not been clearly demonstrated.

In either plume, concentrations of chloride are not above RU. The plume, then, is defined by TDS with no reference to RU exceedances of other parameters. This is reasonable considering the occurrence of naturally high levels of inorganics throughout the site and area and the tendency of elevated metal concentrations to be associated with dissolved solids.

To deal with off-site groundwater contamination, the consultant recommends that contaminant attenuation zones be established around the site. Monitoring wells to the west of the site (95-3, 95-4, 95-5, and 96-1) do not reveal exceedances of the Reasonable Use Policy other than for aluminum. However it is recommended that the municipality take control of groundwater rights in this direction such that the monitoring wells are incorporated into a buffer zone. To the south and east of the landfill site, an attenuation zone is proposed that would include the drainage basin extending to Maskinonge Lake.

It should be noted that Table 9 "On-Site Parameters indicating Increased Leachate Loading" as it appears in the report does not reflect 2000 monitoring results although it is titled so. Contaminant concentrations from Wells 91-5 and 95-6 displayed in the table as 2000 results were actually measured in September 1995. Additionally, of the two values quoted for calcium one has digits transposed and the other has an inaccurate decimal placing. Contrary to the impression given by the title of the table, it appears leachate strength is diminishing. Current sampling from monitoring well 95-6 shows no increase from the previously highest recorded values of any parameter. Some concentrations (namely Ca, K, Mn, N-NO3, P, and conductivity) exhibit the lowest concentrations ever recorded.

Other tables in the report which do not reflect current conditions or contain inaccuracies are Table 6 - "Range of Background Values" and Table 7 - "Range of Leachate Values". The background concentrations of aluminum, iron, and manganese have a wider range than that depicted and there appears to be two records for SO₄ values within the same table. The utility of these tables could be improved by including a column for the most recent sampling results as well as displaying the historic concentration range for each parameter.

In response to previous comments concerning elevated levels of toluene, a set of samples were taken from ten locations and analyzed for VOC's. Analysis showed all samples to be below detection limits for organics with the exception of wells 88-3 and 95-6 which had a few parameters above detection limits but within ODWS.

In summary, hydrogeological monitoring to date indicates evidence of a limited leachate plume on Federal lands outside the current Provisional Certificate of Approval property limits. Analysis shows concentrations within the plume exceed MOE policies to the west and south of the site. Continued operations of the site will likely result in the leachate plume extending southeasterly within AECL lands towards Maskinonge Lake.

To this end, conditions on the revised Certificate of Approval are required to provide for:

- Continued groundwater monitoring as described below
- Take all necessary steps to bring site into compliance with RU
- Incorporate CAZ/buffer land into an amended C of A with an updated site plan showing these areas as buffer lands
- Have buffer lands registered on title
- After two years of groundwater monitoring as described below, condition C of A to allow District Manager to alter sample frequency and parameters
- Annual groundwater monitoring report
- Delineate reduced footprint and final contours of future landfilling showing all buffer lands

Groundwater from Area 3 is described as flowing in a northeasterly direction. Area 3 has been utilized for construction waste disposal. To date no monitoring has occurred near this area. In order to determine compliance, it is recommended that a monitoring well be installed in the northeast corner of the site and be included in the regular sampling program as described below. A surface water review is necessary to assess the proposed contamination attenuation zone defined by the Maskinonge Lake catchment area south and east of the site. Additional consideration should be given to the potential for effects in the northeast wetlands.

The Monitoring Program set out in Appendix "F" of the report is concurred with except Subsection "i.C" and Section V which set out parameters for groundwater sampling and the monitoring wells to be sampled. In addition to monitoring locations listed in Section V, I recommend the inclusion of wells 91-4, 85-Y, and 85-Z. All locations should be sampled twice yearly, April and September, for the following parameters:

General Chemistry:

Hardness, alkalinity, chloride, sulphate, ammonia, nitrate, nitrite, TDS, Total Kjeldhal Nitrogen, Dissolved Organic Carbon, phenols, Biological Oxygen Demand, Chemical Oxygen Demand, total phosphorous

Field Tests:

Conductivity, pH, temperature, water level

Metals:

Al, Ca, Mn, Mg, Na, K, Fe, Selenium, Bo, Ba, Cd, Cr, Cu, Pb, Hg, Ag, Vanadium

Volatile Organic Compounds:

wells 95-6 and 88-3 (once every two years)

Future reporting should address the following concerns:

- There are no listings of analytical results from water quality testing at locations 85-Y and 85-Z, although reference is made to such within the report. If these locations have been tested in the past, the results should be included.
- Features which should be delineated or indicated on site maps include: active and proposed limits of waste disposal; location of adjacent residential wells (particularly Broome and Baker wells); and location of proposed new monitoring well(s).
- Correct discrepancies and update data and tables with current monitoring results.
- There is no mention of methane gas monitoring/migration potential.
- Groundwater flow along the western border of the site has not been clearly defined. Considering future disposal activity is proposed in Area I, the direction of flow requires

Bob Putzlocher BP/sh

P. Kehoe / Ottawa District Office c: File SI RE BU CXIII/GW-07-04, Buchanan Township (A413106) BP/Star # 12,895

ALIG AK DAAD

Appendix D-Monitoring and Screening Checklist General Information and Instructions

General Information: The checklist is to be completed, and submitted with the Monitoring Report.

Instructions: A complete checklist consists of:

- (a) a completed and signed checklist, including any additional pages of information which can be attached as needed to provide further details where indicated.
- (b) completed contact information for the Competent Environmental Practitioner (CEP)
- (c) self-declaration that CEP(s) meet(s) the qualifications as set out below and in Section 1.2 of the Technical Guidance Document.

Definition of Groundwater CEP:

For groundwater, the CEP must have expertise in hydrogeology and meet one of the following:

- (a) the person holds a licence, limited licence or temporary licence under the *Professional Engineers Act*; or
- (b) the person holds a certificate of registration under the *Professional Geoscientists Act, 2000* and is a practicing member, temporary, member or limited member of the Association of Professional Geoscientists of Ontario. O. Reg. 66/08, s. 2..

Definition of Surface water CEP:

A CEP for surface water assessments is a scientist, professional engineer or professional geoscientist as described in (a) and (b) above with demonstrated experience and post-secondary education, either a diploma or degree, in hydrology, aquatic ecology, limnology, aquatic biology, physical geography with specialization in surface water, and/or water resource management.

The type of scientific work that a CEP performs must be consistent with that person's education and experience. If an individual has appropriate training and credentials in both groundwater and surface water and is responsible for both areas of expertise, the CEP may then complete and validate both sections of the checklist.

Monitoring Report and Site Information			
Waste Disposal Site Name	Millers Road Waste Disposal Site		
Location (e.g. street address, lot, concession)	Part Lot 6, Concession XIII, former Twp of Buchanan not in the Town of Deep River		
GPS Location (taken within the property boundary at front gate/ front entry)	NAD 83 UTM zone 18 310060E, 5103350N		
Municipality	Town of Deep River		
Client and/or Site Owner	Town of Deep River		
Monitoring Period (Year)	2020		
This	Monitoring Report is being submitted under the following:		
Environmental Compliance Approval Number:	A413106		
Director's Order No.:	N/A		
Provincial Officer's Order No.:	N/A		
Other:	N/A		

Report Submission Frequency	AnnualOther		
The site is: (Operation Status)		Open Inactive Closed	
Does your Site have a Total Approved Capacity?		YesNo	
If yes, please specify Total Approved Capacity	321,825	Units	Cubic Metres
Does your Site have a Maximum Approved Fill Rate?		YesNo	
If yes, please specify Maximum Approved Fill Rate		Units	
Total Waste Received within Monitoring Period (Year)	3,625	Units	Cubic Metres
Total Waste Received within Monitoring Period (Year) <i>Methodology</i>	Comparison to previous year sur	vey	
Estimated Remaining Capacity	80,063	Units	Cubic Metres
Estimated Remaining Capacity Methodology	Autocad calculation 2019- 2020 s	surface comparison	
Estimated Remaining Capacity Date Last Determined	November 2020		
Non-Hazardous Approved Waste Types	☐ Domestic ☐ Industrial, Commercial & ☐ Institutional (IC&I) ☐ Source Separated Organics (Green Bin) ☐ Tires	 Contaminated Soil Wood Waste Blue Box Material Processed Organics Leaf and Yard Waste 	Food Processing/Preparation Operations Waste Hauled Sewage Other: C & D waste exclusively
Subject Waste Approved Waste Classes: Hazardous & Liquid Industrial (separate waste classes by comma)	na		
Year Site Opened (enter the Calendar Year <u>only</u>)	1965	Current ECA Issue Date	April 4, 2014
Is your Site required to submit Fina	ncial Assurance?	○ •	Yes No
Describe how your Landfill is designed.		Natural Attenuation o Partially engineered F	
Does your Site have an approved Co	ontaminant Attenuation Zone?	• •	Yes No

If closed, specify C of A, control or au date:	thorizing document closure	N/A	
Has the nature of the operations at the site changed during this monitoring period?		○ Yes	
If yes, provide details:			
Have any measurements been taken since the last reporting period that indicate landfill gas volumes have exceeded the MOE limits for subsurface or adjacent buildings? (i.e. exceeded the LEL for methane)		YesNo	

Groundwater WDS Verification: Based on all available information about the site and site knowledge, it is my opinion that:				
Sampling and Monitoring Program Status:				
1) The monitoring program continues to effectively characterize site conditions and any groundwater discharges from the site. All monitoring wells are confirmed to be in good condition and are secure:	YesNo			
2) All groundwater, leachate and WDS gas sampling and monitoring for the monitoring period being reported on was successfully completed as required by Certificate(s) of Approval or other relevant authorizing/control document (s):	○ Not Applicable	If no, list exceptions below (or attach information.	
Groundwater Sampling Location	Description/Explanation for cha (change in name or location, ac		Date	

3) a) Is landfill gas being monitored or controlled at the site?			
If yes to 3(a), please answer the next two que	stions below.		
b) Have any measurements been taken since the last reporting period that indicate landfill gas is present in the subsurface at levels exceeding criteria established for the site?		○ Yes	
c) Has the sampling and monitoring identified under 3(a) for the monitoring period being reported on was successfully completed in accordance with established protocols, frequencies, locations, and parameters developed as per the Technical Guidance Document:		YesNoNot Applicable	If no, list exceptions below or attach additional information.
	Description/Explanation for change (change in name or location, additions, deletions)		Date
4) All field work for groundwater investigations was done in accordance with standard operating procedures as established/outlined per the Technical Guidance Document (including internal/external QA/QC requirements) (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):		Sampling completed in ger standard sampling protoco	neral as per Jp2g Consultants ols

	Sampling and Monitoring Program Results/WDS Conditions and Assessment:			
	5) The site has an adequate buffer, Contaminant Attenuation Zone (CAZ) and/or contingency plan in place. Design and operational measures, including the size and configuration of any CAZ, are adequate to prevent potential human health impacts and impairment of the environment.	YesNo	November 26, 2009), the Mu 14 hectare parcel of land loo Road Waste Disposal Site fo	ormer ECA (i.e. Notice 6 dated unicipality acquired an approximate cated immediately west of the Millers or the purpose of a CAZ (Figure 3). gistered on title as a Contaminant
	6) The site meets compliance and assessment criteria.	YesNo	See Table 12 and 13 of repo	ort Part 2
•	7) The site continues to perform as anticipated. There have been no unusual trends/ changes in measured leachate and groundwater levels or concentrations.	YesNo		
	risk reduction practices in place at the site: (a) There is minimal reliance on natural attenuation of leachate due to the presence of an effective waste liner and active leachate collection/ treatment; or (b) There is a predictive monitoring program inplace (modeled indicator concentrations projected over time for key locations); or (c) The site meets the following two conditions (typically achieved after 15 years or longer of site operation): i.The site has developed stable leachate mound(s) and stable leachate plume geometry/concentrations; and ii.Seasonal and annual water levels and water quality fluctuations are well understood.	YesNo	Note which practice(s):	☐ (a) ☐ (b) ☑ (c)
	9) Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	YesNoNot Applicable	naturally variable in the vici iron values revealed are wel concentrations. The exceed occurring due to the low co	t a result of landfilling. The ers are iron and manganese which are nity of the site. The manganese and II within historical background ance is thought to be naturally ncentrations of all other leachate compliance monitoring wells.

Groundwater CEP Declaration: I am a licensed professional Engineer or a registered professional geoscientist in Ontario with expertise in hydrogeology, as defined in Appendix D under Instructions. Where additional expertise was needed to evaluate the site monitoring data, I have relied on individuals who I believe to be experts in the relevant discipline, who have co-signed the compliance monitoring report or monitoring program status report, and who have provided evidence to me of their credentials. I have examined the applicable Certificate of Approval and any other environmental authorizing or control documents that apply to the site. I have read and followed the Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water Technical Guidance Document (MOE, 2010, or as amended), and associated monitoring and sampling guidance documents, as amended from time to time. I have reviewed all of the data collected for the above-referenced site for the monitoring period(s) identified in this checklist. Except as otherwise agreed with the ministry for certain parameters, all of the analytical work has been undertaken by a laboratory which is accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General requirements for the competence of testing and calibration laboratories, or as amended from time to time by the ministry. If any exceptions or potential concerns have been noted in the questions in the checklist attached to this declaration, it is my opinion that these exceptions and concerns are minor in nature and will be rectified for the next monitoring/reporting period. Where this is not the case, the circumstances concerning the exception or potential concern and my client's proposed action have been documented in writing to the Ministry of the Environment District Manager in a letter from me dated: Recommendations: Based on my technical review of the monitoring results for the waste disposal site: No changes to the monitoring program are recommended The following change(s) to the monitoring program is/are recommended: No Changes to site design and operation are recommended The following change(s) to the site design and operation is/ are recommended:

Name:	Andrew Buzza, P.Geo Note: Report signed and stamped.		
Seal:	Add Image		
Signature:	Date:		
CEP Contact Information:	Andrew Buzza, p.Geo		
Company:	Jp2g Consultants Inc.		
Address:	1150 Morrison Drive Suite 410 Ottawa ON K2H 8S9		
Telephone No.:	613 828-7800	Fax No. :	613 828-2600
E-mail Address:	andrewb@jp2g.com		
Co-signers for additional expertise provided:			
Signature:	Date:		
Signature:		Date:	

Surrace water WDS Verit	ication:		
Provide the name of surface water waterbody (including the nearest s			d the approximate distance to the
Name (s)	There are two surface water features in close proximity to the landfill site. They are Spring Creek and the unnamed Landfill Creek.		
Distance(s)	The unnamed Landfill Creek begins 125m south east of the landfilling area. Spring Creek meets with landfill creek approximately 500m south east the landfilling area		
Based on all available information	and site knowledge, it is my opir	nion that:	
	Sampling and Monitor	ing Program Status	•
The current surface water monitoring program continues to effectively characterize the surface water conditions, and includes data that relates upstream/background and downstream receiving water conditions:	Yes No		
2) All surface water sampling for the monitoring period being reported was successfully completed in accordance with the Certificate(s) of Approval or relevant authorizing/contro document(s) (if applicable):	Not applicable (No C of A, authorizing / control document applies)	If no, specify below or provi	de details in an attachment.
Surface Water Sampling Location	Description/Explana (change in name or location		Date

 a) Some or all surface water sampling and monitoring program requirements for the monitoring period have been established outside of a ministry C of A or authorizing/control document. b) If yes, all surface water sampling and monitoring identified under 3 (a) was successfully completed in accordance with the established program from the site, including sampling protocols, frequencies, locations and parameters) as developed per the Technical Guidance Document: 			
		○ Yes○ No● Not Applicable	If no, specify below or provide details in an attachment.
Surface Water Sampling Location	Surface Water Sampling Location (change in name or location)		Date
4) All field work for surface water investigations was done in accordance with standard operating procedures, including internal/external QA/QC requirements, as established/outlined as per the Technical Guidance Document, MOE 2010, or as amended. (Note: A SOP can be from a published source, developed internally by the site owner's consultant, or adopted by the consultant from another organization):	YesNo	Sampling completed in ge standard practices	neral as per Jp2g Consultants

	Sampling and Mid	onitoring Program Kesu	lits/WD5 Conditions	and Assessment:
5)	regulations, Water Manageme	re no exceedances of criteria, b nt Policies, Guidelines and Provi nt criteria (e.g., CWQGs, APVs), a	ased on MOE legislation, ncial Water Quality	○ Yes
	no, list parameters that exceed covide details in an attachment:	riteria outlined above and the a	mount/percentage of the ex	ceedance as per the table below or
	Parameter	Compliance or Assessment Criteria or Background		liance or Assessment Criteria or ound Exceeded
e.g	g. Nickel	e.g. C of A limit, PWQO, background	e.g. X% above PWQO	
Se	ee Attachment 1			
6)	In my opinion, any exceedances listed in Question 5 are the result of non-WDS related influences (such as background, road salting, sampling site conditions)?	YesNo	Contributions to elevated pa combination of landfill and r	

7)	All monitoring program surface water parameter concentrations fall within a stable or decreasing trend. The site is not characterized by historical ranges of concentrations above assessment and compliance criteria.	YesNo	
8)	For the monitoring program parameters, does the water quality in the groundwater zones adjacent to surface water receivers exceed assessment or compliance criteria (e.g., PWQOs, CWQGs, or toxicity values for aquatic biota (APVs)):	YesNoNot KnownNot Applicable	A comparison of 95-6 and SW-2/SW3 has been provided in Report Part 2, Table 15. These locations represent the groundwater zone adjacent to the unnamed landfill creek, and the headwater of the landfill creek. The elevated concentrations in the groundwater at 95-6 do not appear to have a significant correlation with the chemistry of the surface water station SW-2. Elevated concentrations of iron and manganese at the SW stations are likely a result of some landfill impact and natural occurrences.
9)	Have trigger values for contingency plans or site remedial actions been exceeded (where they exist):	YesNoNot Applicable	

Surface Water CEP Declarat	tion:	
, the undersigned hereby declare that I am a Competent Environmental Practitioner as defined in Appendix D unde nstructions, holding the necessary level of experience and education to design surface water monitoring and sampling programs, conduct appropriate surface water investigations and interpret the related data as it pertains to the site for thi monitoring period.		
to the site. I have read and followed to Technical Guidance Document (MOE, amended from time to time. I have re identified in this checklist. Except as o been undertaken by a laboratory which	cate of Approval and any other environmental authorizing or control documents that apply he Monitoring and Reporting for Waste Disposal Sites Groundwater and Surface Water 2010, or as amended) and associated monitoring and sampling guidance documents, as viewed all of the data collected for the above-referenced site for the monitoring period(s) therwise agreed with the ministry for certain parameters, all of the analytical work has this accredited for the parameters analysed to ISO/IEC 17025:2005 (E)- General ting and calibration laboratories, or as amended from time to time by the ministry.	
opinion that these exceptions and cor not the case, the circumstances conce	s have been noted in the questions in the checklist attached to this declaration, it is my accerns are minor in nature or will be rectified for future monitoring events. Where this is rning the exception or potential concern and my client's proposed action have been of the Environment District Manager in a letter from me dated:	
Select Date		
Recommendations:		
Based on my technical review of the m	onitoring results for the waste disposal site:	
No Changes to the monitoring program are recommended		
The following change(s) to the monitoring program is/are recommended:		
No changes to the site design and operation are recommended		
The following change(s) to the site design and operation is/are recommended:		

CEP Signature		
Relevant Discipline	Education with 30 years demonstrated experience	
Date:		
CEP Contact Information:	Andrew Buzza, P.Geo	
Company:	Jp2g Consultants Inc.	
Address:	1150 Morrison Drive Suite 410 Ottawa ON K2H 8S9	
Telephone No.:	613 828-7800	
Fax No.:	613 828-2600	
E-mail Address:	andrewb@jp2g.com	
Save As		Print Form

Monitoring Station	Boron	% exceedance	Iron	% exceedance	Phenols	% exceedance	Aluminum	% exceedance	Unionzied Ammonia	% exceedance
PWQO ->	0.2		0.3		0.001		0.075		0.02	
SW-1										
May-20			0.4	33%	0.003	200%				
Sep-20			0.72	140%	0.007	600%	0.09	20%		
Oct-20			0.4	33%						
SW-2										
May-20										
Sep-20			0.81	170%						
Oct-20			0.33	10%						
SW-3										
May-20			1.08	260%						
Sep-20	0.21	5%	1.22	306%					0.04	100%
Oct-20			0.57	90%						
SW-4										
May-20	0.34	70%	2.16	620%					0.04	100%
Sep-20	0.31	55%	1.45	383%					0.04	100%
Oct-20	0.32	60%	1.24	313%					0.05	150%
SW-5										
May-20	0.34	70%	2.04	580%					0.05	150%
Sep-20	0.3	50%	1.26	320%					0.04	100%
Oct-20	0.31	55%	0.83	176%					0.04	100%
SW-6										
May-20	0.33	65%	1.89	530%					0.04	100%
Sep-20	0.3	50%	1.07	256%					0.04	100%
Oct-20	0.3	50%	0.42	40%					0.04	100%
SW-7										
May-20			0.56	86%	0.004	300%				
Sep-20			0.72	140%	0.004	300%				
Oct-20			0.37	23%						

Notes:

All concentration values in mg/L and all quantified exceedance values in percent CWQG for Boron is 1.5 mg/L

Appendix D

Grain Size Distribution

Samples for grain size analysis were collected from the following piezometer locations.

Deep overburden piezometer no. 1 Sample no. 1

Depth 4.6 m

Deep overburden piezometer no. 1 Depth 20.4 m Sample no. 2

Deep overburden piezometer no. 1 Sample no. 3

Depth 12.0 m

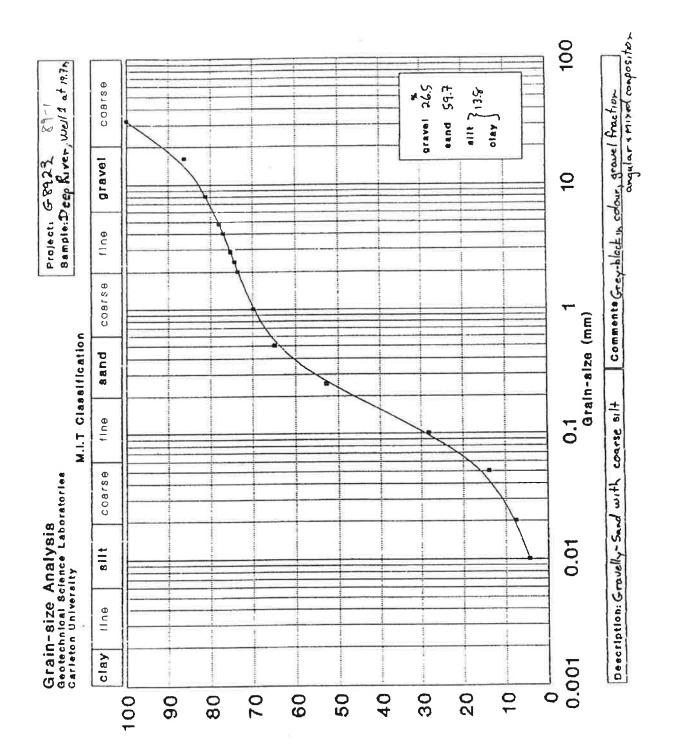
Deep overburden piezometer no. 2 Sample no. 4

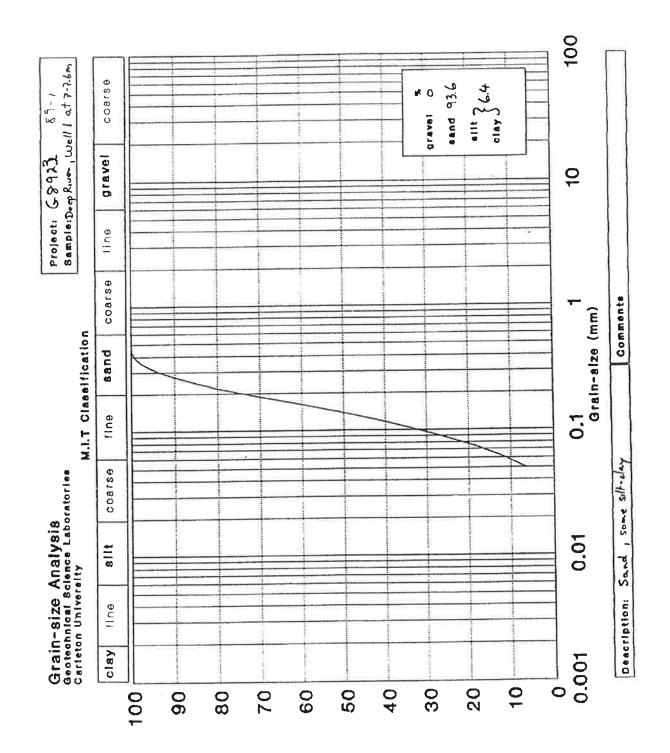
Depth 23.8 m

NO.

SAMPLE

SAMPLE


NO.


SAMPLE

NO.

MO.

BAMPLE

% F---

Appendix E

Monitoring Well Status

SW 3 SW 5 (Sept 2020)

SW 2 SW 4

Miller's Road Waste Disposal Site

Fall 2020 Surface Water Monitoring Locations

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	1

SW 7

Miller's Road Waste Disposal Site

Fall 2020 Surface Water Monitoring Locations

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	2

BH 85A BH 88-2 (Deep & Shallow)

BH 85B BH 08-1 (Deep &Shallow)

Miller's Road Waste Disposal Site

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	3

BH 91-1 BH 91-5 Shallow

BH 91-2 BH 91-4

Miller's Road Waste Disposal Site

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	4

BH 95-3 Shallow BH 95-4 Shallow BH 95-5

BH 95-3 Deep BH 95-4 Deep BH 95-6 (Leachate Well)

Miller's Road Waste Disposal Site

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	5

BH 96-1 (Deep & Shallow) BH 96-3 BH 07-2 Deep

BH 96-2 BH 07-2 Shallow BH 07-3 Shallow

Miller's Road Waste Disposal Site

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	6

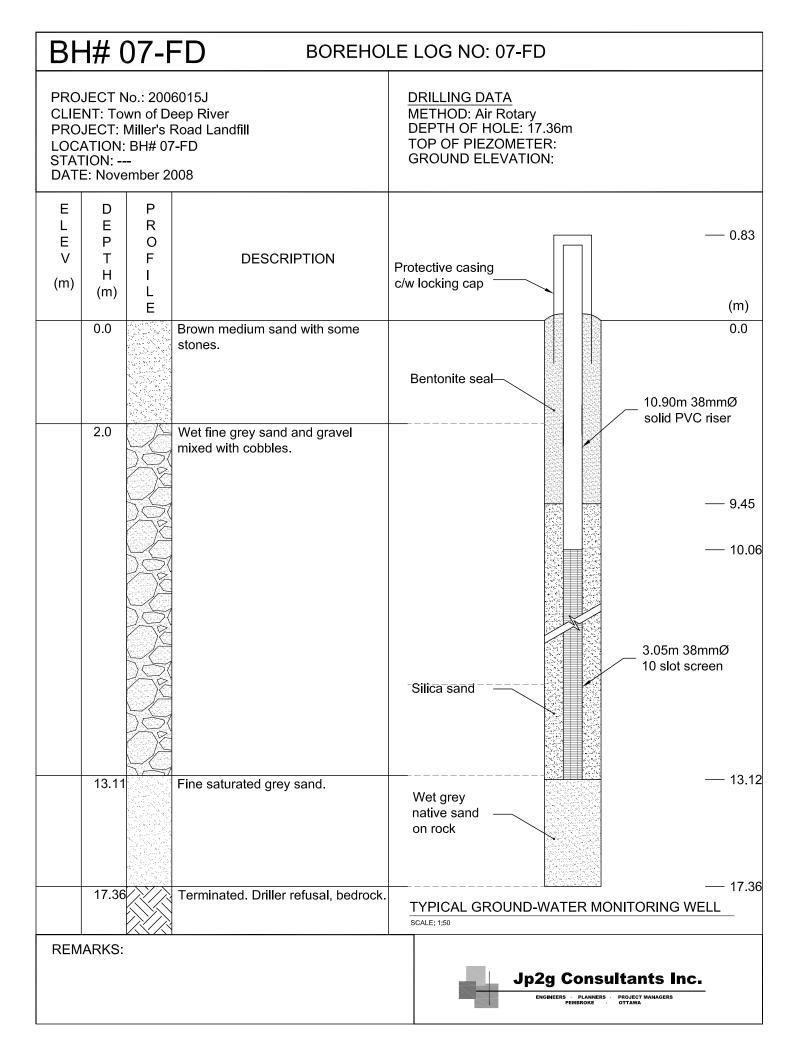
BH 07-3 Deep

BH 07-F Shallow

BH 07-F Deep

Miller's Road Waste Disposal Site

DATE	29-Oct-20
PROJECT	17-6015E
FIGURE	7


Appendix F

Borehole Logs

BH# 91-5S **BOREHOLE LOG NO: 91-5S** PROJECT No.: 2006015J **DRILLING DATA** CLIENT: Town of Deep River METHOD: Air Rotary DEPTH OF HOLE: 12.19m PROJECT: Miller's Road Landfill TOP OF PIEZOMETER: LOCATION: BH# 91-5S **GROUND ELEVATION:** STATION: ---DATE: October 2008 Ρ Ε D Ε R L - 0.83 Ε Ρ 0 ٧ Т F **DESCRIPTION** Protective casing Н 1 c/w locking cap (m) L (m) (m) Ε 0.0 0.0 Brown and grey sand with some stones. Bentonite seal -9.43m 38mmØ solid PVC riser **---** 7.97 Silted in 1.52m 38mmØ 10 slot screen — 12.19 12.19 Terminated. TYPICAL GROUND-WATER MONITORING WELL SCALE: 1:50 **REMARKS:** Jp2g Consultants Inc. ENGINEERS · PLANNERS · PROJECT MANAGERS PEMBROKE · OTTAWA

BH# 95-3D **BOREHOLE LOG NO: 95-3D** PROJECT No.: 2006015J **DRILLING DATA** CLIENT: Town of Deep River METHOD: Hollow Stem Auger PROJECT: Miller's Road Landfill DEPTH OF HOLE: 24.38m TOP OF PIEZOMETER: LOCATION: BH# 95-3D **GROUND ELEVATION:** STATION: ---DATE: October 2008 Ε D Ρ L Ε R Ε Ρ O Т V F DESCRIPTION Protective casing Н (m) c/w locking cap (m) L (m) Ε 0.0 Dry brown topsoil. 0.0 Bentonite seal-- 0.61 0.90 Dry brown medium to fine sand with some mottling. Native sand backfill-22.9m 38mmØ solid PVC riser 4.59 Damp fine brown sand. 7.62 Saturated fine brown and grey sand. **- 9.45** Some stones. Bentonite clay seal - 10.06 13.72 Saturated fine grey flowing sand. - 21.33 Stones and boulders at depth. Native sand backfill-3.05m 38mmØ 10 slot screen - 24.38 24.38 Driller refusal. Flowing sand TYPICAL GROUND-WATER MONITORING WELL and boulders. SCALE: 1:50 **REMARKS:**

BH# 95-4D **BOREHOLE LOG NO: 95-4D** PROJECT No.: 2006015J **DRILLING DATA** METHOD: Hollow Stem Auger CLIENT: Town of Deep River DEPTH OF HOLE: 27.43m PROJECT: Miller's Road Landfill TOP OF PIEZOMETER: LOCATION: BH# 95-4D **GROUND ELEVATION:** STATION: ---DATE: October 2008 Ρ Ε D Ε R L Ε Ρ 0 V Т **DESCRIPTION** Protective casing Н c/w locking cap (m) (m) L Ε (m) 0.0 Dark brown sandy topsoil. 0.0 Bentonite seal-0.15 Dry light brown fine sand. - 0.61 6.01 Wet light brown to grey fine sand. Native sand backfill-Some mottling. 25.9m 38mmØ solid PVC riser 10.67 Saturated fine grey sand. - 23.16 Bentonite clay seal **– 23.77** Silica sand backfill -**---- 24.38** Saturated medium grey sand. 24.38 Some clay layers. 3.05m 38mmØ 10 slot screen — 27.43 27.43 Terminated. Driller refusal. TYPICAL GROUND-WATER MONITORING WELL SCALE: 1:50 **REMARKS** Jp2g Consultants Inc. ENGINEERS · PLANNERS · PROJECT MANAGERS PEMBROKE · OTTAWA

BH# 08-1 D/S BOREHOLE LOG NO: 08-1 D/S PROJECT No.: 2006015J **DRILLING DATA** CLIENT: Town of Deep River METHOD: Air Rotary DEPTH OF HOLE: 22.25m PROJECT: Miller's Road Landfill TOP OF PIEZOMETER: LOCATION: BH# 08-1 Deep and shallow **GROUND ELEVATION:** STATION: ---DATE: November 2008 Ρ Ε D Ε R L - 0.93 Ε Ρ 0 V Т F **DESCRIPTION** Protective casing Н 1 c/w locking cap (m) (m) L Ε (m) Medium brown sand with stones. 0.0 0.0 7.45m 38mmØ solid PVC riser Bentonite seal 3.05m 38mmØ - 5.97 10 slot screen -6.5210.06 Fine saturated grey sand. Silica sand - 9.57 Bentonite seal 19.25m 38mmØ solid PVC riser 20.42 Grey sand and rock fragments. Silica sand ___ 18.32 3.05m 38mmØ 10 slot screen — 21.37 **— 22.25** 22.25 Driller refusal, bedrock. TYPICAL GROUND-WATER MONITORING WELL SCALE: 1:50 **REMARKS:** Jp2g Consultants Inc.

Appendix G

Lease Agreement

Carditions 8+9

2006015 6

The Corporation of the Town of Deep River

By-law No. 23-2005

A By-law to authorize the municipality to enter into an agreement to amend the lease agreement with respect to the Miller Road waste disposal site.

WHEREAS on March 3, 1965, Council adopted By-law Number 386 to authorize the signing of a lease;

AND WHEREAS it is advisable and agreeable between the parties to the said lease that the terms thereof should be amended;

NOW THEREFORE the Council of the Corporation of the Town of Deep River **ENACTS AS FOLLOWS**:

- The Corporation of the Town of Deep River is hereby authorized to enter into an agreement with Atomic Energy of Canada Limited to amend the lease agreement adopted under By-law 386 with respect to the Miller Road waste disposal site.
- The terms of the agreement referred to in Section 1 shall be substantially the same as the terms of the agreement attached to this by-law as Schedule 'A'.
- The Mayor and the Clerk-Administrator shall sign the agreement authorized under this by-law on behalf of the Corporation, and the Clerk-Administrator and the Town Superintendent are authorized to take such actions as may be necessary and appropriate to implement the agreements, or as may be required from time to time under the agreements.
- This by-law comes into force upon adoption by Council of the Corporation of the Town of Deep River.

READ A FIRST AND SECOND TIME THIS 21st DAY OF DECEMBER, 2005.

READ A THIRD TIME AND FINALLY PASSED THIS 21st DAY OF DECEMBER, 2005.

Mayor Cullens

Clerk-Administrator

Addendum to the Lease Agreement dated March 1, 1965 Between Atomic Energy of Canada Limited and the Corporation of the Town of Deep River

Paragraph 3 changed to read To have and to hold the premises unto the Lessee, from and after the First day of January 2006 for a term of ten years, fully to be complete and ended on the thirty-first day of December, 2015; provided however that the Lessee shall have the right and option, exercisable at any time during the last year of the aforesaid term, to renew this lease for a further period of 10 years and the right and option, exercisable at any time during the last year of any such renewal, to further renew this lease for one further period of 10 years.

Condition 1 changed to read That the Lessee will use the premises only for construction and demolition waste and only as an area for waste disposal in accordance with the MOE Provisional Certificates.

Condition 5 changed to read Burning of waste materials within the leased area shall be prohibited.

Condition 11 changed to read That the Lessee shall at all times indemnify and save harmless the Lessor from and against all claims and demands, loss, costs, damages, actions, suits or other proceedings by whomsoever made, brought or prosecuted, in any manner based upon, occasioned by or attributable to the execution of these presents, or any action taken or things done or maintained by virtue hereof, or the exercise in any manner of rights arising hereunder. The above conditions shall survive the termination or expiration of this Agreement,

Condition 12 added to read That the Lessor shall grant unto the Lessee, at all reasonable times during the term of the lease, access upon the lands described in the schedule annexed to this Addendum herein after called "Schedule B Contaminant Attenuation Zone".

- a) To install, maintain, inspect, sample, repair and keep in good condition, the boreholes including all appurtenances necessary for the monitoring of the landfilling operation compliance.
- b) To maintain, inspect and sample surface water locations for the monitoring of the landfilling operation compliance.
- c) For the employees, agents and contractors of the Lessor to access with material, vehicles and equipment as may be necessary for all purposes to the exercise the works as described above.
- d) Upon completion of the said work or any future work, the Lessee shall remove its equipment and restore the property to substantially the same condition.
- e) If ever the extent of the boundary of the schedule annexed to this Addendum/
 Contaminant Attenuation Zone is in dispute, to resolve the dispute, the Lessee shall pay to have the boundary surveyed by a registered professional land surveyor.
- f) That the Lessor is entitled to request and receive all information on the contaminant monitoring.

Condition 13 added to read That the Lessor shall grant unto the Lessee access to the lands described in the schedule annexed to this Addendum herein after called Schedule B Contaminant Attenuation Zone, as "Cover Material Source".

a) To excavate and remove native earth material for the purpose of covering waste disposed at the landfill site. The material removed from the cover material source as identified on Schedule B is for the use only at the Miller's Road Landfill Site.

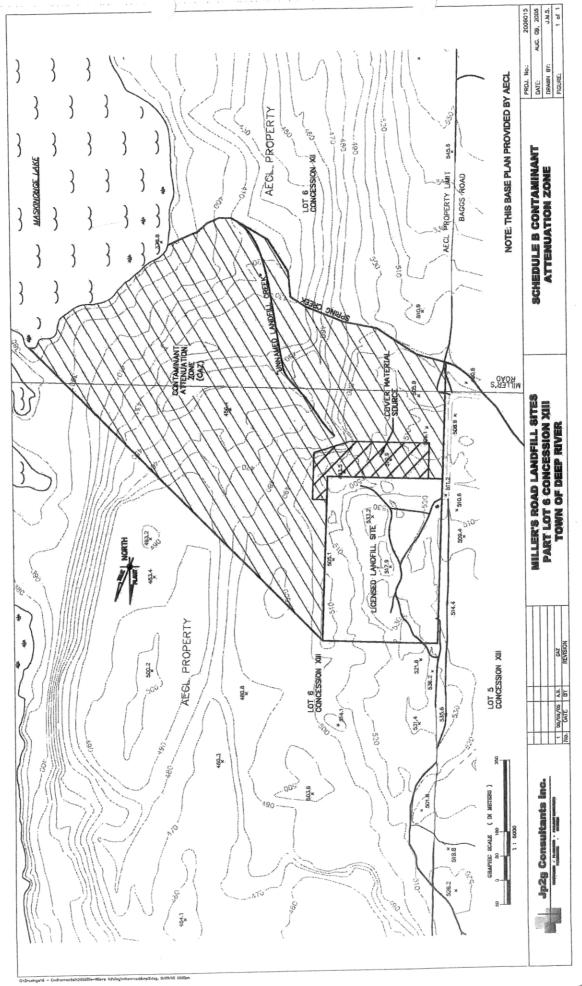
- b) For the employees, agents and contractors of the Lessee to access the material, with vehicles and equipment as may be necessary for all purposes to exercise the works as described above. All excavation and removal of native earth material shall take place in compliance with applicable federal and provincial laws and guidelines regarding aggregate extraction. Phased rehabilitation of the excavated area (every two years) will be conducted at no cost to AECL.
- c) Upon completion of the said work, the Lessee shall undertake the final rehabilitation of the pit in accordance with best management practices to the satisfaction of the Lessor.

Condition 14 added to read That the Lessee shall provide the Lessor with a copy of the Annual Report that is submitted to the Ministry of the Environment by June 1st of the year following the calendar year covered by the report.

All other terms and conditions of the March 1, 1965 Agreement shall remain in force and effect.

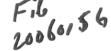
IN WITNESS WHEREOF the parties have caused these presents to be signed by their proper officers authorized on their behalf under their respective corporate seals.

ATOMIC ENERGY OF CANADA LIMITED


Stephen Lawton General Manager

Facilities and Site Infrastructure Services

THE CORPORATION OF THE TOWN OF DEEP RIVER


Mayor

Clerk-Administrator

al al

OFFICE CONSOLIDATION

THIS INDENTURE made this First day of March One Thousand Nine Hundred Sixty-five, in pursuance of the Short Form of Leases Act.

BETWEEN:

ATOMIC ENERGY OF CANADA LIMITED

(hereinafter called "the Lessor)

OF THE FIRST PART

- and -

THE CORPORATION OF THE TOWN OF DEEP RIVER

(hereinafter called "The Lessee")

OF THE SECOND PART

WITNESSETH THAT the Lessor, in consideration of the rents, covenants, provisos and conditions hereinafter reserved and contained, hath demised and leased, and, by these presents, doth demise and lease unto the Lessee:

ALL AND SINGULAR that certain parcel or tract of land situate lying and being in the Town Deep River in the Province of Ontario described in the schedule annexed to this Indenture (hereinafter called "the premises")

TO HAVE AND TO HOLD the premises unto the Lessee, from and after the First day of January 2006 for a term of ten years, fully to be complete and ended on the thirty-first day of December, 2015; provided however that the Lessee shall have the right and option, exercisable at any time during the last year of the aforesaid term, to renew this lease for a further period of 10 years and the right and option, exercisable at any time during the last year of any such renewal, to further renew this lease for one further period of 10 years.

YIELDING AND PAYING therefor, in advance, an annual rental of One Dollar (\$1.00), the first such rental payment to be effected on the execution of these presents.

IT IS AGREED by and between the said parties hereto that these presents are made and executed upon and subject to the covenants, provisos, conditions and reservations hereinafter set forth and contained, and that the same and every of them, representing and expressing the exact intention of the parties, are to be strictly observed, performed and complied with namely:-

 That the Lessee will use the premises only for construction and demolition waste and only as an area for waste disposal in accordance with the MOE Provisional Certificates.

- 2. That the Lessee shall, at the Lessees expense, erect a fence, satisfactory to the Lessor, around the portion of the leased area which is in use for the disposal of garbage, shall maintain such fence in a manner satisfactory to the Lessor and shall, at the expiration of the term of this lease or any renewal thereof, if the Lessor so directs, remove the said fence at the Lessee's expense.
- 3. That, within one month following the execution of these presents, the Lessee shall cause the area of the premises to be cleared and scarified and shall, during the Lessee's occupancy of the premises, take all reasonable measures(including measures directed by the Lessor to be taken) by way of burning and filling to ensure that the premises at no time present a fire or health hazard.
- 4. That the Lessee shall, within one month following the execution of these presents, effect measures to exterminate so far as possible the rat population in or about the premises and shall, during the term of this lease or any renewal thereof, continue to effect measures directed toward the effective control of the rat infestation of the said premises.
- 5. Burning of waste materials within the leased area shall be prohibited.
- 6. That the Lessee will pay or cause to be paid all rates, taxes and assessments, of whatsoever description, that may at any time during the existence of these presents be lawfully imposed, or become due and payable, upon, or in respect of the said premises, or any part thereof.
- 7. That if, after the expiration or termination of this lease or any renewal thereof, the Lessee shall remain in possession of the said premises, with or without the consent of the Lessor, or without any further written agreement, the Lessee shall be deemed a monthly tenant, at a monthly rental equal to one-twelfth or the annual rental herein set out, payable in advance on the first day of each month, and subject in all other respects to the terms of this lease.
- 8. That the Lessee shall in all respects abide by and comply with all lawful rules, regulations and by-laws of municipalities and other governing bodies, in any manner affecting the said premises.
- 9. That the Lessee shall not make any assignment of these presents, nor any transfer or sub-lease of any of the lands, rights or privileges demised or leased hereunder, without obtaining the consent in writing of the Lessor to such assignment, transfer or sub-lease.
- 10. That it shall be lawful for the Lessor and its agents at all reasonable times during the term of this lease to enter the said premises to examine the condition thereof.
- 11. That the Lessee shall at all times indemnify and save harmless the Lessor from and against all claims and demands, loss, costs, damages, actions, suits or other proceedings by whomsoever made, brought or prosecuted, in any manner based upon, occasioned by or attributable to the execution of these presents, or any action taken or things done or maintained by virtue hereof, or the exercise in any manner of rights arising hereunder. The above conditions shall survive the termination or expiration of this Agreement.
- 12. That the Lessor shall grant unto the Lessee, at all reasonable times during the

term of the lease, access upon the lands described in the schedule annexed to this Addendum herein after called "Schedule B Contaminant Attenuation Zone".

- a) To install, maintain, inspect, sample, repair and keep in good condition, the boreholes including all appurtenances necessary for the monitoring of the landfilling operation compliance.
- b) To maintain, inspect and sample surface water locations for the monitoring of the landfilling operation compliance.
- c) For the employees, agents and contractors of the Lessor to access with material, vehicles and equipment as may be necessary for all purposes to the exercise the works as described above.
- d) Upon completion of the said work or any future work, the Lessee shall remove its equipment and restore the property to substantially the same condition.
- e) If ever the extent of the boundary of the schedule annexed to this Addendum/ Contaminant Attenuation Zone is in dispute, to resolve the dispute, the Lessee shall pay to have the boundary surveyed by a registered professional land surveyor.
- f) That the Lessor is entitled to request and receive all information on the contaminant monitoring.
- 13. That the Lessor shall grant unto the Lessee access to the lands described in the schedule annexed to this Addendum herein after called Schedule B Contaminant Attenuation Zone, as "Cover Material Source".
 - a) To excavate and remove native earth material for the purpose of covering waste disposed at the landfill site. The material removed from the cover material source as identified on Schedule B is for the use only at the Miller's Road Landfill Site.
 - b) For the employees, agents and contractors of the Lessee to access the material, with vehicles and equipment as may be necessary for all purposes to exercise the works as described above. All excavation and removal of native earth material shall take place in compliance with applicable federal and provincial laws and guidelines regarding aggregate extraction. Phased rehabilitation of the excavated area (every two years) will be conducted at no cost to AECL.
 - c) Upon completion of the said work, the Lessee shall undertake the final rehabilitation of the pit in accordance with best management practices to the satisfaction of the Lessor.
- 14. That the Lessee shall provide the Lessor with a copy of the Annual Report that is submitted to the Ministry of the Environment by June 1st of the year following the calendar year covered by the report.

IN WITNESS WHEREOF the parties have caused these presents to be signed by their proper officers authorized in that behalf under their respective corporate seals.

Appendix H

Water Quality Analysis

Water Quality Notes

Surface Water

CWQG PWQO IPWQO	Provincial Wat	Quality Guidelines for the Protection of Aquatic Life ter Quality Objectives Quality Objectives
"a"	Alkalinity	Should not be decreased by more than 25%
"b"	Beryllium	If hardness <75 then 0.011 mg/L If hardness >75 then 1.1 mg/L
"c"	Cadmium PWQO IPWQO	0.0002 mg/L If hardness 0-100 mg/L then 0.0001 mg/L
	CWQG	If hardness >100 mg/L then 0.0005 mg/L Cadmium concentration = $10^{0.86[log10(hardness)]-3.2}$ μ g/L
"d"	Copper PWQO IPWQO	0.005 mg/L If hardness 0 –20 mg/L then 0.001 mg/L If hardness >20 mg/L then 0.005 mg/L
	CWQG	If hardness >20 mg/L then 0.005 mg/L Copper concentration = $e^{0.8545[ln(hardness)]-1.465} * 0.2 \mu g/L$
"e"	Lead PWQO	If alkalinity <20 then 0.005 mg/L If alkalinity 20 - 40 mg/L then 0.010 mg/L If alkalinity 40 - 80 mg/L then 0.02 mg/L If alkalinity > 80 mg/L then 0.025 mg/L
	IPWQO	If hardness <30 mg/L then 0.001 mg/L If hardness 30 - 80 mg/L then 0.003 mg/L
	CWQG	If hardness > 80 mg/L then 0.005 mg/L Lead concentration = $e^{1.273[ln(\frac{hardness}{l})]-4.705}$ µg/L
" L "	<i>DO</i> PWQO	Varies with temperature
"g"	<i>Nickel</i> CWQG	Nickel concentration = $e^{0.76[ln(\frac{hardness}{l})]+1.06} \mu g/L$

<u>Groundwater</u>

MAC	Maximum Acceptable Concentration
IMAC	Interim Maximum Acceptable Concentration
OG	Operational Guideline (non health related)
MDC	Maximum Desirable Concentration
AO	Aesthetic Objective

STANDARD SAMPLING PROTOCOL

The following is a description of the monitoring procedures and protocols used for groundwater and surface water monitoring for landfill sites.

Equipment Cleaning and Calibration

Regardless of matrix, prior to traveling to the site to be sampled, all equipment such as water level indicators and multi-parameter meters must be cleaned and calibrated as specified by the equipment manufacturer. Details of the cleaning and calibration should be recorded in the field notes.

GROUNDWATER Monitoring Well Assessment

provide an assessment of the status of all monitoring wells at the site;

note any changes to the well and/or protective casing and record the physical condition of the well; and

label all observation wells clearly and accurately on both the protective casing and well pipe.

Groundwater Monitoring

maintain and use an accurate, up-to-date list of all observation wells to be monitored; check all field equipment for cleanliness; and

wear personnel protective equipment (i.e. gloves, protective glasses, splash guards) during all phases of work, and follow any appropriate health and safety plan procedures.

Gas Detection in Wells (Prior to Measuring Water Levels)

turn on gas meter and prepare for sampling atmospheric condition inside monitoring well; remove protective casing cover and well cap avoiding introduction of foreign materials into the well:

immediately insert the probe attached to the gas meter into the well and wait for readings to stabilize;

record the measurement in the appropriate column on the field data sheet or field book.

Water Level Measurements (Prior to Purging)

always take water level measurements prior to purging or sampling;

do not move dedicated sampling devices such as the "Waterra" inertial pump prior to measuring the water level; reference the measurement from the same location each time (marked location or lowest point on pipe);

lower the tape/probe into the wells - record the depth to water when the indicator (audible/visual) shows the water level has been reached;

measure the water level twice by raising and lowering the tape/probe; and

record the measurement to the nearest cm (0.5 cm) in the appropriate column on the field data sheet or field book.

Well Purging (Prior to Sampling)

The purpose of purging is to remove the stagnant water from within a monitor (removal of all stagnant water) so that a representative water sample may be collected. The procedures for purging are as follows:

purge the well only after water levels have been confirmed;

lift the tubing off the bottom of the well and "pump" stagnant water from the well into a graduated container such as a bucket, pail or cylinder so that the purged volume can be measured and recorded:

for low-yield wells, it is expected that either "no purge sampling techniques or low flow purging will be utilized (avoid purging well dry);

under normal circumstances purged water may be discarded on the ground, away from the well to avoid the potential of water seeping back into the well; and

allow a sufficient recovery period before sampling (not more than 48 hours).

Field Measurements

Field measurements are to be collected and recorded as outlined in the Certificate of Approval or the approved monitoring program.

Well Sampling

collect the water sample as soon as practical (not more than 48 hours) after purging starting at the least contaminated and proceeding to the most contaminated;

lift tubing and check valve off bottom of well to avoid introducing unnecessary sediment into the sample and transfer some representative sample water into a clean, well rinsed container to conduct measurements of field parameters:

lift the tubing and gently transfer a sample into a clean container and thoroughly mix to form a single representative sample;

transfer the sample into a pre-labelled sample bottle;

for samples that require filtering, attach the disposable filter onto the end of the tubing (a 0.45 micron membrane filter should be used);

attempt to keep sample agitation to a minimum during sample transfer;

store samples in a cooler, with ice packs to keep cool;

conduct field measurements (these typically include: temperature, pH and conductivity; and

transport samples to laboratory within the maximum hold time established by the laboratory (typically within a 48 hour period).

Volatile Organic Compound (VOC) Sampling

Volatile Organic Compounds (VOC) can be easily lost during sample collection, storage, and transportation. The following sampling and handling protocols are adhered to.

VOC samples are to be collected in special containers provided by the laboratory. These typically include: glass vials, preferably amber, with a minimum capacity of 20 ml and sealed with Septum tops.

vials must be filled just to overflowing in such a manner that no air bubbles pass through the vial as it is being filled (this is easier to accomplish by inserting a 4' length of 1/4 " poly tubing into the existing watter tubing and filling the vial from the 1/4" tubing);

vials must then be sealed with the cap so that no air bubbles are entrapped within it; the septum is placed with the Teflon side face down toward the inside of the bottle;

check for the presence of air bubbles by inverting the vial and tapping on hard surface; if air bubbles are present, discard the sample and re-sample;

all VOC samples must be preserved as specified by the laboratory (typically with 1 to 2 drops of Hydrochloric Acid (HCI)) and refrigerated or stored on ice until analysed; and VOC samples should be submitted in duplicate.

SURFACE WATER SAMPLING (GENERAL)

Surface water samples should be collected at the same designated location during each sample event (do not collect samples from any station which is frozen, stagnant or otherwise not representative of normal conditions).

if you must stand in the stream, position yourself downstream of the sample location to avoid contaminating the sample with sediment, debris, and other floating materials; all equipment must be thoroughly rinsed with distilled water at the beginning of each station to avoid cross-contamination;

wear gloves to handle the sample bottles;

fill all bottles using an unpreserved transfer bottle (to avoid overflowing pre-preserved bottles);

when sampling for dissolved metals, the sample must be filtered and placed in a separate metals bottle, while sampling for total metals, the sample is placed in a common bottle for metals that is provided by the laboratory;

label and store all samples in the same manner as for groundwater samples; and conduct field measurements (these typically include: temperature, pH, conductivity, Dissolved Oxygen and Flow).

Flow Measurements (General)

Discharge flow measurements must be taken at designated stations.

QA/QC Water Samples

A field quality assurance and quality control program for all monitoring events will be established as follows:

where groundwater or surface water samples are taken, a field blank in which a set of sample bottles is filled with distilled water at a known site or monitoring station is submitted to the laboratory for analysis along with the samples;

where VOC samples are taken, a trip blank, in which 1 set of VOC vials are filled with distilled water (at the laboratory or office) prior to going to the field and accompanies the sample bottles until they are returned to the lab; and

duplicate of at least one sample set per sampling event or 1 duplicate for every 10 groundwater samples (do not identify the well number to the laboratory, but have it recorded in the field notes) use the sampling technique as for observation wells.

SAMPLING

Station Sampling Order

The stations will be sampled beginning with those wells exhibiting the lowest chemical concentrations and then moving on to wells with greater chemical concentrations.

Monitoring Periods

The monitoring periods are as recommended in either the annual report or the Certificate of Approval.:

Analytical Parameters

Analysis will be as recommended in either the annual report or the Certificate of Approval.

Gas Detection of On-site Buildings

Gas detection in on-site buildings is to be included as part of regular monitoring.

Sample Location 85-A

Sample Date			Jul-85	Jul-91	Sep-91	Aug-96	Jul-99	May-04
PARAMETER	Limit	ODWO/S	T		T	0.04		40.00F
Silver						<0.01	<0.01	<0.005
Aluminum	OG	0.1				1.85	0.02	0.069
Alkalinity (C _a CO3)	OG	30-500				97	104	80
Arsenic	IMAC	0.025					<0.001	<0.001
Boron	IMAC	5		< 0.01	<0.01	<0.01	0.01	<0.005
BOD								
Barium	MAC	1				0.045	0.020	0.026
Beryllium						<0.005	<0.005	<0.001
Calcium						32.6	28.5	29.1
Cadmium	MAC	0.005		< 0.002	<0.002	< 0.0001		<0.0001
Chloride	AO	250	22.0	<1	<1	5.8	2.1	1.9
Cobalt						< 0.01	< 0.01	<0.005
COD			740				248	14
Conductivity us/cm			320			237	246	232
Chromium	MAC	0.05				< 0.01	<0.01	<0.001
Copper	AO	1				0.01	<0.01	<0.002
Fluoride	MAC	1.5				0.02		
Iron	AO	0.3		7.31	11.3	1.24	0.05	0.156
Hardness as CaCo3	OG	500		165	95	2.2.	94	94
Mercury	MAC	0.001		103	33		<0.0001	
Potassium	IVII (C	0.001	3.5			8.9	3.8	5.3
Magnesium			3.5			5.94	5.47	5.12
Manganese	AO	0.05				0.02	<0.01	0.01
Molybdenum	AU	0.03				0.02	<0.01	<0.01
Sodium	AO	200	11.0			11.4	3.0	3.2
Nickel	AU	200	11.0				<0.02	<0.01
N-NH3			0.5			<0.02	0.02	₹0.01
N-NO2	NAAC	1	0.12				<0.1	
N-NO3	MAC	1				1.1		
	MAC	10	<0.2			1.1	0.7	
Phosphorus Lead	2446	0.01				0.2	<0.1	0.0003
	MAC	0.01	7.6	7.70	7.60	<0.0002	0.0003	0.0003
pH (no units)	OG	6.5-8.5	7.6	7.78	7.68	7.23	7.24	10.001
Phenols		_				0.01	0.001	<0.001
DOC	AO	5						0.6
Selenium	MAC	0.01					<0.001	<0.001
Silicon						11.30	5.94	6.7
Tin						<0.2	<0.02	<0.05
Sulphate	AO	500				13	12	8
Strontium						0.090	0.060	0.072
Total Dissolved Solids	AO	500	208*	108	106	164		
Titanium						0.09	<0.01	<0.005
Total Kjeldahl Nitrogen							1.08	
Vanadium						0.006	<0.005	<0.005
Zinc	AO	5				0.01	0.03	0.005
Total phosphorous							0.39	0.34
Thallium								
Field Parameters								
Temp								
pH								
Conductivity us/cm								
· · · · · · · · · · · · · · · · · · ·	1		1	1	1	1	1	

All concentrations in mg/L unless otherwise noted

Sample Location 85-A

Sample Date Sep-04

PARAMETER	Limit	ODWO/S				
Silver			< 0.005			
Aluminum	OG	0.1	0.006			
Alkalinity (C _a CO3)	OG	30-500	86			
Arsenic	IMAC	0.025	0.001			
Boron	IMAC	5	<0.005			
BOD	1141716	3	10.000			
Barium	MAC	1	0.019			
Beryllium	IVIAC		<0.001			
Calcium			24			
Cadmium	MAC	0.005	<0.0001			
Chloride	AO	250	1.7			
Cobalt	AU	250	<0.005			
COD			8			
Conductivity us/cm			190			
Chromium	N446	0.05	<0.001			
	MAC	0.05				
Copper	AO	1	<0.002			
Fluoride	MAC	1.5	2 225			
Iron	AO	0.3	0.025			
Hardness as CaCo3	OG	500	78			
Mercury	MAC	0.001				
Potassium			4			
Magnesium			4.45			
Manganese	AO	0.05	<0.001			
Molybdenum			<0.01			
Sodium	AO	200	2.6			
Nickel			<0.01			
N-NH3						
N-NO2	MAC	1				
N-NO3	MAC	10				
Phosphorus						
Lead	MAC	0.01	<0.0005			
pH (no units)	OG	6.5-8.5				
Phenols			< 0.001			
DOC	AO	5	0.6			
Selenium	MAC	0.01	<0.001			
Silicon	1711710	0.01	6.65			
Tin			<0.05			
Sulphate	AO	500	8			
Strontium	AO	300	0.055			
Total Dissolved Solids	AO	500	0.055			
Titanium	AU	300	<0.005			
Total Kjeldahl Nitrogen			<0.003			
Vanadium			<0.005			
	4.0	_			1	
Zinc	AO	5	<0.005		-	
Total phosphorous			0.12			
Thallium						
Field Parameters						
Temp						
pH						
Conductivity us/cm						

All concentrations in mg/L unless otherwise noted

Sample Location 85-B

Sample Date			Jul-85	Jul-91	Sep-91	Nov-92	Sep-95	Aug-96
PARAMETER	Limit	ODWO/S						
Silver						<0.01	0.015	<0.01
Aluminum	OG	0.1				0.12	3.50	1.03
Alkalinity (C _a CO3)	OG	30-500				122	100	96
Arsenic	IMAC	0.025					<0.1	<0.1
Boron	IMAC	5		<0.01	<0.01	<0.01	<0.01	<0.01
BOD				10.02	10.01	10101	10.02	10.02
Barium	MAC	1				0.050	0.730	0.065
Beryllium	1417 (C					<0.01	<0.005	<0.005
Calcium						31	25.2	26.6
Cadmium	MAC	0.005		<0.002	<0.002	<0.01	<0.0001	<0.0001
Chloride	AO	250	23.0	2.0	4.0	2.0	3.1	1.6
Cobalt	AO	250	25.0	2.0	4.0	<0.01	<0.01	<0.01
COD			1330			\0.01	55	\0.01
Conductivity us/cm			360				33	209
Chromium	MAC	0.05	300			<0.01	0.022	<0.01
Copper	AO	1				<0.01	<0.046	0.02
Fluoride	MAC	1.5				<0.01	<0.046	0.02
Iron		0.3		2.42	0.11	0.07	4.0	1 72
Hardness as CaCo3	AO			3.13	0.11	0.07	4.8	1.72
	OG	500		114	138			
Mercury	MAC	0.001	2.4			4	1.0	F. C
Potassium			3.1			1	1.9	5.6
Magnesium						9.00	7.39	7.48
Manganese	AO	0.05				0.09	0.20	0.14
Molybdenum						<0.01	<0.02	0.03
Sodium	AO	200	15.0			3.0	3.2	2.4
Nickel						<0.01	<0.02	<0.02
N-NH3			0.3					
N-NO2	MAC	1	0.2					
N-NO3	MAC	10	0.2			<0.1	0.5	0.2
Phosphorus						<0.1	<0.1	0.2
Lead	MAC	0.01				<0.05	0.0053	0.002
pH (no units)	OG	6.5-8.5	7.6	7.64	7.56	8.09	7.76	7.8
Phenols							0.005	<0.001
DOC	AO	5				3		
Selenium	MAC	0.01						
Silicon						7.80	16.40	10.20
Tin						<0.05	<0.2	<0.2
Sulphate	AO	500				8	10	8
Strontium						0.040	0.048	0.049
Total Dissolved Solids	AO	500	234	170	184	150	140	176
Titanium						<0.01		0.04
Total Kjeldahl Nitrogen								
Vanadium						<0.01	0.025	0.016
Zinc	AO	5				0.02	0.011	< 0.01
Total phosphorous								
Thallium								
Field Parameters								
Temp								
pH								
Conductivity us/cm								
All concentrations in mg/L un		·		i .	1	1	i .	1

All concentrations in mg/L unless otherwise noted

Sample Location 85-B

Sample Date Nov-99 Jun-00

PARAMETER	Limit	ODWO/S					
Silver			<0.01	<0.01			
Aluminum	OG	0.1	0.30	0.83			
Alkalinity (C _a CO3)	OG	30-500	130	91			
Arsenic	IMAC	0.025	<0.1	<0.1			
Boron	IMAC	5	0.02	<0.01			
BOD			0.02	10.02			
Barium	MAC	1	0.030	0.015			
Beryllium	1417 (C	_	<0.005	<0.005			
Calcium			28.7	22.3			
Cadmium	MAC	0.005	<0.0001	<0.0001			
Chloride	AO	250	1.6	1.1			
Cobalt	AU	230	<0.01	<0.01			
COD			<0.01	<0.01			
Conductivity us/cm			215	178			
Chromium	N4AC	0.05					
	MAC	0.05	<0.01	<0.01			
Copper	AO	1	<0.01	<0.01			
Fluoride	MAC	1.5					
Iron	AO	0.3	0.2	0.86			
Hardness as CaCo3	OG	500					
Mercury	MAC	0.001					
Potassium			2.5	2.3			
Magnesium			6.39	6.35			
Manganese	AO	0.05	<0.01	0.07			
Molybdenum			<0.02	<0.02			
Sodium	AO	200	11.9	2.3			
Nickel			<0.02	<0.02			
N-NH3							
N-NO2	MAC	1					
N-NO3	MAC	10	0.7	<0.1			
Phosphorus			<0.1	<0.1			
Lead	MAC	0.01	<0.0002	<0.0002			
pH (no units)	OG	6.5-8.5	7.95	7.98			
Phenols		0.0 0.0	<0.001	0.004			
DOC	AO	5	10.001	0.001			
Selenium	MAC	0.01					
Silicon	IVIAC	0.01	7.84	11.40			
Tin			<0.2	<0.2			
Sulphate	AO	500	7	7			
Strontium	AU	300	0.050	0.035			
Total Dissolved Solids	40	F00					
Titanium	AO	500	132	126			
Total Kjeldahl Nitrogen			0.01	0.03		+	
			2 2 2 2	0.005			
Vanadium		_	<0.005	<0.005			
Zinc	AO	5	<0.01	<0.01			
Total phosphorous							
Thallium							
Field Parameters							
Temp							
рН							
Conductivity us/cm							

All concentrations in mg/L unless otherwise noted

Sample Location 85-C

Sample Date			Jul-85	Sep-91	Sep-95	Aug-96	Jun-01	Jun-02
PARAMETER	Limit	ODWO/S						
Silver					0.012	< 0.01	<0.01	<0.01
Aluminum	OG	0.1			0.58	0.05	0.40	0.12
Alkalinity (C _a CO3)	OG	30-500			140	117	133	101
Arsenic	IMAC	0.025			<0.1	<0.1	0.001	<0.1
Boron	IMAC	5			< 0.01	< 0.01	<0.01	< 0.01
BOD								
Barium	MAC	1		<0.01	0.570	0.050	0.025	0.020
Beryllium					<0.005	<0.005	<0.005	<0.005
Calcium					46.4	41.5	31.9	28.1
Cadmium	MAC	0.005		<0.002	0.0001	<0.0001	<0.0001	<0.01
Chloride	AO	250	16.0	4.0	4.9	1.5	2.5	1.7
Cobalt	7.10				<0.01	0.01	<0.01	<0.01
COD			1880		270	0.01	10.01	10.01
Conductivity us/cm			560			242	267	198
Chromium	MAC	0.05			<0.01	<0.01	<0.01	<0.01
Copper	AO	1			0.016	<0.01	<0.01	<0.01
Fluoride	MAC	1.5			0.010	10.01	0.1	10.01
Iron	AO	0.3		0.16	1	0.06	0.11	0.12
Hardness as CaCo3	OG	500		163		0.00	0.11	0.12
Mercury	MAC	0.001		103				
Potassium	IVIAC	0.001	3.6		2.9	7.9	0.6	1.4
Magnesium			3.0		10.10	11.00	7.76	7.75
Manganese	AO	0.05			1.00	0.10	0.01	<0.01
Molybdenum	70	0.03			<0.02	0.10	<0.02	<0.01
Sodium	AO	200	14.0		4.3	2.8	2.1	1.8
Nickel	7.0	200	14.0		<0.02	<0.02	<0.02	<0.02
N-NH3			0.3		₹0.02	₹0.02	\0.02	0.02
N-NO2	MAC	1	0.02					0.2
N-NO3	MAC	10	0.02		0.1	0.3		
Phosphorus	IVIAC	10	0.2		<0.1	<0.1		<0.1
Lead	MAC	0.01			0.0017	<0.0002	<0.0002	<0.1
pH (no units)	OG	6.5-8.5	7.4	7.39	7.6	8.02	7.68	\0.1
Phenols	OG	0.5-6.5	7.4	7.39	0.001	<0.001	0.02	<0.001
DOC	AO	5			0.001	<0.001	0.02	<0.001
Selenium	MAC	0.01						
Silicon	IVIAC	0.01			8.83	8.24	6.61	8.14
Tin					<0.2	<0.2	0.01	<0.2
Sulphate	AO	500			12	5	5	4
Strontium	AU	300			0.100	0.079	0.055	0.045
Total Dissolved Solids	AO	500	364	226	176	176	152	136
Titanium	AU	300	304	220	0.043	<0.01	<0.01	< 0.01
Total Kjeldahl Nitrogen					0.043	\U.U1	\U.U1	~U.UI
Vanadium					<0.01	<0.005	<0.005	<0.005
Zinc	AO	5			0.013	<0.003	<0.003	<0.003
Total phosphorous	AU	J			0.013	\U.U1	3.53	\U.U1
Thallium							3.33	
Field Parameters								
Temp								
рН						+		
Conductivity us/cm						-		
All concentrations in mg/L un		1			1			

All concentrations in mg/L unless otherwise noted

Sample Location 85-C

Sample Date May-04 May-05

PARAMETER	Limit	ODWO/S				
Silver			<0.005	< 0.0001		
Aluminum	OG	0.1	0.126	0.060		
Alkalinity (C _a CO3)	OG	30-500		115		
Arsenic	IMAC	0.025	<0.001			
Boron	IMAC	5	0.008	<0.01		
BOD			0.000	<1		
Barium	MAC	1	0.030	0.020		
Beryllium	IVIAC	-	<0.001	<0.001		
Calcium			31.8	28		
Cadmium	MAC	0.005	<0.0001	<0.0001		
Chloride	AO	250	<0.0001	2.0		
Cobalt	AU	250	10.005			
COD			<0.005	0.0003		
			24	<5		
Conductivity us/cm				218		
Chromium	MAC	0.05	0.001	<0.001		
Copper	AO	1	0.006	0.001		
Fluoride	MAC	1.5				
Iron	AO	0.3	0.175	0.05		
Hardness as CaCo3	OG	500	113	103		
Mercury	MAC	0.001				
Potassium			2.9	1		
Magnesium			8.07	8.00		
Manganese	AO	0.05	0.008	<0.01		
Molybdenum			<0.01	<0.005		
Sodium	AO	200	3.2	<2		
Nickel	7.0	200	<0.01	<0.005		
N-NH3			10.01	10.005		
N-NO2	MAC	1		<0.10		
N-NO3	MAC	10		0.76		
Phosphorus	IVIAC	10		0.76		
Lead	MAC	0.01	0.0004	<0.001		
pH (no units)			0.0004	<0.001		
	OG	6.5-8.5	.0.001	0.004		
Phenols		_	<0.001	<0.001		
DOC	AO	5		1.1		
Selenium	MAC	0.01	<0.001			
Silicon			7.00	8.80		
Tin			<0.05			
Sulphate	AO	500		5		
Strontium			0.050	0.050		
Total Dissolved Solids	AO	500		142		
Titanium			0.006	< 0.01		
Total Kjeldahl Nitrogen				0.14		
Vanadium			<0.005	0.002		
Zinc	AO	5	0.013	< 0.01		
Total phosphorous			0.5			
Thallium				<0.0001		
Field Parameters						
Temp				10.9		
рН				9.07		
Conductivity us/cm		1		175		
Conductivity us/cill	1			1/3		

All concentrations in mg/L unless otherwise noted

Sample Location 85-D

Sample Date Jul-85 Jul-91

PARAMETER	Limit	ODWO/S					
Silver							
Aluminum	OG	0.1					
Alkalinity (C _a CO3)	OG	30-500					
Arsenic	IMAC	0.025					
Boron	IMAC	5		0.37			
BOD				0.07			
Barium	MAC	1					
Beryllium	1711710	_					
Calcium							
Cadmium	MAC	0.005		<0.002			
Chloride	AO	250	185.0	82.0			
Cobalt	AO	230	185.0	82.0			
COD			2900				
Conductivity us/cm			2150				
Chromium	NAAC	0.05	2130				
Copper	MAC	0.05					
Fluoride	AO MAC	1					
Iron		1.5		2.44			
	AO	0.3		3.11			
Hardness as CaCo3	OG	500		640			
Mercury	MAC	0.001					
Potassium			29				
Magnesium							
Manganese	AO	0.05					
Molybdenum							
Sodium	AO	200	100.0				
Nickel							
N-NH3			14				
N-NO2	MAC	1	0.16				
N-NO3	MAC	10	<0.2				
Phosphorus							
Lead	MAC	0.01					
pH (no units)	OG	6.5-8.5	6.5	6.9			
Phenols							
DOC	AO	5					
Selenium	MAC	0.01					
Silicon		0.02					
Tin							
Sulphate	AO	500					
Strontium	7.0	300					
Total Dissolved Solids	AO	500	1397	978			
Titanium	AO	300	1337	376			
Total Kjeldahl Nitrogen							
Vanadium							
Zinc	AO	5				+	
Total phosphorous	AU	3					
Thallium							
Field Parameters							
Temp					-	-	
pH Conductivity vales							
Conductivity us/cm							

All concentrations in mg/L unless otherwise noted

Sample Location 85-E

Sample Date Jul-85

PARAMETER	Limit	ODWO/S				
Silver						
Aluminum	OG	0.1				
Alkalinity (C _a CO3)	OG	30-500				
Arsenic	IMAC	0.025				
Boron	IMAC	5				
BOD						
Barium	MAC	1				
Beryllium	1411/10	_				
Calcium						
Cadmium	MAC	0.005				
Chloride	AO	250	10.0			
Cobalt	AO	230	10.0			
COD			1064			
Conductivity us/cm			225			
Chromium	NAAC	0.05	223			
Copper	MAC	0.05				
Fluoride	AO	1				
Iron	MAC	1.5				
Hardness as CaCo3	AO	0.3				
	OG	500				
Mercury	MAC	0.001				
Potassium			2.7			
Magnesium						
Manganese	AO	0.05				
Molybdenum						
Sodium	AO	200	5.2			
Nickel						
N-NH3			0.6			
N-NO2	MAC	1	0.02			
N-NO3	MAC	10	<0.2			
Phosphorus						
Lead	MAC	0.01				
pH (no units)	OG	6.5-8.5	6.5			
Phenols						
DOC	AO	5				
Selenium	MAC	0.01				
Silicon		0.02				
Tin						
Sulphate	AO	500				
Strontium	7.0	300				
Total Dissolved Solids	AO	500	225			
Titanium	AO	300				
Total Kjeldahl Nitrogen						
Vanadium						
Zinc	AO	5				
Total phosphorous	AU	5				
Thallium						
Field Parameters						
Temp						
pH						
Conductivity us/cm						

All concentrations in mg/L unless otherwise noted

Sample Location 85-F

Sample Date Jul-85

PARAMETER	Limit	ODWO/S				
Silver						
Aluminum	OG	0.1				
Alkalinity (C _a CO3)	OG	30-500				
Arsenic	IMAC	0.025				
Boron	IMAC	5				
BOD						
Barium	MAC	1				
Beryllium	1711710	_				
Calcium						
Cadmium	MAC	0.005				
Chloride	AO	250	22.0			
Cobalt	AO	230	22.0			
COD			740			
Conductivity us/cm			320			
Chromium	NAAC	0.05	320			
Copper	MAC	0.05				
Fluoride	AO	1				
Iron	MAC	1.5				
	AO	0.3				
Hardness as CaCo3	OG	500				
Mercury	MAC	0.001				
Potassium			3.5			
Magnesium						
Manganese	AO	0.05				
Molybdenum						
Sodium	AO	200	11.0			
Nickel						
N-NH3			0.5			
N-NO2	MAC	1	0.12			
N-NO3	MAC	10	<0.2			
Phosphorus						
Lead	MAC	0.01				
pH (no units)	OG	6.5-8.5	7.6			
Phenols						
DOC	AO	5				
Selenium	MAC	0.01				
Silicon		0.02				
Tin						
Sulphate	AO	500				
Strontium	7.0	300				
Total Dissolved Solids	AO	500	208			
Titanium	AO	300	200			
Total Kjeldahl Nitrogen						
Vanadium						
Zinc	AO	5		+		
Total phosphorous	AU	5				
Thallium						
Field Parameters						
				-		
Temp				-		
pH						
Conductivity us/cm						

All concentrations in mg/L unless otherwise noted

Sample Location 88-1D

Sample Date Oct-88 Jul-91 Sep-91

PARAMETER Silver	Limit	ODWO/S					
Aluminum	OG	0.1					
Alkalinity (C _a CO3)	OG	30-500	44				
Arsenic	IMAC	0.025					
Boron	IMAC	5		<0.01	<0.01		
Barium	MAC	1					
Beryllium	1717 (C						
BOD							
Calcium							
Cadmium	MAC	0.005		<0.002	<0.002		
Chloride	AO	250		<1	<1		
Cobalt	AO	230		1	\1		
COD			<3				
Conductivity us/cm			119				
Chromium	MAC	0.05	113				
Copper	AO	1					
Fluoride	MAC	1.5				1	
Iron	AO	0.3		0.4	0.08		
Hardness as CaCO3	OG	500		51	56		
Mercury	MAC	0.001		31	30		
Potassium	IVIAC	0.001					
Magnesium							
Manganese	AO	0.05					
Molybdenum	AU	0.05					
Sodium	40	200					
Nickel	AO	200					
N-NH3							
N-NO2	N 4 A C	1					
N-NO3	MAC	1					
Phosphorus	MAC	10					
Lead	D 4 4 C	0.01	7.4				
	MAC	0.01	7.1	7.22	7.50		
pH (no units) Phenols	OG	6.5-8.5	.0.000	7.22	7.58		
DOC	• • •	_	<0.002				
Selenium	AO	5					
Silicon	MAC	0.01					
Tin	• • •	500					
Sulphate	AO	500					
Strontium							
Total Dissolved Solids	AO	500	84	66	78		
Titanium							
Thallium							
Total Kjeldahl Nitrogen							
Vanadium		1				1	
Zinc	AO	5					
Dissolved Reactive P		1					
Total phosphorous							
Field Parameters							
Temperature °C							
pH							
Conductivity us/cm							

All concentrations in mg/L unless otherwise noted

Sample Location 88-1S

Sample Date Oct. 1988 Jul-91 Sep-91

PARAMETER	Limit	ODWO/S					
Silver							
Aluminum	OG	0.1					
Alkalinity (C _a CO3)	OG	30-500	102				
Arsenic	IMAC	0.025	102				
Boron	IMAC	5		<0.01	<0.01		
Barium	MAC	1		₹0.01	₹0.01		
Beryllium	IVIAC	1					
BOD							
Calcium							
Cadmium	MAC	0.005		<0.002	40.002		
Chloride					<0.002		
Cobalt	AO	250		<1	<1		
COD							
			8				
Conductivity us/cm			196				
Chromium	MAC	0.05					
Copper	AO	1					
Fluoride	MAC	1.5					
Iron	AO	0.3		2.87	0.44		
Hardness as CaCO3	OG	500		108	80		
Mercury	MAC	0.001					
Potassium							
Magnesium							
Manganese	AO	0.05					
Molybdenum							
Sodium	AO	200					
Nickel							
N-NH3							
N-NO2	MAC	1					
N-NO3	MAC	10					
Phosphorus							
Lead	MAC	0.01					
pH (no units)	OG	6.5-8.5	7.8	8.12	7.78		
Phenols	- 00	0.5 0.5	<0.002	0.12	7.70		
DOC	AO	5	10.002				
Selenium	MAC	0.01					
Silicon	IVIAC	0.01					
Tin							
Sulphate	AO	500					
Strontium	AU	300					
Total Dissolved Solids	40	500	112	100	120		
Titanium	AO	500	112	106	120		
Thallium							
Total Kjeldahl Nitrogen							
Vanadium							
Zinc	AO	5					
Dissolved Reactive P							
Total phosphorous							
Field Parameters							
Temperature °C							
pH							
Conductivity us/cm							
All concentrations in mg/L ur	nless otherwi	se noted					

All concentrations in mg/L unless otherwise noted

Sample Location 88-2D

Sample Date Oct-88 Jul-91 Sep-91 Nov-92

PARAMETER	Limit	ODWO/S						
Silver		-,-				< 0.01		
Aluminum	OG	0.1				2.10		
Alkalinity (C _a CO3)	OG	30-500	86			320		
Arsenic	IMAC	0.025	00			320		
Boron	IMAC	5		<0.01	<0.01	<0.01		
Barium	MAC	1		10.01	10.01	0.160		
Beryllium	IVIAC					<0.01		
BOD						\0.01		
Calcium						83		
Cadmium	MAC	0.005		<0.002	<0.002	<0.01		
Chloride	AO	250		20.0	19.0	29.0		
Cobalt	AU	250		20.0	19.0			
COD						0.08		
Conductivity us/cm			224					
Chromium		0.05	221			0.04		
	MAC	0.05				<0.01		
Copper	AO	1				<0.01		
Fluoride	MAC	1.5						
Iron	AO	0.3		1.52	1.1	0.25		
Hardness as CaCO3	OG	500		136	144			
Mercury	MAC	0.001						
Potassium						4		
Magnesium						27.00		
Manganese	AO	0.05				0.24		
Molybdenum						< 0.01		
Sodium	AO	200				11.0		
Nickel						< 0.01		
N-NH3								
N-NO2	MAC	1						
N-NO3	MAC	10				<0.1		
Phosphorus						<0.1		
Lead	MAC	0.01				<0.05		
pH (no units)	OG	6.5-8.5	7.5	6.92	7.08	7.92		
Phenols			<0.002					
DOC	AO	5				<3		
Selenium	MAC	0.01						-
Silicon						6.70		
Tin						< 0.05		
Sulphate	AO	500				<3		
Strontium						0.270		
Total Dissolved Solids	AO	500	112	168		400		
Titanium	, 10	300		100		.55		
Thallium								
Total Kjeldahl Nitrogen								
Vanadium						<0.01		
Zinc	AO	5				<0.01		
Dissolved Reactive P	AU	J				\U.UI		
Total phosphorous								
Field Parameters								
Temperature °C								
pH								
Conductivity us/cm								
All concentrations in mg/L u	nloop othoru	ioo notod	1		1		<u> </u>	

All concentrations in mg/L unless otherwise noted

Sample Location 88-2S

Sample Date Oct-88 Jul-91 Sep-91 Nov-92

PARAMETER	Limit	ODWO/S						
Silver		-,-				< 0.01		
Aluminum	OG	0.1				<0.01		
Alkalinity (C _a CO3)	OG	30-500	2425			110		
Arsenic	IMAC	0.025	2.23			110		
Boron	IMAC	5		<0.01	<0.01	<0.01		
Barium	MAC	1		10.01	10.01	0.060		
Beryllium	1417 (C					<0.01		
BOD						10.01		
Calcium						32		
Cadmium	MAC	0.005		<0.002	<0.002	<0.01		
Chloride	AO	250		4.0	2.0	<1		
Cobalt	AU	230		4.0	2.0	<0.01		
COD						\0.01		
Conductivity us/cm			527					
Chromium	N4AC	0.05	327			0.03		
	MAC	0.05				0.02		
Copper Fluoride	AO	1 1				<0.01		
	MAC	1.5		4.44	12.0	.0.01		
Iron	AO	0.3		1.41	12.8	<0.01		
Hardness as CaCO3	OG	500		187	156			
Mercury	MAC	0.001				_		
Potassium						1		
Magnesium						8.00		
Manganese	AO	0.05				1.51		
Molybdenum						<0.01		
Sodium	AO	200				2.0		
Nickel						<0.01		
N-NH3								
N-NO2	MAC	1						
N-NO3	MAC	10				0.2		
Phosphorus						<0.1		
Lead	MAC	0.01				< 0.05		
pH (no units)	OG	6.5-8.5	7.4	7.37	7.28	7.89		
Phenols			0.029			9		
DOC	AO	5				3		
Selenium	MAC	0.01						
Silicon						6.20		
Tin						<0.05		
Sulphate	AO	500						
Strontium						0.050		
Total Dissolved Solids	AO	500		208	200	140		
Titanium		1				<0.01		
Thallium								
Total Kjeldahl Nitrogen								
Vanadium						<0.01		
Zinc	AO	5				<0.01		
Dissolved Reactive P	AU	, ,				\U.U1		
Total phosphorous								
Field Parameters								
Temperature °C								
pH								
Conductivity us/cm								
All concentrations in mg/L u	nloop othoru	iaa matad		1				

All concentrations in mg/L unless otherwise noted

Sample Location 88-3D

Sample Date			Oct-88	Jul-91	Sep-91	Nov-92	Sep-95	Aug-96
PARAMETER	Limit	ODWO/S						
Silver						< 0.01	0.012	< 0.01
Aluminum	OG	0.1				< 0.01	< 0.01	< 0.01
Alkalinity (C _a CO3)	OG	30-500	386			1040	648	791
Arsenic	IMAC	0.025					<0.1	
Boron	IMAC	5		0.61	0.76	0.6	0.284	0.43
Barium	MAC	1				1.450	0.756	1.980
Beryllium						<0.01	<0.005	<0.005
BOD								
Calcium						242	137	183
Cadmium	MAC	0.005		<0.01	<0.002	<0.01	0.0001	<0.0001
Chloride	AO	250		156.0	138.0	103.0	63.1	126.0
Cobalt						<0.01	0.019	<0.01
COD			35			10.02	93	10.02
Conductivity us/cm			842					1790
Chromium	MAC	0.05	0.12			<0.01	0.025	<0.01
Copper	AO	1				<0.01	<0.01	<0.01
Fluoride	MAC	1.5				10.01	10.01	10.01
Iron	AO	0.3		46.8	143	80.33	16.7	75.1
Hardness as CaCO3	OG	500		156	1067	80.55	10.7	75.1
Mercury	MAC	0.001		130	1007			
Potassium	IVIAC	0.001				44	32.3	45.5
Magnesium						60.00	30.10	40.00
Manganese	AO	0.05				28.89	10.90	15.20
Molybdenum	AU	0.05				<0.01	0.033	0.12
Sodium	AO	200				106.0	67.6	68.3
Nickel	AU	200					<0.02	<0.02
N-NH3						<0.01	<0.02	<0.02
N-NO2	NAAC	1						
N-NO3	MAC MAC	10				<0.1	0.1	<0.1
Phosphorus	IVIAC	10				<0.1	<0.1	<0.1
Lead	NAAC	0.01						
	MAC	0.01	7.25	C 0F	6.26	<0.05	0.0011	<0.0002
pH (no units) Phenols	OG	6.5-8.5	7.35	6.05	6.26	6.56	7.16	6.94
DOC	4.0		0.008			.2	0.015	0.016
Selenium	AO	5				<3		
Silicon	MAC	0.01				42.00	45.40	47.70
Tin						13.90	15.40 <0.2	17.70
	4.0	500				<0.05		0.3
Sulphate	AO	500				<3	<1	<1
Strontium Total Dissolved Solids	•	500	504	2020	2200	1.270	0.677	1.050
	AO	500	521	2820	2398	1430	704	920
Titanium						<0.01	<0.01	<0.01
Thallium								
Total Kjeldahl Nitrogen							2.21	2 2 4 2
Vanadium		_				<0.01	<0.01	0.019
Zinc	AO	5				0.03	<0.01	<0.01
Dissolved Reactive P								
Total phosphorous								
Field Parameters								
Temperature ^o C								
pH								
Conductivity us/cm All concentrations in mg/L u								

All concentrations in mg/L unless otherwise noted

Sample Location 88-3D

Sample Date			Nov-96	Jul-97	Nov-98	Jul-99	Nov-99	Jun-00
PARAMETER	Limit	ODWO/S						
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum	OG	0.1	0.04	<0.01	0.01	<0.01	0.05	0.17
Alkalinity (C _a CO3)	OG	30-500	548	718	531	420	450	545
Arsenic	IMAC	0.025	0.003	0.1	<0.1	0.002	<0.1	0.1
Boron	IMAC	5	0.38	0.42	0.28	0.29	0.27	0.33
Barium	MAC	1	1.250	1.340	0.662	0.805	0.405	1.000
Beryllium	IVIAC		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
BOD			\0.003	\0.003	\0.003	\0.003	\0.005	\0.003
Calcium			139	183	93.5	92.5	93.1	96.4
Cadmium	MAC	0.005	<0.0001	<0.01	<0.0001	32.3	<0.0001	<0.0001
Chloride	AO	250	58.0	52.0	38.9	17.9	30.4	30.8
Cobalt	AU	230	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
COD			<0.01	<0.01	<0.01	55	<0.01	<0.01
Conductivity us/cm			1200	1200	1070		050	1000
Chromium	NAAC	0.05	1390	1290	1070	987	959	1069
	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoride	MAC	1.5				••	2.16	
Iron	AO	0.3	59.4	67.1	20	48	2.16	59
Hardness as CaCO3	OG	500				308		
Mercury	MAC	0.001				<0.0001		
Potassium			39.5	40.1	29.4	33.5	33.5	31.8
Magnesium			29.80	30.50	22.00	18.50	18.70	40.00
Manganese	AO	0.05	10.90	11.50	6.87	6.11	5.90	6.80
Molybdenum			0.11	0.16	<0.02	<0.02	<0.02	<0.02
Sodium	AO	200	62.6	58.1	39.8	38.4	46.1	36.5
Nickel			<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
N-NH3						22.4		
N-NO2	MAC	1				<0.01		
N-NO3	MAC	10	0.2	<0.1	<0.1	0.2	0.1	0.1
Phosphorus			<0.1	0.2	<0.01	<0.01	<0.1	<0.1
Lead	MAC	0.01	<0.0002	<0.1	0.0002	0.0002	<0.0002	<0.0002
pH (no units)	OG	6.5-8.5	8.14	6.99	6.84	6.48	7.86	6.85
Phenols			0.004	0.004	0.005	0.017	<0.001	0.018
DOC	AO	5						
Selenium	MAC	0.01				< 0.001		
Silicon			17.20	18.00	15.40		13.50	16.70
Tin			0.2	0.5	0.2	<0.02	<0.2	0.2
Sulphate	AO	500	<1	<1	<1	<1	<1	<1
Strontium			0.725	0.775	0.505	0.450	0.445	0.525
Total Dissolved Solids	AO	500	794	864	642		488	530
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium							0.00	0.02
Total Kjeldahl Nitrogen						22.4		
Vanadium			0.015	0.006	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.1	<0.01	0.02	<0.003	<0.003	0.03
Dissolved Reactive P	70	<u> </u>	٧٥.1	\0.01	0.02	\0.01	₹0.01	0.03
Total phosphorous						<0.01		
Field Parameters						\U.U1		
Temperature °C								
pH		+						
Conductivity us/cm								
All concentrations in mg/L u	mlaaa athaa	ing metad						

All concentrations in mg/L unless otherwise noted

Sample Location 88-3D

Sample Date			Oct-00	Jun-01	Oct-01	Jun-02	Nov-02	Jul-03
PARAMETER	Limit	ODWO/S						
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Aluminum	OG	0.1	0.47	0.90	<0.01	<0.01	0.05	<0.005
Alkalinity (C _a CO3)	OG	30-500	487	409	330	444	393	369
Arsenic	IMAC	0.025	<0.1	0.004	0.003	0.1	<0.1	<0.03
Boron	IMAC	5	0.19	0.25	0.26	0.29	0.24	0.211
Barium	MAC	1	0.960	0.785	0.640	0.953	0.755	0.433
Beryllium	IVIAC		<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
BOD			\0.005	\0.003	\0.003	\0.003	\0.003	\0.001
Calcium			99.2	87.3	80.2	101	83.5	90.4
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0006	<0.01	<0.01	<0.0001
Chloride	AO	250	32.3	25.3	22.5	27.4	25.3	21.6
Cobalt	AU	230	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
COD			<0.01	<0.01	\0.01	\0.01	\0.01	53
Conductivity us/cm			880	802	699	913	797	770
Chromium	MAC	0.05	<0.01	<0.01	<0.01	0.03	<0.01	0.001
Copper	AO	1	<0.01	<0.01	<0.01	<0.03	<0.01	<0.001
Fluoride	MAC		<0.01	0.01	0.01	<0.01	<0.01	<0.002
Iron		1.5				CE 0	FO 9	4.67
Hardness as CaCO3	AO	0.3 500	55.5	44.3	38.3	65.8	50.8	4.67
	OG							287
Mercury	MAC	0.001	20.0	20.7	20.6	20.0	20.2	26.7
Potassium			29.9	29.7	30.6	29.8	30.3	26.7
Magnesium			23.10	16.60	15.00	18.40	16.20	14.90
Manganese	AO	0.05	6.40	5.63	5.06	6.44	5.67	4.76
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
Sodium	AO	200	35.4	27.0	28.3	27.6	26.9	21.5
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
N-NH3						<0.1		
N-NO2	MAC	1					0.2	<0.1
N-NO3	MAC	10	<0.1					0.1
Phosphorus			<0.1			<0.1	<0.1	
Lead	MAC	0.01	<0.0002	0.0017	<0.0012	<0.1	<0.1	0.0006
pH (no units)	OG	6.5-8.5	6.99	6.72	8.35		8.26	
Phenols			0.009	0.015	0.003	0.003	0.002	0.004
DOC	AO	5						
Selenium	MAC	0.01						
Silicon			13.60	15.00	16.30	18.00	16.30	14.00
Tin						<0.2	<0.2	0.05
Sulphate	AO	500	<1	<1	1	1	1	3
Strontium			0.575	0.470	0.360	0.504	0.430	0.340
Total Dissolved Solids	AO	500	456	414	419	410	442	
Titanium			<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.005
Thallium								
Total Kjeldahl Nitrogen								
Vanadium			0.01	<0.005	0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.005
Dissolved Reactive P								
Total phosphorous				0.08	0.08			0.04
Field Parameters								
Temperature °C								
pH							1	
Conductivity us/cm								
All concentrations in mg/L u	place othorw	ico notod	1	<u> </u>	I		1	

All concentrations in mg/L unless otherwise noted

Sample Location 88-3D

Sample Date			Sep-04	May-05	Nov-05	May-06	Oct-06	May-07
PARAMETER	Limit	ODWO/S						
Silver			< 0.005	< 0.0001	<0.0001		< 0.0001	< 0.0001
Aluminum	OG	0.1	0.062	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Alkalinity (C _a CO3)	OG	30-500	381	383	318	410	341	395
Arsenic	IMAC	0.025	0.002					
Boron	IMAC	5	0.22	0.23	0.17	0.19	0.18	0.22
Barium	MAC	1	0.670	0.780	0.610	0.690	0.580	0.770
Beryllium			< 0.001	< 0.001	<0.001		< 0.001	< 0.001
BOD				10	6		4	4
Calcium			73.3	82	59	75	68	79
Cadmium	MAC	0.005	<0.0001	0.0002	<0.0001		<0.0001	<0.0001
Chloride	AO	250	17.7	17.0	17.0	15.0	17.0	17.0
Cobalt			<0.005	0.0013	0.0006	0.0009	0.0007	0.0011
COD			51	47	38	53	43	44
Conductivity us/cm			784	802	674	816	719	806
Chromium	MAC	0.05	0.002	0.004	0.003	0.004	0.002	0.005
Copper	AO	1	<0.002	<0.004	<0.001	0.04	<0.002	0.003
Fluoride	MAC	1.5	₹0.002	\0.001	\0.001	0.04	\0.001	0.002
Iron	AO	0.3	4.44	54.5	48.3	62.5	49.4	62.4
Hardness as CaCO3	OG	500	248	258	193	02.3	219	255
Mercury	MAC	0.001	240	230	195		219	255
Potassium	IVIAC	0.001	27.6	24	20	26	22	27
Magnesium	4.0	0.05	15.60	13.00	11.00	13.00	12.00	14.00
Manganese	AO	0.05	4.91	5.10	4.40	5.05	3.67	4.69
Molybdenum			<0.01	<0.005	<0.005	10.0	<0.005	<0.005
Sodium	AO	200	20.6	19.0	16.0	18.0	17.0	19.0
Nickel			<0.01	<0.005	<0.005		<0.005	<0.005
N-NH3		_				15.6		
N-NO2	MAC	1		<0.10	<0.10		<0.10	<0.10
N-NO3	MAC	10		<0.10	<0.10		<0.10	<0.10
Phosphorus								
Lead	MAC	0.01	<0.0005	0.002	<0.001		<0.001	<0.001
pH (no units)	OG	6.5-8.5						
Phenols			<0.001	0.003	0.001		<0.001	<0.001
DOC	AO	5		15.8	11.1	15.8	13.5	15.8
Selenium	MAC	0.01	0.001					
Silicon			16.60	22.00	18.40	15.40	19.00	18.20
Tin			< 0.05					
Sulphate	AO	500	3	6	3		5	4
Strontium			0.356	0.460	0.350	0.416	0.341	0.432
Total Dissolved Solids	AO	500		521	438	530	467	524
Titanium			< 0.005	< 0.01	< 0.01		< 0.01	< 0.01
Thallium				< 0.0001	< 0.0001		< 0.0001	0.0002
Total Kjeldahl Nitrogen				17.5	16.1	16.7	16.1	16.3
Vanadium			<0.005	0.011	0.008	311	0.006	0.012
Zinc	AO	5	0.008	<0.01	<0.01	0.01	0.01	0.01
Dissolved Reactive P	0		2.500	3.01		0.11	5.51	3.31
Total phosphorous		1	0.06		0.12	7.11	0.08	0.13
Field Parameters			0.00		0.12		0.00	5.15
Temperature °C		+		9.1	7.2	8.8	8.2	9.0
pH				6.99	6.75	6.58	6.16	6.42
Conductivity us/cm		+		869	714	735	673	810
All concentrations in mar/l		1		009	/ 14	/35	0/3	010

All concentrations in mg/L unless otherwise noted

Sample Location 88-3S

Sample Date			Oct-88	Jul-91	Sep-91	Nov-92	Jul-97	Nov-98
PARAMETER	Limit	ODWO/S						
Silver						< 0.01	< 0.01	< 0.01
Aluminum	OG	0.1				< 0.01	0.07	0.12
Alkalinity (C _a CO3)	OG	30-500	246			112	36	44
Arsenic	IMAC	0.025					<0.1	<0.1
Boron	IMAC	5		<0.01	<0.01	<0.01	0.02	0.03
Barium	MAC	1		0.00		0.070	0.024	0.052
Beryllium	1417 (C					<0.01	<0.005	<0.005
BOD						٧٥.٥١	10.003	10.003
Calcium						25	11.6	15
Cadmium	MAC	0.005		<0.002	<0.002	<0.01	<0.01	<0.0001
Chloride								
Cobalt	AO	250		<1	<1	2.0	1.9	1.1
			20			<0.01	<0.01	<0.01
COD			20					
Conductivity us/cm			653				121	149
Chromium	MAC	0.05				<0.01	<0.01	<0.01
Copper	AO	1				<0.01	<0.01	<0.01
Fluoride	MAC	1.5						
Iron	AO	0.3		4.47	17.6	< 0.01	0.12	0.28
Hardness as CaCO3	OG	500		67	72			
Mercury	MAC	0.001						
Potassium						3	4.4	4.4
Magnesium						9.00	3.79	5.21
Manganese	AO	0.05				1.00	0.06	0.09
Molybdenum		1 2722				<0.01	<0.02	0.03
Sodium	AO	200				5.0	1.8	2.5
Nickel	7.0	200				<0.01	<0.02	<0.02
N-NH3						٧٥.٥١	10.02	10.02
N-NO2	MAC	1						
N-NO3	MAC	10				0.15	4.1	4.7
Phosphorus	IVIAC	10				<0.13	<0.1	<0.1
Lead	NAAC	0.01						
	MAC	0.01	7.4	C 44	6.65	<0.05	<0.1	<0.0002
pH (no units)	OG	6.5-8.5	7.4	6.41	6.65	6.82	6.75	6.11
Phenols			0.003				<0.001	<0.001
DOC	AO	5				<3		
Selenium	MAC	0.01						
Silicon						6.30	7.38	7.99
Tin						<0.05	0.8	<0.2
Sulphate	AO	500				5	7	9
Strontium						0.180	0.104	0.135
Total Dissolved Solids	AO	500	374	88	110	150	81	114
Titanium						< 0.01	<0.01	< 0.01
Thallium								
Total Kjeldahl Nitrogen								
Vanadium						< 0.01	< 0.005	0.006
Zinc	AO	5				<0.01	0.02	0.04
Dissolved Reactive P	-						_	
Total phosphorous								
Field Parameters								
Temperature °C								
pH		+						
Conductivity us/cm								
All concentrations in mar/l w								

All concentrations in mg/L unless otherwise noted

Sample Location 88-3S

Sample Date			Jun-00	Oct-00	Jun-01	Jun-02	May-04	Sep-04
PARAMETER	Limit	ODWO/S						
Silver			<0.01	< 0.01	< 0.01	< 0.01	<0.005	< 0.005
Aluminum	OG	0.1	0.70	0.21	0.18	0.01	0.016	0.017
Alkalinity (C _a CO3)	OG	30-500	47	53	39	42	30	25
Arsenic	IMAC	0.025	<0.1	<0.1	<0.001	<0.1	< 0.001	0.001
Boron	IMAC	5	<0.01	0.02	<0.01	0.02	0.017	0.06
Barium	MAC	1	0.020	0.025	0.020	0.028	0.024	0.096
Beryllium	141710		<0.005	<0.005	<0.005	<0.005	<0.001	<0.001
BOD			10.003	10.003	10.003	10.005	10.001	10.002
Calcium			14.4	16	11.7	13.4	10.9	45.6
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.01	<0.0001	<0.0001
Chloride	AO	250	1.0	1.4	1.7	2.2	1.4	3.7
Cobalt	AO	230	<0.01	<0.01	<0.01	<0.01	<0.005	<0.005
COD			₹0.01	₹0.01	\0.01	₹0.01	9	17
Conductivity us/cm			143	117	123	115	911	446
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.001	<0.001
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.001	0.003
Fluoride	MAC	1.5	<0.01	<0.01	0.01	<0.01	<0.002	0.003
Iron		0.3	0.54	0.10		0.20	0.008	0.029
Hardness as CaCO3	AO		0.54	0.18	0.15	0.29	42	179
	OG	500					42	1/9
Mercury	MAC	0.001	2.2	0.5		1.0	2.5	0.2
Potassium			3.3	0.5	1.1	1.9	3.5	8.2
Magnesium			4.74	4.41	3.78	4.01	3.56	15.7
Manganese	AO	0.05	0.03	0.01	0.02	0.03	0.007	0.026
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.01	<0.01
Sodium	AO	200	1.6	5.0	1.7	1.5	1.4	3.1
Nickel			<0.02	<0.02	<0.02	<0.02	<0.01	<0.01
N-NH3						1.7		
N-NO2	MAC	1						
N-NO3	MAC	10	4	1.9				
Phosphorus			<0.1	<0.1		<0.1		
Lead	MAC	0.01	<0.0002	<0.0002	0.0002	<0.1	0.0003	<0.0005
pH (no units)	OG	6.5-8.5	7.25	6.31	6.14			
Phenols			0.013	0.002	<0.001	< 0.001	< 0.001	<0.001
DOC	AO	5						
Selenium	MAC	0.01					<0.001	0.001
Silicon			9.94	7.76	7.40	8.87	4.70	8.03
Tin			<0.2			<0.2	< 0.05	<0.05
Sulphate	AO	500	6	6	6	5	10	79
Strontium			0.110	0.125	0.110	0.112	0.096	0.361
Total Dissolved Solids	AO	500	116	74	90	84		
Titanium			0.03	< 0.01	< 0.01	<0.01	<0.005	<0.005
Thallium								
Total Kjeldahl Nitrogen								
Vanadium			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	0.01	<0.01	0.006	0.024
Dissolved Reactive P	= '	1						
Total phosphorous					1.27		1.22	0.93
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm		1						
All concentrations in mar/L w			1	1			1	

All concentrations in mg/L unless otherwise noted

Sample Location 88-3S

Sample Date			May-05	Nov-05	May-06	Oct-06	May-07	
PARAMETER	Limit	ODWO/S						
Silver	-		0.001	< 0.0001		< 0.0001	< 0.0001	
Aluminum	OG	0.1	0.030	0.01	<0.01	0.020	<0.01	
Alkalinity (C _a CO3)	OG	30-500	34	34	44	37	46	
Arsenic	IMAC	0.025				0.		
Boron	IMAC	5	0.02	0.04	0.01	0.04	0.02	
Barium	MAC	1	0.02	0.08	0.03	0.08	0.03	
Beryllium	IVIAC		<0.001	<0.001	0.00	<0.001	<0.001	
BOD			<1	<1		<1	<1	
Calcium			8	26	12	34	13	
Cadmium	MAC	0.005	<0.0001	<0.0001	12	<0.0001	0.0003	
Chloride	AO	250	2	1.0	1	3	4	
Cobalt	AU	250	0.0003	<0.0002	<0.0002	<0.0002	<0.0002	
COD			<5	<5	<5	<5	<5	
Conductivity us/cm			96		131	327	129	
		0.05		276				
Chromium	MAC	0.05	<0.001	0.001	0.001	<0.001	<0.001	
Copper	AO	1	0.001	0.004	0.101	0.004	0.002	
Fluoride	MAC	1.5						
Iron	AO	0.3	0.02	<0.03	<0.03	0.04	<0.03	
Hardness as CaCO3	OG	500	28	102		130	49	
Mercury	MAC	0.001						
Potassium			3	7	5	8	5	
Magnesium			2	9	4	11	4	
Manganese	AO	0.05	< 0.01	0.02	0.01	0.02	< 0.01	
Molybdenum			<0.005	<0.005		<0.005	<0.005	
Sodium	AO	200	<2	3	<2	3	<2	
Nickel			<0.005	<0.005		<0.005	<0.005	
N-NH3					0.02			
N-NO2	MAC	1	<0.10	< 0.10		<0.10	<0.1	
N-NO3	MAC	10	1.55	11.3		15.4	2.02	
Phosphorus								
Lead	MAC	0.01	0.001	< 0.001		< 0.001	< 0.001	
pH (no units)	OG	6.5-8.5						
Phenols		0.0 0.0	<0.001	<0.001		<0.001	<0.001	
DOC	AO	5	1.6	1.3	1	1.2	1.8	
Selenium	MAC	0.01			_			
Silicon	1417 (C	0.01	4.7	9.9	5.2	10.4	4.3	
Tin				3.3	3.2	2011		
Sulphate	AO	500	8	46		47	9	
Strontium	AU	300	0.082	0.295	0.119	0.341	0.131	
Total Dissolved Solids	AO	500	62	179	85	213	84	
Titanium	AU	500	<0.01	<0.01	83	<0.01	<0.01	
Thallium			<0.01	<0.001		<0.01	0.0003	
			0.13	0.16	0.11	0.17	0.0003	
Total Kjeldahl Nitrogen					0.11			
Vanadium	4.0		<0.001	<0.001	0.02	<0.001	0.001	
Zinc	AO	5	<0.01	0.01	0.03	0.02	0.02	
Dissolved Reactive P			1	0.55	0.05	0.6	0.67	
Total phosphorous				0.55		0.6	0.67	
Field Parameters								
Temperature ^o C			7.7	6.2	8.8	9.2	8.5	
рН			7.72	7.55	7.56	6.72	7.42	
Conductivity us/cm			80	206	102	314	116	

All concentrations in mg/L unless otherwise noted

Sample Location 89-1D

Sample Date			Jul-91	Sep-91	Aug-96	Nov-98		
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500			49	50		
BOD	- 00	30-300			43	30		
COD								
Chloride	AO	250	<1	<1	0.9	1.2		
Conductivity umhos/cm	AU	250	<1	<1	128	142		
DOC	AO	5			120	142		
N-NO2	MAC	1						
N-NO3	MAC	10			<0.1	<0.1		
Phenols	IVIAC	10						
Sulphate	40	F00			0.004	<0.001		
Total Dissolved Solids	AO	500	00	C 4	14	13		
	AO	500	90	64	96	84		
Total Kjeldahl Nitrogen								
Total phosphorous								
Hardness	OG	500	51	53				
Calcium					13.4	13	<u> </u>	
Magnesium					4.98	4.81		
Potassium					4.9	0.7		
Sodium	AO	200			2.8	2.7		
Aluminum	OG	0.1			0.03	<0.01		
Barium	MAC	1			0.022	0.026		
Beryllium					<0.005	<0.005		
Boron	IMAC	5	< 0.01	<0.01	<0.01	0.01		
Cadmium	MAC	0.005	<0.002	<0.002	<0.0001	<0.0001		
Chromium	MAC	0.05			<0.01	<0.01		
Cobalt					< 0.01	< 0.01		
Copper	AO	1			< 0.01	< 0.01		
Iron	AO	0.3	1.25	1.09	0.85	0.04		
Lead	MAC	0.01			< 0.0002	<0.0002		
Manganese	AO	0.05			0.08	0.02		
Molybdenum					0.03	<0.02		
Nickel					<0.02	<0.02		
Silicon					7.18	6.96		
Silver					< 0.01	< 0.01		
Strontium					0.042	0.039		
Thallium								
Titanium					<0.01	<0.01		
Vanadium					0.009	<0.005		
Zinc	AO	5			<0.01	0.02		
Arsenic	IMAC	0.025			<0.01	<0.1		
Fluoride	MAC	1.5			10.01	10.12		
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001						
Phosphorus					0.1	<0.1		
pH (no units)	OG	6.5-8.5	8.08	7.9	7.66	7.23		
Selenium	MAC	0.5-8.5	0.00	7.3	7.00	1.23		
Tin	IVIAC	0.01			<0.2	<0.2		
					\U. Z	\U. Z		
Dissolved Reactive P								
Field Parameters								
Temperature °C								
pH								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 89-1S

Sample Date Jul-91 Sep-91 Aug-96 Oct-01

Alkalinity (C _c CO3) OG 30-500 88 97 BOD COD COD COD COD COD COD COD COD COD C	PARAMETER	Limit	ODWO/S					
BOD COD						88	97	
COD			00000					
Chloride								
Conductivity umhos/cm		ΔΩ	250	<1	<1	0.9	1.8	
DOC		AO	230	``	\1	-		
N-NO2		ΑΟ	5			103	1,0	
N-NO3								
Phenols Sulphate						<0.1		
Sulphate		1717 (C	10				0.008	
Total Nisolved Solids AO 500 96 80 160 106		ΔΩ	500					
Total Kjeldahl Nitrogen Total phosphorous				96	80			
Total phosphorous		7.0	300		- 00	100	100	
Hardness OG S00 77								
Calcium 24 25.9 Magnesium 7.22 6.28 Potassium 2 1.1 Sodium AO 200 2.6 4.8 Aluminum OG 0.1 0.19 0.15 Barium MAC 1 0.025 0.025 Beryllium Co.005 <0.001		OG	500		77			
Magnesium		00	300		,,	2/	25.9	
Potassium								
Sodium								
Aluminum		۸٥	200					
Barium								
Beryllium Boron IIMAC 5								
Boron		IVIAC	1			-		
Cadmium MAC 0.005 <0.002 <0.001 <0.0006 Chromium MAC 0.05 <0.001		INAAC	Г	-0.01	رم مر دم مر			
Chromium MAC 0.05 < 0.01 < 0.01 Cobalt < 0.01								
Cobalt				<0.002	<0.002	-		
Copper		IVIAC	0.05					
Iron		40	1					
Lead MAC 0.01				0.72	2.64			
Manganese AO 0.05 0.07 <0.01 Molybdenum 0.02 <0.02				0.72	3.61			
Molybdenum								
Nickel		AU	0.05			-		
Silicon 9.06 8.90 Silver <0.01								
Silver <0.01						-		
Strontium 0.043 0.040 Thallium 0.001 <0.01								
Thallium Titanium Vanadium Zinc AO S CO.01 CO.02 CO.02 CO.03 CO.04 CO.05 CO.05 CO.06 CO.07 CO.07 CO.08 CO.09 C								
Titanium						0.043	0.040	
Vanadium 0.009 0.005 Zinc AO 5 <0.01						2.24		
Zinc AO 5								
Arsenic IMAC 0.025			_					
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 Phosphorus 0.2 pH (no units) 0G 6.5-8.5 8 7.9 8.04 8 Selenium MAC 0.01 Tin < < 0.2 Dissolved Reactive P Field Parameters Temperature "C pH								
Mercury MAC 0.001 N-NH3 0.2 Phosphorus 0.2 pH (no units) 0G 6.5-8.5 8 7.9 8.04 8 Selenium MAC 0.01 0.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td><0.1</td> <td></td> <td></td>						<0.1		
N-NH3 Phosphorus Phosphorus PH (no units) OG 6.5-8.5 8 7.9 8.04 8 Selenium MAC 0.01 Tin Color Co							0.2	
Phosphorus 0.2 pH (no units) OG 6.5-8.5 8 7.9 8.04 8 Selenium MAC 0.01		MAC	0.001					
pH (no units) OG 6.5-8.5 8 7.9 8.04 8 Selenium MAC 0.01								
Selenium MAC 0.01 Tin <0.2 Dissolved Reactive P Field Parameters Temperature "C pH								
Tin <pre> Color</pre>				8	7.9	8.04	8	
Dissolved Reactive P Field Parameters Temperature °C pH		MAC	0.01					
Field Parameters Temperature "C pH						<0.2		
Temperature °C pH								
pH								
	·							
Conductivity us/cm								
All concentrations in mall unless otherwise noted	Conductivity us/cm							

All concentrations in mg/L unless otherwise noted

Sample Location 89-2D

Sample Date			Jul-91	Sep-91	Nov-92	Sep-95	Aug-96	Jul-97
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500			78	754	762	630
BOD								
COD						150		
Chloride	AO	250	35.0	34.0	35.0	78.7	199.0	70.0
Conductivity umhos/cm							1750	1150
DOC	AO	5			<3			
N-NO2	MAC	1						
N-NO3	MAC	10			<0.1	0.4	<0.1	<0.1
Phenols						0.021	0.001	0.026
Sulphate	AO	500			8	2	<1	<1
Total Dissolved Solids	AO	500	152	138	190	908	1020	771
Total Kjeldahl Nitrogen	7.0	300	132	130	130	300	1020	,,,
Total phosphorous								
Hardness	OG	500	113	75				
Calcium	00	300	113	7.5	26	293	242	206
Magnesium					9.00	70.10	63.60	43.00
Potassium					3.00	70.10	12.3	43.00
Sodium	AO	200			10.0	54.7	57.6	49.6
Aluminum	OG	0.1			0.04	<0.01	0.12	0.02
Barium	MAC				0.04	0.676	0.12	0.02
Beryllium	IVIAC	1						
Boron	10.4.4.0		0.03	10.01	<0.01	<0.005	<0.005	<0.005
Cadmium	IMAC	5	0.02	<0.01	<0.01	0.012	0.2	0.21
	MAC	0.005	<0.002	<0.002	<0.01	<0.0001	<0.0001	<0.01
Chromium	MAC	0.05			<0.01	0.031	<0.01	<0.01
Cobalt	40				0.02	<0.01	<0.01	0.03
Copper	AO	1			<0.01	<0.01	71.6	<0.01
Iron	AO	0.3	30	5.32	2.12	76.3		54
Lead	MAC	0.01			<0.05	0.0011	<0.0002	0.1
Manganese	AO	0.05			0.17	14.80	15.10	9.15
Molybdenum					<0.01	<0.02	0.16	0.16
Nickel					<0.01	<0.02	<0.02	0.02
Silicon					6.90	13.50	17.80	19.20
Silver					<0.01	<0.01	<0.01	<0.01
Strontium					0.110	1.100	1.170	755.000
Thallium								
Titanium					<0.01	< 0.01	<0.01	< 0.01
Vanadium					<0.01	< 0.01	0.011	<0.005
Zinc	AO	5			<0.01	<0.01	<0.01	< 0.01
Arsenic	IMAC	0.025				<0.1	0.3	<0.1
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3								
Phosphorus					<0.1	<0.1	<0.1	0.3
pH (no units)	OG	6.5-8.5	6.69	6.9	7.61	7.33	6.93	7.01
Selenium	MAC	0.01						
Tin	-				<0.05	0.266	0.4	0.3
Dissolved Reactive P								
Field Parameters								
Temperature "C								
pH								
Conductivity us/cm								
All and the Control of the Control o								

All concentrations in mg/L unless otherwise noted

Sample Location 89-2D

Sample Date			Nov-98	Jul-99	Jun-00	Jun-01	Jun-02	May-04
PARAMETER	Limit	ODWO/S	T					
Alkalinity (C _a CO3)	OG	30-500	220	206	297	214	201	74
BOD								
COD				31				79
Chloride	AO	250	51.7	48.6	48.1	51.4	52.8	51.0
Conductivity umhos/cm			565	583	654	525	561	135
DOC	AO	5						
N-NO2	MAC	1		<0.1				
N-NO3	MAC	10	<0.1	0.2	<0.1			
Phenols			0.001	0.029	0.007	0.019	< 0.001	< 0.001
Sulphate	AO	500	6	8	10	6	9	20
Total Dissolved Solids	AO	500	340		396	320	316	
Total Kjeldahl Nitrogen								
Total phosphorous								6.44
Hardness	OG	500		248				115
Calcium			60.3	70.8	78	67.7	68.4	33
Magnesium			15.90	17.00	19.60	15.60	16.10	7.92
Potassium			2.5	5.9	1.2	2.6	2.4	3.4
Sodium	AO	200	24.3	24.7	24.5	20.7	22.9	24.1
Aluminum	OG	0.1	0.08	0.39	0.20	0.71	<0.01	0.046
Barium	MAC	1	0.175	0.200	0.225	0.175	0.179	0.097
Beryllium	IVIAC		<0.005	0.195	<0.005	<0.005	<0.005	<0.001
Boron	IMAC	5	0.06	0.193	0.003	0.003	0.003	0.045
Cadmium	MAC	0.005	<0.001	0.07	<0.0001	<0.0001	<0.01	<0.0001
Chromium	MAC	0.005	<0.001	<0.01	<0.001	<0.001	<0.01	<0.001
Cobalt	IVIAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001
	40	1						
Copper Iron	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.002
Lead	AO	0.3	4.49	23.7	25	16.6	18.7	8.37
	MAC	0.01	<0.0002	0.0002	<0.0002	0.0002	<0.1	0.0002
Manganese	AO	0.05	2.88	3.10	3.56	2.67	2.71	1.44
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
Silicon			13.00	15.70	13.50	11.60	12.50	10.60
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Strontium			0.270	0.290	0.345	0.300	0.284	0.148
Thallium								
Titanium			<0.01	0.03	<0.01	<0.01	<0.01	<0.005
Vanadium			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	0.03	<.001	0.02	<0.01	<0.01	0.007
Arsenic	IMAC	0.025	<0.1	<0.001	<0.1	0.002	<0.1	<0.001
Fluoride	MAC	1.5				0.1		
Mercury	MAC	0.001		<0.0001				
N-NH3				0.18			0.1	
Phosphorus			0.1	0.1	<0.1		<0.1	
pH (no units)	OG	6.5-8.5	6.93	6.74	7.75	7.06		
Selenium	MAC	0.01		< 0.001				< 0.001
Tin			<0.2	<0.2	<0.2		<0.2	< 0.05
Dissolved Reactive P								
Field Parameters								
Temperature 'C								
pH								
Conductivity us/cm								
All concentrations in mg/L ur	alooo othom:	ioo notod	1					

All concentrations in mg/L unless otherwise noted

Sample Location 89-2D

Sample Date Sep-04

PARAMETER	Limit	ODWO/S				
Alkalinity (C _a CO3)	OG	30-500	89			
BOD	- 00	30 300	03			
COD			28			
Chloride	AO	250	57.1			
Conductivity umhos/cm	AU	230	37.1			
DOC	AO	5	377			
N-NO2	MAC	1				
N-NO3	MAC	10				
Phenols	IVIAC	10	<0.001			
Sulphate	AO	500	7			
Total Dissolved Solids	AO	500	/			
Total Kjeldahl Nitrogen	AU	500				
Total phosphorous			1.4			
Hardness	0.0	500				
Calcium	OG	500	111			
			31			
Magnesium			8.03			
Potassium			3.3			
Sodium	AO	200	23.1			
Aluminum	OG	0.1	0.021			
Barium	MAC	1	0.096			
Beryllium			<0.001			
Boron	IMAC	5	0.042			
Cadmium	MAC	0.005	<0.0001			
Chromium	MAC	0.05	<0.001			
Cobalt			<0.005			
Copper	AO	1	<0.002			
Iron	AO	0.3	8.58			
Lead	MAC	0.01	<0.0005			
Manganese	AO	0.05	1.36			
Molybdenum			< 0.01			
Nickel			< 0.01			
Silicon			10.40			
Silver			<0.005			
Strontium			0.139			
Thallium						
Titanium			< 0.005			
Vanadium			< 0.005			
Zinc	AO	5	0.01			
Arsenic	IMAC	0.025	0.001	1		
Fluoride	MAC	1.5				
Mercury	MAC	0.001				
N-NH3						
Phosphorus						
pH (no units)	OG	6.5-8.5				
Selenium	MAC	0.01	< 0.001			
Tin			< 0.05			
Dissolved Reactive P						
Field Parameters						
Temperature °C						
pH						
Conductivity us/cm						
conductivity do/citi			I			

All concentrations in mg/L unless otherwise noted

Sample Location 89-2S

Sample Date			Jul-91	Sep-91	Nov-92	Aug-96	Jul-97	Nov-98
PARAMETER	Limit	ODWO/S				1		
Alkalinity (C _a CO3)	OG	30-500			104	124	130	130
BOD								
COD								
Chloride	AO	250	23.0	23.0	29.0	25.4	20.4	25.5
Conductivity umhos/cm						360	335	364
DOC	AO	5			5			
N-NO2	MAC	1						
N-NO3	MAC	10			<0.1	<0.1	<0.1	0.1
Phenols						0.001	0.003	< 0.001
Sulphate	AO	500			11	22	18	16
Total Dissolved Solids	AO	500	220	164	190	228	224	242
Total Kjeldahl Nitrogen								
Total phosphorous								
Hardness	OG	500	182	124				
Calcium					35	36	35	37.3
Magnesium					9.00	9.19	9.02	8.40
Potassium					2	8.9	4.3	6.6
Sodium	AO	200			9.0	10.8	12.9	14.8
Aluminum	OG	0.1			<0.01	0.03	<0.01	0.06
Barium	MAC	1			0.220	0.152	0.116	0.149
Beryllium					<0.01	<0.005	<0.005	< 0.005
Boron	IMAC	5		0.02	<0.01	0.53	0.04	0.05
Cadmium	MAC	0.005		<0.002	<0.01	<0.0001	<0.01	0.0002
Chromium	MAC	0.05		10.002	<0.01	<0.01	<0.01	<0.01
Cobalt	1717 10	0.03			<0.01	<0.01	0.01	<0.01
Copper	AO	1			<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.81	6.39	0.51	15.2	13.2	1.76
Lead	MAC	0.01	0.01	0.55	<0.05	<0.0002	<0.1	<0.0002
Manganese	AO	0.05			0.42	1.55	1.36	1.25
Molybdenum	AO	0.03			<0.01	0.06	0.03	0.03
Nickel					10.01	<0.02	<0.02	<0.02
Silicon					6.20	9.48	8.22	7.90
Silver					<0.01	<0.01	<0.01	<0.01
Strontium					0.070	0.144	0.120	0.140
Thallium					0.070	0.144	0.120	0.140
Titanium					<0.01	<0.01	<0.01	<0.01
Vanadium					<0.01	0.009	<0.005	<0.01
Zinc	AO	5			<0.01	<0.01	<0.003	0.06
Arsenic	IMAC	0.025			<0.01	<0.01	<0.01	<0.1
Fluoride	MAC	1.5				\U.U1	\0.1	\U.1
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001						
Phosphorus					<0.1	<0.1	<0.1	<0.1
pH (no units)	OG	6.5-8.5	7.21	7.44	8.11	7.85	7.14	6.94
Selenium	MAC	0.5-8.5	1.21	7.44	0.11	7.85	7.14	0.94
Tin	IVIAC	0.01			<0.05	40.3	40.3	40.3
					<0.05	<0.2	<0.2	<0.2
Dissolved Reactive P								
Field Parameters								
Temperature [°] C								
рН								
Conductivity us/cm								
All concentrations in ma/L u	-lth	iaa matad						

All concentrations in mg/L unless otherwise noted

Sample Location 89-2S

Sample Date			Jul-99	Jun-00	Jun-01	Jun-02	May-04	
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	170	199	139	109	76	
BOD								
COD			20				59	
Chloride	AO	250	20.7	8.7	10.6	16.2	7.9	
Conductivity umhos/cm			453	410	336	294	297	
DOC	AO	5						
N-NO2	MAC	1	<0.1					
N-NO3	MAC	10	0.2	<0.1				
Phenols			0.004	0.006	0.018	< 0.001	< 0.001	
Sulphate	AO	500	23	16	18	10	10	
Total Dissolved Solids	AO	500		240	204	162		
Total Kjeldahl Nitrogen								
Total phosphorous							5.46	
Hardness	OG	500	218				86	
Calcium			63.3	44.7	41.7	35.1	24.8	
Magnesium			14.40	11.00	9.13	7.80	5.71	
Potassium			7.7	7.3	6.2	6.1	6	
Sodium	AO	200	15.6	9.2	7.6	8.2	5.2	
Aluminum	OG	0.1	0.09	0.12	0.48	0.01	0.036	
Barium	MAC	1	0.200	0.175	0.145	0.110	0.106	
Beryllium	1717.10		<0.005	<0.005	<0.005	<0.005	<0.001	
Boron	IMAC	5	0.1	0.06	0.02	0.03	0.029	
Cadmium	MAC	0.005	0.1	<0.0001	<0.0001	<0.01	<0.0001	
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.001	
Cobalt	1417 (C	0.05	<0.01	<0.01	<0.01	<0.01	<0.005	
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.002	
Iron	AO	0.3	22.5	18.4	14.1	11	0.158	
Lead	MAC	0.01	<0.0002	<0.0002	0.0006	<0.1	0.0002	
Manganese	AO	0.05	2.66	1.87	1.27	0.98	0.828	
Molybdenum	AO	0.05	<0.02	<0.02	<0.02	<0.02	<0.01	
Nickel			<0.02	<0.02	<0.02	<0.02	<0.01	
Silicon			10.30	8.16	7.54	7.59	6.73	
Silver			<0.01	<0.01	<0.01	<0.01	<0.005	
Strontium			0.210	0.155	0.140	0.109	0.083	
Thallium			0.210	0.155	0.140	0.103	0.003	
Titanium			<0.01	<0.01	<0.01	<0.01	<0.005	
Vanadium			<0.01	<0.01	<0.01	<0.005	<0.005	
Zinc	AO	5	<0.01	<0.003	0.02	<0.003	<0.005	
Arsenic	IMAC	0.025	0.001	<0.01	0.002	<0.01	0.001	
Fluoride	MAC	1.5	0.001	٦٥.1	0.002	٦٥.1	0.001	
Mercury	MAC	0.001	0.0001		0.1			
N-NH3	IVIAC	0.001	0.0001			0.1		
Phosphorus			<0.1	<0.1		<0.1		
pH (no units)	OG	6.5-8.5	6.78	7.67	6.98	\U.1		
Selenium	MAC	0.01	<0.001	7.07	0.30		<0.001	
Tin	IVIAC	0.01	<0.001	<0.2		<0.2	<0.001	
Dissolved Reactive P			\U.Z	\U. Z		\U.Z	\U.U.J	
Field Parameters								
Temperature "C								
·								
pH Conductivity us/cm								
conductivity us/cm		1						

All concentrations in mg/L unless otherwise noted

Sample Location 91-1

Sample Date Oct-01 Nov-02

PARAMETER	Limit	ODWO/S				
Alkalinity (C _a CO3)	OG	30-500	61	85		
BOD		33333				
COD						
Chloride	AO	250	18.4	2		
Conductivity uS/cm	AO	250	185	192		
DOC	AO	5	103	132		
N-NO2 (Nitrite)	MAC	1		<0.1		
N-NO3 (Nitrate)	MAC	10		₹0.1		
Phenols	IVIAC	10	0.008	0.001		
Sulphate	AO	500	<1	0.001		
Total Dissolved Solids	AO	500	111	118		
Total Kjeldahl Nitrogen	AU	500	111	110		
Total phosphorous			5.85			
Hardness as CaCO3	00	F00	5.85			
Calcium	OG	500	47.5	26		
			47.5	26		
Magnesium			10.4	5.45		
Potassium			5.4	3		
Sodium	AO	200	10.4	5.3		
Aluminum	OG	0.1	0.13	0.02		
Barium	MAC	1	0.025	0.015		
Beryllium			<0.005	<0.005		
Boron	IMAC	5	0.01	<0.01		
Cadmium	MAC	0.005	<0.0006	<0.01		
Chromium	MAC	0.05	< 0.01	<0.01		
Cobalt			< 0.01	< 0.01		
Copper	AO	1	< 0.01			
Iron	AO	0.3	0.28	0.44		
Lead	MAC	0.01	< 0.0012	<0.1		
Manganese	AO	0.05	0.15	0.12		
Molybdenum			0.03	<0.02		
Nickel			<0.02	<0.02		
Silicon			9.86	8.65		
Silver			< 0.01	< 0.01		
Strontium			0.145	0.085		
Thallium						
Titanium			< 0.01	<0.01		
Vanadium			< 0.005	<0.005		
Zinc	AO	5	< 0.01	<0.01		
Arsenic	IMAC	0.025	0.001	<0.1		
Fluoride	MAC	1.5	0.2	<0.01		
Mercury	MAC	0.001				
N-NH3 (Ammonia)						
Phosphorus				<0.1		
pH (no units)	OG	6.5-8.5	7.99	8.17		
Selenium	MAC	0.01		5,		
Tin		0.01		<0.2		
Dissolved Reactive P		+		٠٥.٢		
Field Parameters		1				
Temperature °C		1				
pH		1				
Conductivity uS/cm		1				
All concentrations in mg/L u			1			

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Sep-91	Nov-92	Aug-96	Nov-96	Jul-97	Nov-98
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500		66	63	59	63	56
BOD		30 300						
COD								
Chloride	AO	250	21	<1	1.4	<0.1	1	0.7
Conductivity uS/cm	7.0	250		`-	149	138	143	142
DOC	AO	5		5	<0.2	150	143	172
N-NO2 (Nitrite)	MAC	1		<u> </u>	\U.Z			
N-NO3 (Nitrate)	MAC	10		<0.1	<0.1	0.1	<0.1	0.1
Phenols	IVIAC	10		₹0.1	0.001	<0.0001	0.007	0.005
Sulphate	AO	500		12	15	11	11	11
Total Dissolved Solids		500	0.4	110				
Total Kjeldahl Nitrogen	AO	500	94	110	120	82	96	85
Total phosphorous								
Hardness as CaCO3	06	500	5 4					
Calcium	OG	500	54	10	4.6	16.0	47.4	57
				19	16	16.9	17.4	13.4
Magnesium				4	4.23	3.65	4.02	3.58
Potassium				3	7.1	3.7	4.6	3.9
Sodium	AO	200		4	4.7	6.1	6	5.5
Aluminum	OG	0.1		0.08	0.67	0.04	0.25	0.06
Barium	MAC	1		0.08	0.056	0.035	0.035	0.028
Beryllium				<0.01	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.01	<0.01	<0.01	0.01	0.01	0.01
Cadmium	MAC	0.005	<0.002	<0.01	<0.0001	<0.0001	<0.01	<0.0001
Chromium	MAC	0.05		<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt				<0.01	<0.01	<0.01	< 0.01	<0.01
Copper	AO	1		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Iron	AO	0.3	3.01	0.09	0.88	0.48	0.48	0.12
Lead	MAC	0.01		<0.05	< 0.0002	< 0.0002	<0.1	<0.0002
Manganese	AO	0.05		0.03	46	0.09	0.06	0.06
Molybdenum					0.02	0.02	<0.02	<0.02
Nickel				<0.01	< 0.02	<0.02	<0.02	<0.02
Silicon				8.7	10.5	9.6	9.93	9.17
Silver				<0.01	< 0.01	<0.01	<0.01	<0.01
Strontium				0.11	0.106	0.103	0.109	0.092
Thallium								
Titanium				<0.01	0.06	<0.01	0.02	<0.01
Vanadium				<0.01	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5		<0.01	<0.01	<0.01	<0.01	0.02
Arsenic	IMAC	0.025		.0.01	<0.1	<0.001	<0.1	<0.1
Fluoride	MAC	1.5			VO.1	\0.001	\U.1	VO.1
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus				<0.1	0.2	<0.1	<0.1	0.1
pH (no units)	OG	6.5-8.5	8.34	8.13	7.98	8.04	8.18	8.16
Selenium	MAC	0.01	0.34	0.13	7.36	0.04	0.10	0.10
Tin	IVIAC	0.01		40.0F		40 D	40 D	40 D
Dissolved Reactive P				<0.05		<0.2	<0.2	<0.2
Field Parameters								
Temperature °C								
_								
pH		1	l .	i .	1	1		1
Conductivity uS/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Jul-99	Nov-99	Jun-00	Oct-00	Jun-01	Jun-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	56	60	72	60	56	56
BOD								
COD			11					
Chloride	AO	250	1	1	0.9	1	0.9	1.2
Conductivity uS/cm			148	142	145	146	137	139
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	0.1					
N-NO3 (Nitrate)	MAC	10	0.2	0.1	0.1	<0.1		
Phenols			0.021	0.002	0.01	<0.001	0.027	<0.001
Sulphate	AO	500	10	11	10	12	11	12
Total Dissolved Solids	AO	500	10	98	122	88	92	104
Total Kjeldahl Nitrogen	7.0	300		30	122	00	32	104
Total phosphorous			0.05				0.29	
Hardness as CaCO3	OG	500	0.03				0.23	
Calcium	- 00	300	16.7	16.3	15.7	15.2	15.8	17.2
Magnesium			3.64	3.38	3.72	3.69	3.44	3.82
Potassium			5.8	2.7	1.4	2.4	0.6	1.7
Sodium	AO	200	5.5	6.4	5.1	5.4	4.7	4.7
Aluminum	OG	0.1	0.6	0.08	0.13	0.16	0.21	0.01
Barium	MAC	1	0.025	0.035	0.13	0.10	0.02	0.024
Beryllium	IVIAC		<0.005	<0.005	<0.005	<0.02	<0.02	<0.005
Boron	IMAC	5	0.003	0.003	<0.003	0.003	<0.003	0.003
Cadmium	MAC	0.005	0.01	<0.001	<0.01	<0.001	<0.001	<0.01
Chromium	MAC	0.003	<0.01	<0.001	<0.001	<0.001	<0.001	<0.01
Cobalt	IVIAC	0.05		<0.01				<0.01
Copper	40	1	<0.01	<0.01	<0.01	<0.01	<0.01	
Iron	AO AO	0.3	<0.01 0.06	0.11	<0.01	<0.01 0.13	<0.01 0.05	<0.01
Lead					0.15			0.11
Manganese	MAC	0.01	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.1
Molybdenum	AO	0.05	0.02 <0.02	0.29	0.04	0.02	0.02	0.03
Nickel				<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silver			9.3	8.58	9.27	7.61	8.31	9.77
			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium			0.09	0.085	0.085	0.095	0.095	0.082
Thallium			.0.01	0.01	.0.01	.0.01	.0.01	20.01
Titanium Vanadium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	•	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic Fluoride	IMAC	0.025	<0.001	<0.1	<0.1	<0.1	<0.001	<0.1
	MAC	1.5	2 2224				0.2	
Mercury	MAC	0.001	0.0001					
N-NH3 (Ammonia)			<0.01					<0.1
Phosphorus		6505	<0.1	<0.1	<0.1	<0.1	6.0-	<0.1
pH (no units)	OG	6.5-8.5	7.58	7.98	7.89	7.78	6.35	
Selenium	MAC	0.01	<0.001					
Tin			<0.2	<0.2	<0.2			<0.2
Dissolved Reactive P								
Field Parameters								
Temperature °C								
pH								
Conductivity uS/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Sep-04	May-05	Nov-05	May-06	Oct-06	May-07
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	55	60	58	58	56	56
BOD				<1	<1		<1	<1
COD			7	<5	<5	<5	<5	<5
Chloride	AO	250	1.1	2	2	1	1	1
Conductivity uS/cm	7.0		160	136	139	138	137	138
DOC	AO	5	<0.5	0.5	0.7	<0.5	<0.5	1
N-NO2 (Nitrite)	MAC	1	10.5	<0.10	<0.10	10.5	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10		<0.10	<0.10		<0.10	<0.10
Phenols	1717.10	10	<0.001	<0.001	<0.001		<0.001	10.20
Sulphate	AO	500	12	12	12		13	13
Total Dissolved Solids	AO	500		88	90	90	89	90
Total Kjeldahl Nitrogen	7.0	300		0.08	<0.05	0.24	<0.05	0.14
Total phosphorous			0.39	0.00	1	0.24	0.22	0.77
Hardness as CaCO3	OG	500	65	51	47		54	56
Calcium	- 00	300	19.3	14	14	15	15	16
Magnesium			4.15	4	3	4	4	43
Potassium			3.4	3	3	3	3	73
Sodium	AO	200	4.7	5	5	4	5	5
Aluminum	OG	0.1	0.007	0.01	0.02	<0.01	<0.01	0.04
Barium	MAC	1	0.007	0.01	0.02	0.02	0.02	0.04
Beryllium	IVIAC	1	<0.001	<0.001	<0.02	0.02	<0.02	<0.02
Boron	IMAC	5	0.001	0.001	0.001	0.01	0.001	0.001
Cadmium	MAC	0.005	<0.003	<0.001	<0.001	0.01	<0.001	<0.001
Chromium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001
Cobalt	IVIAC	0.05				<0.001		
Copper	40	1	<0.005	0.0002 <0.001	<0.0002		<0.0002	0.0089
Iron	AO AO	0.3	<0.002 0.02	0.04	0.001	0.063	<0.001	<0.001
Lead					0.03	0.03	0.03	0.05
Manganese	MAC	0.01	<0.0005	<0.001	<0.001	0.02	<0.001	<0.001
Molybdenum	AO	0.05	0.013	0.02	0.02	0.02	0.02	0.03
Nickel			<0.01	<0.005	<0.005		<0.005	<0.005
Silicon			<0.01	<0.005	<0.005	0.7	<0.005	<0.005
Silver			9.05	11.1	11.5	8.7	10	9.5
Strontium			<0.005	<0.0001	<0.0001	0.070	<0.0001	<0.0001
			0.095	0.094	0.092	0.079	0.092	0.082
Thallium				<0.0001	<0.0001		<0.0001	<0.0001
Titanium			<.005	<0.01	<0.01		<0.01	<0.01
Vanadium		_	0.005	<0.001	<0.001	.0.01	<0.001	<0.001
Zinc Arsenic	AO	5	0.007	<0.01	<0.01	<0.01	<0.01	<0.01
	IMAC	0.025	0.001					
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)						0.02		
Phosphorus								<0.001
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001					
Tin			<0.05					
Dissolved Reactive P						0.06		
Field Parameters								
Temperature °C				8.1	6	8.9	7.9	8.3
pH				8.79	7.59	8.29	7.26	7.45
Conductivity uS/cm				123	123	106	111	116

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Oct-07	May-08	Oct-08	May-09	Sep-09	May-10
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	55	55		56	58	56
BOD			<1	1		<1	<1	
COD			<5	<5		8	<5	
Chloride	AO	250	1	1		1	1	1
Conductivity uS/cm			135	135		138	140	140
DOC	AO	5	0.9	1.2		1	1	
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10		<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10		<0.10	<0.10	<0.10
Phenols	1717.10	10	<0.001	<0.001		<0.001	<0.001	10.120
Sulphate	AO	500	13	12		12	12	
Total Dissolved Solids	AO	500	88	88		90	91	91
Total Kjeldahl Nitrogen	7.0	300	0.19	<0.10		<0.10	<0.10	<0.10
Total phosphorous			0.56	0.47		0.11	2.28	10.10
Hardness as CaCO3	OG	500	59	59		51	59	59
Calcium	- 00	300	17	17		14	17	17
Magnesium			4	4		4	4	4
Potassium			3	3		3	3	3
Sodium	AO	200	5	5		3	7	5
Aluminum	OG	0.1	<0.01	0.02		0.03	0.18	0.06
Barium	MAC	1	0.02	0.02		0.03	0.18	0.00
Beryllium	IVIAC	1	<0.02	<0.02		<0.001	<0.001	<0.001
Boron	IMAC	5	0.001	0.001		0.001	0.001	0.001
Cadmium	MAC	0.005	<0.001	<0.001		<0.001	<0.001	<0.001
Chromium	MAC	0.005	<0.001	<0.001		<0.001	<0.001	<0.001
Cobalt	IVIAC	0.03	<0.001	0.0325		0.001	0.0007	0.0019
Copper	AO	1	0.0002	<0.001		<0.003	<0.0007	<0.0013
Iron	AO	0.3	0.002	0.001		0.001	0.14	0.18
Lead	MAC	0.01	<0.001	<0.001		<0.001	<0.001	<0.001
Manganese	AO	0.01	0.001	0.001		0.03	0.001	0.001
Molybdenum	AU	0.05	<0.005	<0.005		<0.005	<0.02	<0.005
Nickel			<0.005	<0.005		<0.005	<0.005	<0.005
Silicon			9.5	9.8		8.5	9.7	9.1
Silver			<0.0001	<0.0001		<0.0001	<0.0001	<0.0001
Strontium			0.0001	0.0001		0.0001	0.083	0.08
Thallium			<0.001	<0.001		<0.001	<0.0001	<0.0001
Titanium				<0.001				
Vanadium			<0.01 <0.001	<0.01		<0.05 <0.001	0.01	<0.01
Zinc	AO	5	0.001	<0.001		<0.001	<0.001 <0.01	<0.001 <0.01
Arsenic	IMAC	0.025	0.01	<0.01		<0.01	<0.01	<0.01
Fluoride	MAC	1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001						
Phosphorus			40 001					
pH (no units)	00	6505	<0.001					
Selenium	OG	6.5-8.5						
Tin	MAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			8.2			8.1	7.2	9.3
рН			7.48			8.9	8.8	8.6
Conductivity uS/cm			103			149	129	141
22			103	1		173	143	T-1-T

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Oct-10	Jun-11	Jun-12	Jun-13	Apr-14	Oct-14
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	55	58	58	57	52	52
BOD								
COD								
Chloride	AO	250	1	1	1	1	0.7	0.7
Conductivity uS/cm			139	140	136	138	132	130
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
Phenols					<0.001	<0.001		0.10
Sulphate	AO	500			13	13		
Total Dissolved Solids	AO	500	90	91	88	90	73.3	72.4
Total Kjeldahl Nitrogen	7.0	300	<0.10	<0.10	<0.10	<0.10	0.16	< 0.05
Total phosphorous			10.120	10.20	10.20	10120	0.20	7 0.00
Hardness as CaCO3	OG	500	54	56	40	54	58	54
Calcium		300	15	16	11	15	16.6	15.7
Magnesium			4	4	3	4	3.93	3.82
Potassium			3	3	3	3	3.1	3
Sodium	AO	200	4	5	5	5	5.1	4.6
Aluminum	OG	0.1	0.06	0.03	0.02	0.02	0.03	0.03
Barium	MAC	1	0.02	0.02	0.02	0.02	0.022	0.021
Beryllium	IVIAC		<0.001	<0.0005	<0.0005	<0.0005	< 0.0001	< 0.0001
Boron	IMAC	5	0.01	0.01	0.02	<0.003	0.007	0.007
Cadmium	MAC	0.005	<0.001	<0.001	<0.0001	<0.001	< 0.0002	< 0.00002
Chromium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.001	< 0.0002	< 0.0002
Cobalt	IVIAC	0.05	0.0006	0.0003	0.0008	0.0004	0.0028	< 0.002
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	0.0028	< 0.0001
Iron	AO	0.3	0.06	0.04	0.03	0.03	0.032	0.038
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	< 0.00002	0.00002
Manganese	AO	0.05	0.02	0.02	0.02	0.02	0.028	0.000
Molybdenum	AU	0.05	<0.005	<0.005	<0.005	<0.005	0.028	0.0035
Nickel			<0.005	<0.005	<0.005	<0.005	, 0.01	< 0.01
Silicon			9.7	8.2	9.5	9.2	9.36	9.26
Silver			<0.0001	<0.0001	<0.0001	<0.0001	9.30	9.20
Strontium			0.087	0.079	0.082	0.092	0.094	0.09
Thallium			<0.001	<0.0001	<0.002	<0.0001	< 0.00005	
Titanium			<0.001	<0.001	<0.001	<0.001	< 0.005	< 0.005
Vanadium			<0.01	<0.01	<0.01	<0.01	< 0.005	0.0004
Zinc	AO	5	<0.001	<0.001	<0.001	<0.001	< 0.005	< 0.005
Arsenic	IMAC	0.025	\0.01	<0.01	\0.01	\0.01	< 0.003	< 0.003
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001					< 0.01	< 0.01
Phosphorus							< 0.01	< 0.01
pH (no units)	OG	6.5-8.5	-					
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.6	7.6	8.4	8.6	7.7	7.5
pH			8.9	8.5	8.2	5.8	8.2	8.1
Conductivity uS/cm			106	110	119	109	123	130
			4				4	

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Oct-14 BH 91-7	Jun-15	Oct-15	May-16	Nov-16	Apr-17
PARAMETER	Limit	ODWO/S	QA/QC					
Alkalinity (C _a CO3)	OG	30-500	53	54	54	56	56	54
BOD								
COD								
Chloride	AO	250	0.7	0.70	0.7	0.73	0.51	< 0.5
Conductivity uS/cm			131	138	136	146	141	135
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.1	< 0.1	< 0.05	< 0.05	< 0.1
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.1	< 0.1	< 0.05	< 0.05	< 0.1
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	72.8	83	82	78	102	74.5
Total Kjeldahl Nitrogen			< 0.05	< 0.05	< 0.05	0.13	< 0.1	0.11
Total phosphorous								
Hardness as CaCO3	OG	500	58	56	60	55.4	52.3	
Calcium			15.7	15.8	16.6	15.9	15.0	17
Magnesium			3.83	4.06	4.6	3.82	3.60	3.98
Potassium			3	2.9	3	2.95	3.05	3
Sodium	AO	200	4.7	4.9	5.1	4.37	4.42	4.8
Aluminum	OG	0.1	0.03	0.02	0.01	0.007	0.034	0.02
Barium	MAC	1	0.021	0.02	0.024	0.022	0.020	0.025
Beryllium	IVIAC		< 0.0001	< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001
Boron	IMAC	5	0.007	0.001	0.0001	< 0.001	< 0.001	0.0001
Cadmium	MAC	0.005	0.0007	< 0.00002	< 0.00002	<0.001	<0.01	< 0.00014
Chromium	MAC	0.003	< 0.002	< 0.0002	0.003	< 0.001	< 0.001	< 0.00014
Cobalt	IVIAC	0.03	0.0001	0.0002	< 0.003	< 0.003	< 0.003	< 0.002
Copper	AO	1	< 0.0001	< 0.002	< 0.0001	<0.001	< 0.001	< 0.0001
Iron		1 0.2						
Lead	AO	0.3	0.032	0.01	0.032	< 0.01	< 0.01	0.02
	MAC	0.01	0.00012	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002
Manganese	AO	0.05	0.02	0.02	0.025	0.018	0.015	0.019
Molybdenum Nickel			0.004	0.0025	0.0041		0.000	0.0037
			< 0.01	< 0.01	< 0.01	<0.003	<0.003	0.0004
Silicon			9.27	8.87	9.38	9.40	9.94	9.97
Silver								
Strontium			0.089	0.09	0.101	0.082	0.070	
Thallium			< 0.00005			<0.006	<0.006	< 0.00005
Titanium			< 0.005	< 0.005	< 0.005	<0.002	<0.002	< 0.005
Vanadium			0.0005	0.0003	0.0003	<0.002	<0.002	0.0003
Zinc	AO	5	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01	< 0.01			
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								< 0.05
Dissolved Reactive P								
Field Parameters								
Temperature ^o C				9	7.7	7.5	6.7	6.6
рН				7.6	8.1	8.3	8.1	7.8
Conductivity uS/cm				148	128	131	138	137
			*					

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Oct-17	May-18	Oct-18	May-19	Oct-19	May-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	54	53	55	58	56	56
BOD								
COD								
Chloride	AO	250	0.6	< 1	< 1	<1	<1	<1
Conductivity uS/cm			139	138	141	140	139	137
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.05	< 0.10	< 0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	< 0.05	< 0.10	< 0.10	<0.10	<0.10	<0.10
Phenols					0.110			
Sulphate	AO	500						
Total Dissolved Solids	AO	500	72	90	92	91	90	89
Total Kjeldahl Nitrogen			0.08	< 0.8	1.6	<0.75	<0.15	0.100
Total phosphorous			0.00	7 0.0				0.200
Hardness as CaCO3	OG	500	56	56	49	61	59	59
Calcium		300	15.7	16	13	18	17	17
Magnesium			4.08	4	4	4	4	4
Potassium			3.2	3	3	3	3	2
Sodium	AO	200	4.7	5	5	5	5	4
Aluminum	OG	0.1	0.02	< 0.01	< 0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.022	0.02	0.02	0.02	0.02	0.02
Beryllium	IVIAC		< 0.0001	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.008	< 0.003	< 0.00	<0.003	<0.003	<0.01
Cadmium	MAC	0.005	< 0.00014	< 0.001	< 0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.005	< 0.00014	< 0.0001	< 0.0001	0.0001	<0.0001	<0.001
Cobalt	IVIAC	0.03	< 0.002	< 0.0002	< 0.001	<0.001	<0.001	<0.001
Copper	AO	1	< 0.0001	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.001
Iron	AO	0.3	0.002	< 0.001	< 0.001	<0.03	<0.03	<0.001
Lead	MAC	0.01	< 0.00002	< 0.001	< 0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.00002	0.02	0.001	0.02	0.02	0.02
Molybdenum	AU	0.03	0.017	< 0.005	< 0.005	<0.005	<0.005	<0.005
Nickel			0.0034	< 0.005	< 0.005	<0.005	<0.005	<0.005
Silicon			9.81	9.6	9.6	9.3	9.1	9.2
Silver			9.61	9.0	9.0	3.3	3.1	3.2
Strontium			0.078	0.074	0.085	0.082	0.084	0.079
Thallium			< 0.00005	< 0.0001	< 0.0001	<0.002	<0.0001	<0.0001
Titanium			< 0.0005	< 0.001	< 0.001	<0.001	<0.001	<0.001
Vanadium			0.0002	< 0.01	< 0.01	<0.01	<0.01	<0.01
Zinc	AO	5	< 0.005	< 0.001	< 0.001	<0.001	<0.01	<0.001
Arsenic	IMAC	0.025	< 0.003	< 0.01	< 0.01	\0.01	₹0.01	\0.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5	+					
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			8.3	7.7	7.5	7.7	7.4	7.6
pH			8.7	7.9	8.3	7.8	8.2	8
Conductivity uS/cm			122	120	114	106	140	138
			•		•			

All concentrations in mg/L unless otherwise noted

Sample Location 91-2

Sample Date			Oct-20	Oct-20 DUP #1		
PARAMETER	Limit	ODWO/S		QA/QC		
Alkalinity (C _a CO3)	OG	30-500	56	55		
BOD						
COD						
Chloride	AO	250	6	<1		
Conductivity uS/cm			131	135		
DOC	AO	5				
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10		
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10		
Phenols						
Sulphate	AO	500				
Total Dissolved Solids	AO	500	85	88		
Total Kjeldahl Nitrogen			< 0.100	0.107		
Total phosphorous						
Hardness as CaCO3	OG	500	59	59		
Calcium			17	17		
Magnesium			4	4		
Potassium			3	3		
Sodium	AO	200	5	5		
Aluminum	OG	0.1	< 0.01	< 0.01		
Barium	MAC	1	0.02	0.02		
Beryllium			<0.0005	<0.0005		
Boron	IMAC	5	0.01	<0.01		
Cadmium	MAC	0.005	<0.0001	<0.0001		
Chromium	MAC	0.05	<0.001	<0.001		
Cobalt			<0.0002	<0.0002		
Copper	AO	1	<0.001	0.001		
Iron	AO	0.3	<0.03	<0.03		
Lead	MAC	0.01	<0.001	<0.001		
Manganese	AO	0.05	0.02	0.02		
Molybdenum			<0.005	<0.005		
Nickel			<0.005	<0.005		
Silicon			9.5	9.8		
Silver						
Strontium			0.072	0.071		
Thallium			<0.0001	<0.0001		
Titanium			<0.01	<0.01		
Vanadium			<0.001	<0.001		
Zinc	AO	5	<0.01	<0.01		
Arsenic	IMAC	0.025				
Fluoride	MAC	1.5				
Mercury	MAC	0.001				
N-NH3 (Ammonia)		0.002				
Phosphorus						
pH (no units)	OG	6.5-8.5				
Selenium	MAC	0.01				
Tin	1717 (C	0.01				
Dissolved Reactive P						
Field Parameters						
Temperature ^o C			7.2			
рН			8.1			
Conductivity uS/cm			145			

All concentrations in mg/L unless otherwise noted

Sample Location 91-3

Sample Date			Nov-98	Jul-99	Nov-99	Jun-00	Oct-00	
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	50	58	60	68	65	
BOD								
COD				<3				
Chloride	AO	250	0.9	1.1	1.1	1.1	1.3	
Conductivity uS/cm			148	149	138	148	151	
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1		<0.1				
N-NO3 (Nitrate)	MAC	10	0.1	0.2	0.1	0.1	0.1	
Phenols			0.005	0.013	<0.001	0.006	0.003	
Sulphate	AO	500	21	10	10	10	11	
Total Dissolved Solids	AO	500			90	110	94	
Total Kjeldahl Nitrogen	7.0	300		0.05	30	110	J .	
Total phosphorous				1.92				
Hardness as CaCO3	OG	500		59				
Calcium		300	16	18	16.9	15.8	17.7	
Magnesium			3.29	3.38	2.98	3.08	3.49	
Potassium			4.3	6.8	5.4	2.2	1.7	
Sodium	AO	200	5.3	5.4	6	4.9	5.4	
Aluminum	OG	0.1	5.5	0.25	0.06	0.1	0.33	
Barium	MAC	1	0.035	0.025	0.005	0.015	0.02	
Beryllium	IVIAC	1	<0.005	<0.005	<0.005	<0.005	<0.02	
Boron	IMAC	5	<0.003	0.003	0.003	<0.003	0.003	
Cadmium	MAC	0.005	<0.001	0.01	<0.001	<0.001	<0.001	
Chromium	MAC	0.003	<0.001	<0.01	<0.001	<0.001	<0.001	
Cobalt	IVIAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	
Iron	AO	0.3	0.26	0.29	0.06	0.19	0.32	
Lead								
Manganese	MAC	0.01	<0.0002	<0.0002	<0.0002	<0.0002	0.0012	
Molybdenum	AO	0.05	0.14	0.02	0.1	0.02	0.03	
Nickel			<0.02	<0.02	<0.02 <0.02	<0.02	<0.02	
Silicon			<0.02	<0.02		<0.02	<0.02	
Silver			8.6	8.97	7.83	8.52	7.24	
			<0.01	<0.01	<0.01	<0.01	<0.01	
Strontium			0.097	0.105	0.095	0.095	0.11	
Thallium			0.1	0.04	.0.01	.0.01	.0.01	
Titanium			<0.1	0.01	<0.01	<0.01	<0.01	
Vanadium		_	<0.005	<0.005	<0.005	<0.005	<0.005	
Zinc	AO	5	0.02	<0.01	<0.01	<0.01	<0.01	
Arsenic Fluoride	IMAC	0.025	<0.1	<0.001	<0.1	<0.1	<0.1	
	MAC	1.5		0.0004				
Mercury	MAC	0.001		<0.0001				
N-NH3 (Ammonia)				<0.01				
Phosphorus			0.2	<0.1	<0.1	<0.1	<0.1	
pH (no units)	OG	6.5-8.5	8.15	7.72	8.05	7.87	7.32	
Selenium	MAC	0.01		<0.001				
Tin			<0.2	<0.2	<0.2	<0.2		
Dissolved Reactive P								
Field Parameters								
Temperature °C								
pH								
Conductivity uS/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			Sep-91	Nov-92	Sep-95	Jul-97	Nov-98	Jul-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500		78	30	38	63	78
BOD								
COD					45			<3
Chloride	AO	250	23	49	45.4	46	50.9	45.2
Conductivity uS/cm	7.0	230			1311	248	281	275
DOC	AO	5		6		2.0	201	273
N-NO2 (Nitrite)	MAC	1		J				0.1
N-NO3 (Nitrate)	MAC	10		<0.1	<0.1	<0.1	<0.1	0.2
Phenols	1417 (C	10		10.1	0.009	0.029	0.002	0.013
Sulphate	AO	500		15	16	12	11	9
Total Dissolved Solids	AO	500	188	250	160	166	174	<u> </u>
Total Kjeldahl Nitrogen	AO	300	100	230	100	100	1/4	0.32
Total phosphorous								1.23
Hardness as CaCO3	OG	500	129					58
Calcium	00	300	129	31	18.2	17.8	16.4	14.5
Magnesium				8	6.2	6.22	5.67	5.3
Potassium				2	1.9	2.7	1.1	5.1
Sodium	AO	200		19	17.7	17.2	20.1	
Aluminum	OG							27.1
Barium		0.1		0.06	0.115	0.06	0.01	0.81
	MAC	1		0.11	0.061	0.051	0.056	0.06
Beryllium	10.44.6	_	.0.01	<0.01	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.01	<0.01	<0.01	0.02	0.02	0.01
Cadmium	MAC	0.005	<0.002	<0.01	0.0002	<0.01	<0.0001	2.21
Chromium	MAC	0.05		<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt		_		<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1		<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	188	0.14	14.6	16.3	2.9	14
Lead	MAC	0.01		<0.05	1.4	<0.1	<0.0002	0.0003
Manganese	AO	0.05		0.56	0.269	0.15	0.19	0.13
Molybdenum				<0.01	<0.02	<0.02	<0.02	<0.02
Nickel				<0.01	<0.02	<0.02	<0.02	<0.02
Silicon				6.8	8.5	8.59	7.31	9.18
Silver				<0.01	<0.01	<0.01	<0.01	<0.01
Strontium				0.08	0.066	0.065	0.063	0.05
Thallium								
Titanium				<0.01	0.014	<0.01	<0.01	<0.05
Vanadium				<0.01	<0.01	0.007	<0.005	<0.005
Zinc	AO	5		<0.01	<0.01	0.02	0.02	<0.01
Arsenic	IMAC	0.025			<0.1	<0.1	<0.1	<0.001
Fluoride	MAC	1.5						
Mercury	MAC	0.001						<0.0001
N-NH3 (Ammonia)								0.12
Phosphorus				<0.1	<0.0	<0.1	<0.1	<0.1
pH (no units)	OG	6.5-8.5	7.46	7.13	6.6	7	6.54	6.6
Selenium	MAC	0.01						<0.001
Tin				<0.05	<0.2	<0.2	<0.2	<0.2
Dissolved Reactive P								
Field Parameters								
Temperature ^o C								
pH								
Conductivity uS/cm								
All concentrations in mar/L	mlaaa athamu	:	i	i			1	i

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			Nov-99	Jun-00	Jun-01	Jun-02	Nov-02	May-04
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	50	53	34	39	32	31
BOD								
COD								6
Chloride	AO	250	48	45.8	58.2	61.7	62.4	58.4
Conductivity uS/cm	AO	230	271	268	280	294	298	915
DOC	AO	5	2/1	200	200	234	230	1
N-NO2 (Nitrite)	MAC	1					<0.1	
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1			₹0.1	
Phenols	IVIAC	10	<0.01	0.004	0.018	<0.001	<0.001	<0.001
Sulphate	AO	500	9	8	9	9	12	14
Total Dissolved Solids	AO	500	188		170	168	170	14
Total Kjeldahl Nitrogen	AU	500	100	168	170	100	170	
Total phosphorous					1.71			0.52
Hardness as CaCO3	00	500			1./1			
Calcium	OG	500	45.7	42.0	42.0	24.0	45.2	57
			15.7	12.8	13.8	21.8	15.2	14.2
Magnesium			5.2	4.74	4.8	5.73	5.58	5.2
Potassium			2.4	6	1.2	3	1.4	2.1
Sodium	AO	200	29.4	29.3	25	28.1	33.4	31.8
Aluminum	OG	0.1	0.07	0.22	0.22	0.02	0.02	0.03
Barium	MAC	1	0.045	0.045	0.045	0.05	0.04	0.057
Beryllium			<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Boron	IMAC	5	0.01	<0.01	<0.01	0.02	<0.01	0.013
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.01	<0.01	<0.0001
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001
Cobalt			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Copper	AO	1	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.002
Iron	AO	0.3	0.22	12.3	11.7	16.8	0.14	0.287
Lead	MAC	0.01	< 0.0002	<0.0002	0.0006	<0.1	<0.1	0.0002
Manganese	AO	0.05	0.15	0.12	0.11	0.14	0.11	0.134
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	< 0.01
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	< 0.01
Silicon			6.9	7.76	6.94	7.93	6.85	7.9
Silver			< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.005
Strontium			0.065	0.05	0.055	0.068	0.06	0.059
Thallium								
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Vanadium			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	0.005
Arsenic	IMAC	0.025	<0.1	<0.1	<0.01	<0.1	<0.01	<0.001
Fluoride	MAC	1.5	\U.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.1	\U.1	·U.1	10.001
Mercury	MAC	0.001			0.1			
N-NH3 (Ammonia)	IVIAC	0.001				0.1		
Phosphorus			<0.1	<0.1		<0.1	<0.1	
pH (no units)	OG	6.5-8.5	7.27	7.4	6.6	\U.1	7.8	
Selenium			1.21	7.4	0.0		7.0	c0 001
	MAC	0.01	40 B	40 B		40 B	40 C	<0.001
Tin Dissolved Reactive P			<0.2	<0.2		<0.2	<0.2	<0.05
Field Parameters								
Temperature °C								
pH								
Conductivity uS/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			May-05	May-06	May-07	Oct-08	May-09	May-10
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	47	44	48	46	50	43
BOD			<1		<1	<1	1	
COD			<5	11	<5	7	10	
Chloride	AO	250	57	60	56	61	50	61
Conductivity uS/cm			315	296	303	303	273	312
DOC	AO	5	2.5	1.5	3.4	5.6	3.5	
N-NO2 (Nitrite)	MAC	1	<0.10	1.0	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10		<0.10	<0.10	<0.10	<0.10
Phenols		10	<0.001		<0.001	<0.001	<0.001	10.120
Sulphate	AO	500	8		6	5	7	
Total Dissolved Solids	AO	500	205	192	197	197	177	203
Total Kjeldahl Nitrogen	AU	300	0.25	0.27	0.18	0.16	0.2	0.28
Total phosphorous			0.23	0.27	0.18	0.10	0.2	0.28
Hardness as CaCO3	OG	500	56		58	67	56	65
Calcium	OG	500		1.4	15			16
			14	14		17	14	
Magnesium Potassium			5	5	5	6	5	6
Sodium		200	2	2	2	2	2	2
	AO	200	29	29	32	30	26	31
Aluminum	OG	0.1	<0.01	0.01	<0.01	0.02	0.03	0.01
Barium	MAC	1	0.06	0.05	0.05	0.06	0.05	0.06
Beryllium			<0.001		<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	<0.01	<0.01	0.01	<0.01	0.01	0.01
Cadmium	MAC	0.005	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	0.002	0.002	0.002	0.001	<0.001
Cobalt			0.0002	<0.0002	<0.0002	0.0302	0.0232	0.0017
Copper	AO	1	<0.001	0.058	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	16	14.9	15.2	17.9	19.2	16.8
Lead	MAC	0.01	0.002		<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.12	0.12	0.12	0.2	0.17	0.14
Molybdenum			< 0.005		<0.005	<0.005	<0.005	<0.005
Nickel			< 0.005		< 0.005	<0.005	<0.005	<0.005
Silicon			9.3	7.3	8.1	7.9	8.1	7.5
Silver			< 0.0001		< 0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium			0.061	0.051	0.05	0.069	0.061	0.067
Thallium			< 0.0001		0.0003	< 0.0001	< 0.0001	< 0.0001
Titanium			<0.01		< 0.01	<0.01	<0.01	<0.01
Vanadium			0.003		0.003	0.003	0.003	0.002
Zinc	AO	5	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	1417 (C	0.001		0.21	0.21			
Phosphorus				0.21	0.21			
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	1					
Tin	IVIAC	0.01						
Dissolved Reactive P				0.04	0.04			
Field Parameters				0.04	0.04			
Temperature °C			9.2	9.6	8.2		8.1	7.0
pH								7.9
Conductivity uS/cm			8.15 312	8.13	7.3		7.1	7.5
		1	1 317	266	296		342	353

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			Jun-11	Oct-11	Jun-12	Oct-12	Jun-13	Nov-13
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	43	47	49	46	42	42
BOD		00000		.,				
COD								
Chloride	AO	250	64	61	60	64	59	59
Conductivity uS/cm	7.0	230	319	317	305	313	302	303
DOC	AO	5	313	317	303	313	302	303
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	IVIAC	10	10.10	10.10	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500			7	7	7	8
Total Dissolved Solids	AO	500	207	206	198	203	196	197
Total Kjeldahl Nitrogen	AU	300	0.11	<0.10	0.2	0.23	<0.10	0.16
Total phosphorous			0.11	<0.10	0.2	0.25	<0.10	0.10
Hardness as CaCO3	OG	500	60	66	44	63	49	51
Calcium	UG	300			11			
			16	18		17	13 4	14
Magnesium Potassium			5	5	4	5		4
		200	2	2	2	2	2	2
Sodium	AO	200	32	29	29	29	35	37
Aluminum	OG	0.1	0.03	0.02	0.04	0.05	0.02	0.07
Barium	MAC	1	0.06	0.06	0.06	0.06	0.06	0.05
Beryllium			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.01	0.01	0.01	0.02	0.02	0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.002	<0.001	0.002	0.002	0.001	<0.001
Cobalt			<0.0002	0.0002	<0.0002	0.0004	<0.0002	<0.0002
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	18.4	18.4	17.1	17.1	15.5	13.5
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Manganese	AO	0.05	0.13	0.15	0.14	0.13	0.12	0.1
Molybdenum			<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005
Nickel			<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005
Silicon			7.9	7.7	8.2	7.1	7.8	8.3
Silver			< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001
Strontium			0.065	0.071	0.064	0.066	0.059	0.049
Thallium			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01
Vanadium			0.003	0.002	0.003	0.003	0.003	0.004
Zinc	AO	5	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Arsenic								
	IMAC	0.025						
Fluoride	IMAC MAC	0.025 1.5						
	MAC	1.5						
Fluoride Mercury N-NH3 (Ammonia)								
Mercury	MAC	1.5						
Mercury N-NH3 (Ammonia) Phosphorus	MAC MAC	1.5 0.001						
Mercury N-NH3 (Ammonia) Phosphorus pH (no units)	MAC MAC	1.5 0.001 6.5-8.5						
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium	MAC MAC	1.5 0.001						
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin	MAC MAC	1.5 0.001 6.5-8.5						
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P	MAC MAC	1.5 0.001 6.5-8.5						
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters	MAC MAC	1.5 0.001 6.5-8.5	72	7.2	7.5	7	8	6.9
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature C	MAC MAC	1.5 0.001 6.5-8.5	7.3	7.2	7.5	7	8 7.2	6.9
Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters	MAC MAC	1.5 0.001 6.5-8.5	7.3 6.9 291	7.2 6.9 358	7.5 6.8 309	7 6.5 353	8 7.2 271	6.9 7.4 338

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

PARAMETER Limit ODWO/S	Sample Date			Apr-14	Oct-14	Jun-15	Oct-15	May-16	May-16 QAQC
BOD COD Chloride Conductivity uS/cm AO 250 55.8 60.4 54.9 54 66 65.9 304 3	PARAMETER	Limit	ODWO/S						
COD	Alkalinity (C _a CO3)	OG	30-500	41	44	44	42	45	43
Chloride	BOD								
Conductivity us/cm	COD								
Conductivity us/cm	Chloride	AO	250	55.8	60.4	54.9	54	66	65.9
DOC N-NO2 (Nitrite) MAC 1 < 0.10 < 0.10 < 0.1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.0	Conductivity uS/cm								
N-NO2 (Nitrite) MAC		AO	5						
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.1 <0.1 <0.05 <0.05	N-NO2 (Nitrite)			< 0.10	< 0.10	< 0.1	< 0.1	<0.05	< 0.05
Phenois Sulphate AO 500 Sulphate AO 500 157 183 169 172 136 138 1048 1									
Sulphate	, ,			0.120	0.10				
Total Dissolved Solids AO 500 157 183 169 172 136 138 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.27 0.07 0.3 0.11 0.25 0.24 170tal Kjeldahl Nitrogen 0.25 0.25 0.25 170tal Kjeldahl Nitrogen 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	Sulphate	AO	500						
Total Kjeldahl Nitrogen 0.27 0.67 0.3 0.11 0.25 0.24 Total phosphorous 8 0.27 0.67 0.3 0.11 0.25 0.24 Hardness as CaCO3 OG 500 46 49 48 51 47.2 48.2 Hardness as CaCO3 OG 500 46 49 48 51 47.2 48.2 Hardness as CaCO3 OG 500 46 49 48 51 47.2 48.2 Potassium 1.2.1 12.8 1.9 1.7 2.08 2.08 Sodium AO 200 37.1 30.8 35.1 32.6 35.2 34.4 Aluminum AO 0.1 0.04 0.03 < 0.01				157	183	169	172	136	138
Total phosphorous		7.0	300						
Hardness as CaCO3				0.27	0.07	0.5	0.11	0.23	0.24
Calcium		OG	500	46	49	48	51	47.2	48.2
Magnesium		- 00	300						
Potassium									
Sodium									
Aluminum		۸٥	200						
Barium									
Beryllium									
Boron		IVIAC	<u> </u>						
Cadmium MAC 0.005 < 0.00002 < 0.00002 < 0.00002 < 0.0001 < 0.001 Chromium MAC 0.05 < 0.002		10.44.6	-						
Chromium MAC 0.05 < 0.002 < 0.002 < 0.002 < 0.003 < 0.003 Cobalt 0.0004 0.0001 0.0002 < 0.0001									
Cobalt 0.0004 0.0001 0.0002 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.003 < 0.002 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00003 < 0.00003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.00003 < 0.00005 < 0.0005 < 0.0005<									
Copper		MAC	0.05						
Iron									
Lead MAC 0.01 0.00003 < 0.00002 < 0.00002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005									
Manganese AO 0.05 0.108 0.123 0.11 0.138 0.113 0.113 Molybdenum 0.0001 0.0004 0.0001 0.0002 0.003 <0.003									
Molybdenum									
Nickel County		AO	0.05					0.113	0.113
Silicon 7.69 7.73 6.36 7.72 7.97 8.24 Silver 0.053 0.059 0.055 0.056 0.049 0.051 Strontium 0.00005 < 0.00005									
Silver 0.053 0.059 0.055 0.056 0.049 0.051 Thallium < 0.00005									
Strontium 0.053 0.059 0.055 0.056 0.049 0.051 Thallium < 0.00005				7.69	7.73	6.36	7.72	7.97	8.24
Thallium < 0.00005									
Titanium < 0.005 < 0.005 < 0.005 0.002 0.002 Vanadium 0.0037 0.0013 0.0038 0.0036 0.004 0.004 Zinc AO 5 < 0.005									
Vanadium 0.0037 0.0013 0.0038 0.0036 0.004 0.004 Zinc AO 5 < 0.005	Thallium			< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.006	<0.006
Zinc AO 5 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	Titanium			< 0.005	< 0.005	< 0.005	< 0.005	0.002	0.002
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 0.08 < 0.01 0.08 0.11 Phosphorus PH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature C 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7	Vanadium			0.0037	0.0013	0.0038	0.0036	0.004	0.004
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 0.08 < 0.01 0.08 0.11 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7	Zinc	AO	5	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 0.08 < 0.01	Arsenic	IMAC	0.025						
Mercury MAC 0.001 0.08 < 0.01 0.08 0.11 Phosphorus	Fluoride								
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature □C pH Tin Tin Temperature □C Tin Tin Tin Tin Tin Tin Tin Tin Tin Ti	Mercury								
Phosphorus Dissolved Reactive P Field Parameters 7.3 7.3 7.5 PH 7.7 7.6 7 7 6.7		-		0.08	< 0.01	0.08	0.11		
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7				0.00	10.02	0.00	0.22		
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7		OG	6 5-8 5						
Tin Dissolved Reactive P Field Parameters Temperature °C 7.3 7.3 8.3 7.5 pH 7.7 7.6 7 7 6.7									
Dissolved Reactive P Field Parameters Temperature °C 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7		IVIAC	0.01						
Temperature °C 7.3 7.3 8.3 7.8 7.5 pH 7.7 7.6 7 7 6.7	Dissolved Reactive P								
pH 7.7 7.6 7 7 6.7									
pH 7.7 7.6 7 7 6.7	Temperature °C			7.3	7.3	8.3	7.8	7.5	
	•								
	Conductivity uS/cm			285	315	339	285	309	

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			Nov-16	Nov-16 QAQC	Apr-17	Oct-17	May-18	Oct-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	42	42	44	64	61.00	45
BOD								
COD								
Chloride	AO	250	64.7	63.5	57.4	52.8	52.0	50
Conductivity uS/cm			307	309	295	286	286.00	274
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.05	<0.05	< 0.1	< 0.05	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.05	<0.05	< 0.1	< 0.05	< 0.10	< 0.10
Phenols				0.00		7 0.00		0120
Sulphate	AO	500						
Total Dissolved Solids	AO	500	176	172	149	150	186.00	178
Total Kjeldahl Nitrogen	,	300	0.28	0.20	0.34	0.2	1.80	< 0.8
Total phosphorous			0.20	0.20	0.0.	0.1		7 0.0
Hardness as CaCO3	OG	500	50.5	51.4	51	52	51.0	56
Calcium		300	13.4	13.6	13.5	12.9	14.0	14
Magnesium			4.13	4.24	4.17	4.9	4.00	5
Potassium			1.91	2.00	1.9	2	2.00	2
Sodium	AO	200	31.9	31.8	38.4	33.7	38.0	26
Aluminum	OG	0.1	0.006	0.008	0.01	0.02	< 0.01	< 0.01
Barium	MAC	1	0.059	0.052	0.054	0.02	0.050	0.06
Beryllium	IVIAC		<0.001	<0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005
Boron	IMAC	5	0.001	0.012	< 0.005	0.001	< 0.003	< 0.0003
Cadmium	MAC	0.005	<0.012	<0.012		< 0.00014	< 0.001	< 0.001
Chromium	MAC	0.005	<0.001	<0.001	< 0.00020	< 0.00014	< 0.0001	< 0.0001
Cobalt	IVIAC	0.05		<0.003				
Copper	40	1	<0.001		< 0.0001	< 0.0001	< 0.0002	< 0.0002
Iron	AO AO	0.3	<0.003 15.1	<0.003 14.8	< 0.002	< 0.002	< 0.001	< 0.001 16.3
Lead					14.5	0.344		
Manganese	MAC	0.01	<0.002	<0.002	< 0.00002	< 0.00002	< 0.001	< 0.001
Molybdenum	AO	0.05	0.121	0.119	0.117	0.104	0.110	0.14
Nickel			10.003	40.002	0.0001	0.0001	< 0.005	< 0.005
Silicon			<0.003	<0.003	0.0003	0.0003	< 0.005	< 0.005
Silver			7.52	7.23	7.64	7.46	8.00	7.8
			0.054	0.052	0.054	0.056	0.054	0.064
Strontium			0.054	0.052	0.051	0.056	0.054	0.064
Thallium			<0.006	<0.006	< 0.00005		< 0.0001	< 0.0001
Titanium			<0.002	<0.002	< 0.005	< 0.005	< 0.01	< 0.01
Vanadium	• • •	_	0.002	0.002	0.003	0.0021	0.002	0.002
Zinc	AO	5	<0.005	<0.005	< 0.005	< 0.005	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.3		7.2	7.3	7.3	7.3
pH			6.9		6.9	7.3	7	6.9
Conductivity uS/cm			340		335	301	173	232

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Deep)

Sample Date			May-19	Oct-19	May-20	Oct-20	Oct-20 Dup #3	
PARAMETER	Limit	ODWO/S				T.	QAQC	
Alkalinity (C _a CO3)	OG	30-500	52	69	48	43	44	
BOD								
COD								
Chloride	AO	250	64	58	62	71	71	
Conductivity uS/cm			280	342	312	334	339	
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	<0.10	< 0.10	<0.10	<0.10	
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	182	222	203	217	220	
Total Kjeldahl Nitrogen			< 0.75	0.24	0.269	0.160	0.233	
Total phosphorous								
Hardness as CaCO3	OG	500	63	66	60	72	72	
Calcium			17	18	16	19	19	
Magnesium			5	5	5	6	6	
Potassium			2	2	2	2	2	
Sodium	AO	200	35	26	36	37	38	
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	
Barium	MAC	1	0.06	0.07	0.06	0.07	0.07	
Beryllium	IVIAC	1	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Boron	IMAC	5	<0.003	0.00	0.00	0.00	0.02	
Cadmium					<0.001			
Chromium	MAC MAC	0.005	<0.0001	<0.0001 <0.001		<0.0001 <0.001	<0.0001	
Cobalt	IVIAC	0.05	0.001		<0.001		<0.001	
	4.0	1	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Copper	AO	1	<0.001	0.003	<0.001	0.016	<0.001	
Iron	AO	0.3	16.2	17.7	16.5	15.4	15.8	
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	
Manganese	AO	0.05	0.14	0.16	0.14	0.16	0.16	
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	
Silicon			7.5	7.5	7.6	8.1	8.2	
Silver								
Strontium			0.06	0.073	0.068	0.062	0.064	
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	
Vanadium			0.003	0.002	0.002	0.002	0.002	
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.4	7.3	7.4	6.8		
pH			6.7	0.2	6.8	6.6		
Conductivity uS/cm			209	189	356	398		

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Shallow)

Sample Date			Nov-08	Nov-08 QAQC	May-09	May-10	Jun-11	Oct-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	80	81	73	75	80	85
BOD			1	<1	1			
COD			13	15	<5			
Chloride	AO	250	11	12	7	5	5	10
Conductivity uS/cm			198	200	170	180	180	205
DOC	AO	5	1	1.1	1.3			
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001	<0.001	10.20	10.20	10.120
Sulphate	AO	500	7	7	7			
Total Dissolved Solids	AO	500	129	130	111	117	117	133
Total Kjeldahl Nitrogen	7.0	300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.04	0.12	0.09	10.10	10.10	10.10
Hardness as CaCO3	OG	500	82	87	63	68	80	87
Calcium	- 00	300	23	25	17	19	22	25
Magnesium			6	6	5	5	6	6
Potassium			2	2	1	1	2	2
Sodium	AO	200	5	5	6	6	5	6
Aluminum	OG	0.1	0.02	0.03	0.01	0.01	<0.01	<0.01
Barium								
Beryllium	MAC	1	0.05	0.05	0.03	0.03	0.03	0.04
•	10.44.0		<0.001	<0.001	<0.001	<0.001	<0.0005	<0.0005
Boron	IMAC	5	0.01	<0.01	<0.01	0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
Cobalt			0.0351	0.0029	0.0298	0.0038	0.0003	0.0166
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	<0.03	0.03	0.16	0.28	0.28	0.38
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.08	0.02	0.08	0.04	0.03	0.06
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			5.1	5.2	5.5	5.4	5.2	5.2
Silver			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Strontium			0.044	0.042	0.035	0.037	0.04	0.041
Thallium			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium			0.012	0.013	0.001	<0.001	< 0.001	<0.001
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	-							
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C		+			8.7	8.4	7.3	7.2
рН					7.8	8.5	6.9	7.7
Conductivity uS/cm					182	178	147	200
All concentrations in mar/l		1 1			107	1/0	14/	200

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Shallow)

PARAMETER	Sample Date			Jun-12	Oct-12	Jun-13	Nov-13	Apr-14	Oct-14
Alkalinity (C,CO3)	PARAMETER	Limit	ODWO/S						
BOD Chloride				81	86	82	89	90	86
COD									
Chloride									
Total Dissolved Solids Total Dissolved Sol		ΑO	250	7	14	4	5	4.6	9.7
DOC N-NO2 (Nitrite) MAC 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0		7.0	230	-					
N-NO2 (Nitrite)		AΩ	5	100	217	101	133	133	201
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0				<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
Phenols									
Sulphate AO S00 9 8 77 77		WIAC	10					(0.10	10.10
Total Dissolved Solids AO 500 122 141 118 129 107 135 Total Kjeldahl Nitrogen		ΔΩ	500						
Total phosphorous						-	-	107	125
Total phosphorous		AU	300						
Hardness as CaCO3				<0.10	0.12	0.12	\0.10	0.21	0.07
Calcium		06	E00	62	OE.	80	00	01	90
Magnesium		UG	500						
Potassium									
Sodium								-	
Aluminum		10	200						
Barium MAC 1 0.03 0.04 0.04 0.03 0.035 0.034 Beryllium < <0.0005									
Beryllium									
Boron		MAC	1						
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0000 <0.0001 <0.0000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Chromium									
Cobalt 0.0106 0.0076 0.0006 0.0005 0.0018 0.0049 Copper AO 1 <0.001									
Copper		MAC	0.05						
Iron									
Lead									
Manganese AO 0.05 0.05 0.04 0.03 0.03 0.035 0.046 Molybdenum <0.005	Iron				0.20	0 22	0 32	0 200	
Molybdenum									
Nickel	Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	< 0.00002	0.00002
Silicon 5.7 4.8 5.3 5.5 5.36 5.49 Silver <0.0001	Lead Manganese	MAC	0.01	<0.001 0.05	<0.001 0.04	<0.001 0.03	<0.001 0.03	< 0.00002 0.035	0.00002 0.046
Silver	Lead Manganese Molybdenum	MAC	0.01	<0.001 0.05 <0.005	<0.001 0.04 <0.005	<0.001 0.03 <0.005	<0.001 0.03 <0.005	< 0.00002 0.035 0.0001	0.00002 0.046 0.0006
Strontium 0.042 0.048 0.041 0.039 0.048 0.046 Thallium <0.0001	Lead Manganese Molybdenum Nickel	MAC	0.01	<0.001 0.05 <0.005 <0.005	<0.001 0.04 <0.005 <0.005	<0.001 0.03 <0.005 <0.005	<0.001 0.03 <0.005 <0.005	< 0.00002 0.035 0.0001 < 0.01	0.00002 0.046 0.0006 < 0.01
Thallium <0.0001 <0.0001 <0.0001 <0.0005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td>Lead Manganese Molybdenum Nickel Silicon</td> <td>MAC</td> <td>0.01</td> <td><0.001 0.05 <0.005 <0.005 5.7</td> <td><0.001 0.04 <0.005 <0.005</td> <td><0.001 0.03 <0.005 <0.005 5.3</td> <td><0.001 0.03 <0.005 <0.005</td> <td>< 0.00002 0.035 0.0001 < 0.01</td> <td>0.00002 0.046 0.0006 < 0.01</td>	Lead Manganese Molybdenum Nickel Silicon	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7	<0.001 0.04 <0.005 <0.005	<0.001 0.03 <0.005 <0.005 5.3	<0.001 0.03 <0.005 <0.005	< 0.00002 0.035 0.0001 < 0.01	0.00002 0.046 0.0006 < 0.01
Titanium < 0.01 < 0.01 < 0.01 < 0.005 < 0.005 Vanadium < 0.001	Lead Manganese Molybdenum Nickel Silicon	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7	<0.001 0.04 <0.005 <0.005 4.8	<0.001 0.03 <0.005 <0.005 5.3	<0.001 0.03 <0.005 <0.005 5.5	< 0.00002 0.035 0.0001 < 0.01	0.00002 0.046 0.0006 < 0.01
Vanadium <0.001 <0.001 <0.001 0.0009 0.0013 Zinc AO 5 <0.01	Lead Manganese Molybdenum Nickel Silicon Silver	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001	<0.001 0.03 <0.005 <0.005 5.3 <0.0001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001	< 0.00002 0.035 0.0001 < 0.01 5.36	0.00002 0.046 0.0006 < 0.01 5.49
Zinc	Lead Manganese Molybdenum Nickel Silicon Silver Strontium	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039	< 0.00002 0.035 0.0001 < 0.01 5.36	0.00002 0.046 0.0006 < 0.01 5.49
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature C 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia)	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	MAC	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.01	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.01	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.005
Mercury MAC 0.001	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	MAC AO	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.005 0.0013
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature C pH Tin Tin Temperature C Tin Tin Tin Temperature C	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	MAC AO	0.01	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.005 0.0013
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature C PH TO THE TEMPERATURE TO T	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	AO AO IMAC	0.01 0.05	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.005 0.0013
Phosphorus Description	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride	AO IMAC MAC	0.01 0.05 5 0.025 1.5	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.005 0.0013
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury	AO IMAC MAC	0.01 0.05 5 0.025 1.5	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Selenium Temperature C 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia)	AO IMAC MAC	0.01 0.05 5 0.025 1.5	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
Tin Dissolved Reactive P Field Parameters Temperature C P To the control of the c	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus	AO IMAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
Dissolved Reactive P Field Parameters Field Parameters 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units)	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
Field Parameters 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
Temperature °C 8 6.9 7.9 7 7.3 7.8 pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
pH 7.7 7.1 7.6 6.8 8.2 7.8	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.01	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001	<0.00002 0.035 0.0001 <0.01 5.36 0.048 <0.00005 <0.005 0.0009 <0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.001 <0.001	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001 <0.001	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001 <0.001	< 0.00002 0.035 0.0001 < 0.01 5.36 0.048 < 0.00005 < 0.005 0.0009 < 0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.00005 < 0.0013 < 0.005
	Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic Fluoride Mercury N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature C	AO AO IMAC MAC MAC MAC MAC	0.01 0.05 5 0.025 1.5 0.001	<0.001 0.05 <0.005 <0.005 5.7 <0.0001 0.042 <0.0001 <0.001 <0.001	<0.001 0.04 <0.005 <0.005 4.8 <0.0001 0.048 <0.0001 <0.001 <0.001	<0.001 0.03 <0.005 <0.005 5.3 <0.0001 0.041 <0.0001 <0.001 <0.001 <7.9	<0.001 0.03 <0.005 <0.005 5.5 <0.0001 0.039 <0.0001 <0.001 <0.001	< 0.00002 0.035 0.0001 < 0.01 5.36 0.048 < 0.00005 < 0.005 0.0009 < 0.005	0.00002 0.046 0.0006 < 0.01 5.49 0.046 < 0.0005 < 0.005 < 0.005 < 0.001

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Shallow)

Sample Date			Jun-15	Oct-15	May-16	Nov-16	Apr-17	Oct-17
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	88	88	96	99	94	86
BOD		30 300						
COD								
Chloride	AO	250	4.5	5.7	4.91	7.40	4.8	4.6
Conductivity uS/cm	7.0	230	193	196	208	214	201	186
DOC	AO	5	133	150	200		201	100
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
N-NO3 (Nitrate)	MAC	10	< 0.1	< 0.1	<0.05	<0.05	0.2	< 0.05
Phenols	1417 (C	10	10.1	10.1	10.03	10.03	0.2	\ 0.05
Sulphate	AO	500						
Total Dissolved Solids	AO	500	118	124	100	126	108	99
Total Kjeldahl Nitrogen	AO	300	0.2	< 0.05	<0.10	<0.10	0.24	< 0.1
Total phosphorous			0.2	< 0.05	\0.10	₹0.10	0.24	₹ 0.1
Hardness as CaCO3	OG	500	94	98	87.7	85.2	93	88
Calcium	OG	300	26.5	26.9	24.7	24.4	26.2	24.5
Magnesium			6.73	7.48	6.32	5.90	6.74	6.51
Potassium			1.9	1.5	1.63	1.58	1.5	1.5
Sodium	AO	200	5.6	4.8	5.04	5.95	6.2	6.1
Aluminum	OG	0.1			<0.004	<0.004		
Barium			< 0.01	< 0.01			0.02	0.03
	MAC	1	0.035	0.039	0.037	0.035	0.038	0.038
Beryllium	12.44.0	_	< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Boron Cadmium	IMAC	5	< 0.005	0.005	<0.010	<0.010	< 0.005	0.005
	MAC	0.005	< 0.00002	< 0.00002	<0.001	<0.001		< 0.000014
Chromium	MAC	0.05	< 0.002	< 0.002	<0.003	<0.003	< 0.002	< 0.002
Cobalt			0.0001	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Copper	AO	1	< 0.002	< 0.002	<0.003	<0.003	< 0.002	< 0.002
Iron	AO	0.3	0.288	0.472	0.428	0.387	0.191	0.37
Lead	MAC	0.01	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002	< 0.00002
Manganese	AO	0.05	0.03	0.04	0.029	0.031	0.034	0.03
Molybdenum			0.0001	0.0001			0.0001	< 0.0001
Nickel			< 0.01	< 0.01	<0.003	<0.003	0.0006	0.0005
Silicon			4.45	5.5	5.70	5.19	5.7	6.19
Silver								
Strontium			0.049	0.049	0.042	0.040	0.043	0.04
Thallium			< 0.00005		<0.006	<0.006	< 0.00005	
Titanium			< 0.005	< 0.005	<0.002	<0.002	< 0.005	< 0.005
Vanadium			0.0009	0.0007	<0.002	<0.002	0.0008	0.0007
Zinc	AO	5	0.005	< 0.005	0.042	<0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01				
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.9	8	7.5	7.4	7.3	7.6
рН			7.5	7.2	7.2	7.2	7.6	8.2
Conductivity uS/cm			213	181	190	210	208	170

All concentrations in mg/L unless otherwise noted

Sample Location 91-5 (Shallow)

Sample Date			May-18	Oct-18	May-19	Oct-19	May-20	Oct-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	90	86	93	98	94	90
BOD								
COD								
Chloride	AO	250	6	4	3	4	3	7
Conductivity uS/cm	7.0	230	201	190	160	185	188	196
DOC	AO	5	201	150	100	103	100	130
N-NO2 (Nitrite)	MAC	1		< 0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10		< 0.10	<0.10	<0.10	<0.10	<0.10
Phenols	WIAC	10		₹ 0.10	10.10	10.10	10.10	10.10
Sulphate	AO	500						
Total Dissolved Solids	AO	500	131	124	104	120	122	127
Total Kjeldahl Nitrogen	AO	300	1.4	< 0.8	<0.75	<0.15	0.193	<0.100
Total phosphorous			1.4	₹ 0.8	<0.75	\0.13	0.193	₹0.100
Hardness as CaCO3	OG	500	96	70	101	85	90	94
Calcium	OG	300	27	20	29	24	26	26
Magnesium			7		7	6	6	7
Potassium			2	5 1	1	1	2	2
Sodium	40	200	5	6	4	6	5	6
Aluminum	AO OG	0.1	-		<0.01	<0.01	<0.01	<0.01
Barium			< 0.01	< 0.01				
	MAC	1	0.04	0.04	0.04	0.04	0.04	0.04
Beryllium	10.44.0	_	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Cobalt			< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Copper	AO	1	< 0.001	< 0.001	<0.001	0.003	<0.001	0.004
Iron	AO	0.3	0.43	0.41	0.43	0.42	0.47	0.46
Lead	MAC	0.01	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.03	0.003	0.03	0.03	0.03	0.04
Molybdenum			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Nickel			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon			6.1	6.1	5.6	5.7	5.8	6.0
Silver								
Strontium			0.045	0.041	0.041	0.041	0.046	0.038
Thallium			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			< 0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.5	7.4	7.3	7.3	7.2	6.7
pH			7	6.9	7.1	7.2	6.9	7.3
Conductivity uS/cm			173	146	131	189	189	206

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			Sep-95	Aug-96	Nov-96	Jul-97	Nov-98	Jul-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	80	39	80	90	78	70
BOD								
COD			46					<3
Chloride	AO	250	0.7	0.6	<0.1	1	0.9	1.2
Conductivity us/cm	710	230	0.7	90	155	154	153	161
DOC	AO	5		30	133	154	133	101
N-NO2 (Nitrite)	MAC	1						<0.1
N-NO3 (Nitrate)	MAC	10	<0.1	0.9	0.1	<0.1	<0.1	0.2
Phenols	IVIAC	10	0.02	<0.001	<0.001	0.003	<0.001	0.002
Sulphate	AO	500	10	5	9	8	8	7
Total Dissolved Solids	AO	500	10	67	90	103	98	,
Total Kjeldahl Nitrogen	AU	300		07	30	103	96	0.38
Total phosphorous								1.2
Hardness as CaCO3	OG	500						74
Calcium	OG	300	20.2	9.76	17.9	19.6	17.6	18.3
Magnesium			6.7	2.97	6.5		6.56	6.8
Potassium						7.11		
Sodium	40	200	2.3	4.1	1.3	5	2.2	44
	AO	200	3.06	1.1	2.4	2.6	2.4	2.6
Aluminum	OG	0.1	0.43	0.1	0.2	0.45	0.09	0.72
Barium	MAC	1	0.016	0.012	0.014	0.02	0.016	0.015
Beryllium		_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.01	<0.0001	
Chromium	MAC	0.05	0.011	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt			< 0.01	0.01	<0.01	< 0.01	<0.01	<0.01
Copper	AO	1	0.012	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.968	0.18	0.53	1.5	0.25	1.15
Lead	MAC	0.01	0.0013	<0.0002	<0.0002	<0.1	<0.0002	0.0004
Manganese	AO	0.05	0.34	<0.01	0.02	0.08	0.03	0.02
Molybdenum			< 0.02	< 0.02	0.04	< 0.02	<0.02	< 0.02
Nickel			<0.02		<0.02	< 0.02	<0.02	< 0.02
Silicon			7.38	5.82	6.32	6.87	5.87	7.86
Silver			0.012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Strontium			0.04	0.015	0.028	0.032	0.027	0.03
Thallium								
Titanium			0.024	<0.01	< 0.01	0.02	< 0.01	< 0.05
Vanadium			0.01	0.005	<0.005	0.006	< 0.005	<0.005
Zinc	AO	5	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
Arsenic	IMAC	0.025	<0.1	<0.1	<0.001	<0.1	<0.1	<0.001
Fluoride	MAC	1.5						
Mercury	MAC	0.001						<0.0001
N-NH3 (Ammonia)		0.000						0.01
Phosphorus			<0.1	0.2	<0.1	<0.1	<0.1	<0.1
pH (no units)	OG	6.5-8.5	7.75	8.38	8.07	8.1	8	7.65
Selenium	MAC	0.01	,5	2.30	2.07	Ų. <u>.</u>		<0.001
Tin	11.710	3.01	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dissolved Reactive P			10.2	٦٥.٤	10.2	10.2	10.2	٠٠.٤
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								
All concentrations in mg/L		<u> </u>	1				I	

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			Nov-99	Jun-00	Oct-00	Jun-01	Jun-02	Nov-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	100	81	67	62	68	67
BOD					_			
COD								
Chloride	AO	250	1.1	1.1	1	1.2	1.4	1.4
Conductivity us/cm	, .0		150	150	146	146	145	154
DOC	AO	5	130	130	1.0	2.0	1.5	13.
N-NO2 (Nitrite)	MAC	1						<0.1
N-NO3 (Nitrate)	MAC	10	0.1	<0.1	0.1			10.12
Phenols	1717 (C	10	<0.001	0.003	<0.001	0.023	<0.001	<0.001
Sulphate	AO	500	6	6	7	7	6	7
Total Dissolved Solids	AO	500	100	102	88	130	78	106
Total Kjeldahl Nitrogen	7.0	300	100	102	00	130	70	100
Total phosphorous						0.29		
Hardness as CaCO3	OG	500				0.23		
Calcium	- 00	300	25	17.5	17	17.8	19.2	18.9
Magnesium			6.04	6.23	6.5	5.92	6.38	6.61
Potassium			3.8	1.9	<0.4	<0.4	<0.4	1.6
Sodium	AO	200	3.1	2.3	2.3	1.9	2.3	2.7
Aluminum	OG	0.1	0.91	0.24	0.16	0.24	<0.01	0.04
Barium	MAC	1	0.025		0.10		0.008	
Beryllium	MAC	1		0.01		0.005		0.01
Boron	10.4.4.6	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	IMAC	5	0.01	<0.01	<0.01	<0.01	0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.01	<0.01
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt			<0.01		<0.01	<0.01	<0.01	0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01		<0.01
Iron	AO	0.3	1.15	0.66	0.28	0.19	0.21	0.13
Lead	MAC	0.01	<0.0002	<0.0002	<0.0002	0.0002	<0.1	<0.1
Manganese	AO	0.05	0.06	0.01	0.01	<0.01	0.01	0.01
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			7.71	6.28	5.14	5.53	6.48	6.11
Silver			<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01
Strontium			0.03	0.025	0.03	0.025	0.026	0.03
Thallium								
Titanium			0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium			< 0.05	<0.005	<0.005	<0.005	< 0.005	<0.005
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025	<0.1	<0.1	<0.1	<0.001	<0.1	<0.1
Fluoride	MAC	1.5				0.1		
Mercury	MAC	0.001						
N-NH3 (Ammonia)							<0.1	
Phosphorus			< 0.01	<0.1	<0.1		<0.1	<0.1
pH (no units)	OG	6.5-8.5	8.04	7.99	7.92	7.63		8.1
Selenium	MAC	0.01						
Tin			<0.2	<0.2			<0.2	<0.2
Dissolved Reactive P			3.2	.5.2			312	3.2
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								
All concentrations in mg/L		1	1		1			1

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			May-04	Sep-04	May-05	Nov-05	May-06	Oct-06
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	62	70	75	76	75	73
BOD					<1	<1		<1
COD			7	15	<5	<5	<5	<5
Chloride	AO	250	1.1	1.3	<1	2	2	1
Conductivity us/cm			148	159	152	154	153	156
DOC	AO	5	0.5	0.7	0.8	1.1	1.1	1.2
N-NO2 (Nitrite)	MAC	1	0.0	· · · · · ·	<0.10	<0.10		<0.10
N-NO3 (Nitrate)	MAC	10			<0.10	<0.10		<0.10
Phenols	1417 (C	10	<0.001	<0.001	<0.001	<0.001		<0.001
Sulphate	AO	500	6	7	7	7		8
Total Dissolved Solids	AO	500	- U	,	99	100	100	101
Total Kjeldahl Nitrogen	7.0	300			<0.05	<0.05	<0.05	0.12
Total phosphorous			0.66	0.62	0.27	0.73	10.05	0.12
Hardness as CaCO3	OG	500	70	70	67	65		76
Calcium	- 00	300	17.6	17.2	17	16	17	19
Magnesium			6.36	6.59	6	6	6	7
Potassium								2
Sodium	40	200	1.3 2.5	1.3 2.4	2	2	1 <2	<2
Aluminum	AO							
Barium	OG	0.1	0.015	0.006	<0.01	<0.01	<0.01	<0.01
	MAC	1	0.009	0.008	<0.01	<0.01	<0.01	0.01
Beryllium		_	<0.001	<0.001	<0.001	<0.001	0.00	<0.001
Boron	IMAC	5	<0.005	<0.005	<0.01	<0.01	0.02	<0.01
Cadmium	MAC	0.005	<0.0001	<0.001	<0.0001	<0.0001		<0.0001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
Cobalt			<0.005	<0.005	<0.0002	<0.0002	<0.0002	<0.0002
Copper	AO	1	<0.002	<0.002	<0.001	0.001	0.103	0.001
Iron	AO	0.3	0.103	0.033	0.06	0.15	0.09	0.16
Lead	MAC	0.01	0.0002	<0.0005	<0.001	<0.001		<0.001
Manganese	AO	0.05	0.008	0.003	0.01	0.01	<0.01	0.01
Molybdenum			<0.01	<0.01	<0.005	<0.005		<0.005
Nickel			<0.01	<0.01	<0.005	<0.005		<0.005
Silicon			6.05	5.6	7.2	6.9	5.8	7.5
Silver			<0.005	<0.005	<0.0001	<0.0001		<0.0001
Strontium			0.025	0.025	0.028	0.032	0.028	0.038
Thallium					<0.0001	<0.0001		<0.0001
Titanium			<0.005	<0.005	< 0.01	< 0.01		<0.01
Vanadium			<0.005	<0.005	<0.001	<0.001		0.001
Zinc	AO	5	<0.005	<0.005	< 0.01	0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025	<0.001	0.001				
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)							<0.02	
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001	0.001				
Tin			<0.05	<0.05				
Dissolved Reactive P							0.06	
Field Parameters								
Temperature °C					8.1	6.7	9.1	8
рН					8.2	8.03	8.1	6.69
Conductivity us/cm					136	137	114	133
All concentrations in mg/L			l	l				100

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			May-07	Oct-07	May-08	Oct-08	May-09	Sep-09
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	74	73	72	71	79	75
BOD			<1	1	1	<1	1	2
COD			<5	<5	5	8	<5	<5
Chloride	AO	250	2	1	1	1	1	1
Conductivity us/cm	7.0	230	156	157	156	153	164	157
DOC	AO	5	1.4	1.2	1.1	1.4	1.2	1.5
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.1	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	10.1	<0.10	<0.10	<0.10
Phenols	141716	10	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	7	6	6	6	6	7
Total Dissolved Solids	AO	500	101	102	101	100	107	102
Total Kjeldahl Nitrogen	7.0	300	0.3	<0.10	0.1	<0.10	<0.10	<0.10
Total phosphorous			0.13	0.1	0.03	0.23	0.05	0.91
Hardness as CaCO3	OG	500	76	79	72	76	83	76
Calcium	- 00	300	19	20	19	19	20	19
Magnesium			7	7	6	7	8	7
Potassium			1	1	1	1	1	1
Sodium	AO	200	2	<2	2	<2	3	3
Aluminum	OG	0.1	0.11	<0.01	<0.01	0.11	0.05	0.1
Barium	MAC	1	<0.010	<0.010	<0.01	<0.01	<0.03	<0.01
Beryllium	IVIAC		<0.010	<0.010	<0.01	<0.01	<0.001	<0.01
Boron	IMAC	5	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01
Chromium	MAC	0.003	0.0001	<0.001	<0.001	0.0001	<0.001	<0.001
Cobalt	IVIAC	0.03	0.0042	<0.001	0.03	0.002	0.0238	0.0198
Copper	40	1						
Iron	AO AO	0.3	0.002 0.49	<0.001 0.13	<0.001 0.2	<0.001 0.29	<0.001 0.23	<0.001 0.22
Lead	MAC	0.01				<0.001		
Manganese		0.01	<0.001 0.02	<0.001 <0.01	<0.001 0.07	0.04	<0.001 0.05	<0.001 0.04
Molybdenum	AO	0.05						
Nickel			<0.005	<0.005	0.005 <0.005	<0.005 <0.005	<0.005	<0.005
Silicon			<0.005	<0.005	6.2		<0.005	<0.005
Silver			6.9	6.1		6.8	6.3	5.9
Strontium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium			0.027	0.038	0.028	0.032	0.029	0.027
Titanium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Vanadium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	40	Г	0.003	0.001	0.002	0.002	0.001	0.003
Arsenic	AO	5	<0.01	0.02	<0.1	0.01	<0.01	<0.01
Fluoride	IMAC	0.025						
	MAC	1.5						
Mercury N-NH3 (Ammonia)	MAC	0.001						
Phosphorus								
	00	6505						
pH (no units) Selenium	OG	6.5-8.5						
	MAC	0.01						
Tin								
Dissolved Reactive P		1						
Field Parameters			0.5	0.5			0 -	
Temperature °C			8.2	8.2			8.7	7.4
pH			6.96	7.22			8.6	8
Conductivity us/cm			134	118			177	134

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			May-10	Oct-10	Jun-11	Oct-11	Jun-12	Oct-12
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	75	74	76	75	72	74
BOD								
COD								
Chloride	AO	250	1	<1	1	<1	<1	<1
Conductivity us/cm			156	152	148	147	144	148
DOC	AO	5		-				
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols							<0.001	<0.001
Sulphate	AO	500					5	5
Total Dissolved Solids	AO	500	101	99	96	96	94	96
Total Kjeldahl Nitrogen			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.120	0.120	0.120	0.120	0.120	0.00
Hardness as CaCO3	OG	500	67	67	74	74	53	65
Calcium			17	17	18	18	13	16
Magnesium			6	6	7	7	5	6
Potassium			1	1	1	2	1	1
Sodium	AO	200	<2	<2	<2	2	<2	2
Aluminum	OG	0.1	0.03	0.03	0.03	0.02	0.03	<0.01
Barium	MAC	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Beryllium			<0.001	<0.001	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.05	<0.01	<0.01	0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Cobalt		0.00	0.0105	0.0084	0.0084	0.0171	0.0017	0.0005
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	0.16	0.16	0.17	0.25	0.12	0.08
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.03	0.03	0.02	0.04	0.01	<0.01
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
Silicon			5.2	5.5	5.7	5.6	6.1	5
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.029	0.027	0.031	0.028	0.028	0.027
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001
Titanium			< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01
Vanadium			0.003	0.002	0.002	0.002	0.002	0.002
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5				6.85		
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			9.3	6.8	7.9	7.3	8.4	6.8
рН			8.4	8.5	7.8	8.1	7.8	7.3
Conductivity us/cm			151	116	120	147	128	144

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

PARAMETER	Sample Date			Jun-13	Nov-13	Apr-14	Oct-14	Jun-15	Oct-15
Alkalinity (C ₂ CO3) OG 30-500 70 75 71 71 69 70	PARAMETER	Limit	ODWO/S						
BOD COD Chloride AO 250 C1 1 1 0.8 0.9 1.1 0.9	Alkalinity (C _a CO3)	OG		70	75	71	71	69	70
Chloride									
Conductivity us/cm	COD								
Conductivity us/cm		AO	250	<1	1	0.8	0.9	1.1	0.9
DOC		7.0							
N-NO2 (Nitrite) MAC 1		AO	5	1.5	130	1.3	130	1.0	
N-NOS (Nitrate)				<0.10	<0.10	< 0.10	< 0.10	< 0.1	< 0.1
Phenols Sulphate									
Sulphate		IVII (C	10			10.10	10.10	10.1	10.1
Total Kjeldahl Nitrogen		AΩ	500						
Total phosphorous Tota						77.2	76.9	91	86
Total phosphorous		AO	300						
Hardness as CaCO3				₹0.10	₹0.10	0.21	0.03	0.1	\ 0.03
Calcium 17 20 19 18.2 18.2 18.5 Magnesium 6 7 6.75 6.59 7 7.51 Potassium 1 1 1.4 1.3 1.3 1.2 Sodium AO 200 2 <2		OG	500	67	70	75	75	7/	77
Magnesium		- 00	300						
Potassium									
Sodium								-	
Aluminum		40	200						
Barium									
Beryllium									
Boron		IVIAC	1						
Cadmium MAC 0.005 <0.0001 <0.0001 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			_						
Chromium MAC 0.05 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.000 <0.0001 <0.001 <0.001 <0.002 <0.002 <0.0002 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0000 <0.0000 <0.0000 <0.0000 <0.0001 <0.0001 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									
Cobalt 0.0098 0.0026 0.0028 0.001 0.0002 < 0.0001 Copper AO 1 <0.001									
Copper		MAC	0.05						
Iron									
Lead MAC 0.01 <0.001 <0.001 0.00003 0.00006 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00003 <0.00006 <0.00003 <0.0000 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <									
Manganese AO 0.05 0.02 0.01 0.013 0.013 0.008 0.009 Molybdenum <0.005									
Molybdenum									
Nickel		AO	0.05						
Silicon 5.7 6.1 5.6 5.58 6 5.6 Silver <0.0001									
Silver								< 0.01	
Strontium 0.031 0.029 0.035 0.033 0.033 0.037 Thallium <0.0001				5.7	6.1	5.6	5.58	6	5.6
Thallium <0.0001 <0.0001 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0015 0.0012 <0.0012 <0.0015 <0.0015 0.0012 <0.0012 <0.0015 <0.0015 <0.0017 <0.0017 <0.001 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017				< 0.0001	< 0.0001				
Titanium				0.031	0.029	0.035	0.033	0.033	0.037
Vanadium 0.001 0.001 0.0011 0.0016 0.0015 0.0012 Zinc AO 5 <0.01	Thallium			<0.0001	<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Zinc AO 5 <0.01 <0.01 <0.005 <0.005 <0.005 0.007 Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 Phosphorus PH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 9.2 7.6 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3	Titanium			< 0.01	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	Vanadium			0.001	0.001	0.0011	0.0016	0.0015	0.0012
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) < 0.01 < 0.01 < 0.01 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 9.2 7.6 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3	Zinc	AO	5	< 0.01		< 0.005	< 0.005	< 0.005	0.007
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 9.2 7.6 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3	Arsenic	IMAC	0.025						
Mercury MAC 0.001	Fluoride		1.5						
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC Dissolved Reactive P Field Parameters Temperature °C pH 6.8 8.5 C 0.01 C 0.0	Mercury	MAC	0.001						
Phosphorus Dissolved Reactive P Field Parameters Pield Parameters Temperature °C 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3	N-NH3 (Ammonia)					< 0.01	< 0.01	< 0.01	< 0.01
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3	Phosphorus								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature °C 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3		OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3									
Dissolved Reactive P Field Parameters Temperature °C 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3									
Field Parameters 9.2 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3									
Temperature °C 9.2 7.6 7.6 7.4 8.1 7.7 pH 6.8 8.5 8.5 8 7.4 7.3									
pH 6.8 8.5 8.5 8 7.4 7.3				9.2	7.6	7.6	7.4	8.1	7.7
	-								
	Conductivity us/cm			113	158	134	147	154	132

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date			May-16	Nov-16	Apr-17	Oct-17	May-18	Oct-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	75	73	73	73	69	72
BOD								
COD								
Chloride	AO	250	1.21	0.80	0.7	1.2	< 1	1
Conductivity us/cm			157	148	148	157	147	147
DOC	AO	5						,
N-NO2 (Nitrite)	MAC	1	<0.05	<0.05	< 0.1	< 0.05	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.05	<0.05	< 0.1	< 0.05	< 0.10	< 0.10
Phenols	1717 (C	10	10.05	10.05	10.2	10.05	10.10	10.10
Sulphate	AO	500						
Total Dissolved Solids	AO	500	72	96	79.8	81	96	96
Total Kjeldahl Nitrogen	AO	300	<0.10	<0.10	< 0.05	< 0.1	1.7	< 0.8
Total phosphorous			₹0.10	₹0.10	\ 0.03	₹ 0.1	1./	₹ 0.8
Hardness as CaCO3	OG	500	72.3	67.4		83	74	62
Calcium	- 00	300	18.3	17.0	20.3	20	18	15
Magnesium			6.46	6.07	7.02	7.95	7	6
Potassium			1.30	1.28	1.2	1.3		
Sodium	40	200	2.04	2.05	2.2		<u>1</u> 2	2
Aluminum	AO OG			0.017		2.4		
Barium		0.1	0.024		0.02	0.02	< 0.01	< 0.01
Beryllium	MAC	1	0.009	0.009	0.01	0.009	< 0.01	0.01
		_	<0.001	<0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005
Boron	IMAC	5	<0.010	<0.010	0.023	0.008	< 0.01	< 0.01
Cadmium	MAC	0.005	<0.001	<0.001		< 0.000014	< 0.0001	< 0.0001
Chromium	MAC	0.05	<0.003	<0.003	< 0.002	< 0.002	< 0.001	< 0.001
Cobalt			<0.001	<0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0002
Copper	AO	1	<0.003	<0.003	< 0.002	< 0.002	< 0.001	< 0.001
Iron	AO	0.3	0.077	0.108	0.085	0.024	0.04	0.05
Lead	MAC	0.01	<0.002	<0.002	< 0.00002	< 0.00002	< 0.001	< 0.001
Manganese	AO	0.05	0.008	0.006	0.007	0.004	< 0.01	< 0.01
Molybdenum					0.0002	0.0001	< 0.005	< 0.005
Nickel			<0.003	<0.003	0.0006	0.0005	< 0.005	< 0.005
Silicon			5.91	5.80	6.07	6.27	5.7	5.9
Silver								
Strontium			0.031	0.025		0.032	0.025	0.028
Thallium			<0.006	<0.006	< 0.00005	< 0.00005	< 0.0001	< 0.0001
Titanium			< 0.002	< 0.002	< 0.005	< 0.005	< 0.01	< 0.01
Vanadium			< 0.002	< 0.002	0.0011	0.0018	0.001	0.001
Zinc	AO	5	0.007	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin					< 0.05			
Dissolved Reactive P					1.30			
Field Parameters								
Temperature °C			7.5	6.5	6.8	7.5	7.5	7.3
рН			7.9	8	7.7	8.5	8	7.2
Conductivity us/cm			146	145	152	140	127	117
		1	1-10	173	-52	1-10	-41	/

All concentrations in mg/L unless otherwise noted

Sample Location 95-3S

Sample Date May-19 Oct-19 May-20 Oct-20

All concentrations in mg/L unless otherwise noted

Sample Location 95-3D

Sample Date			Nov-08	May-09	Sep-09	May-10	Oct-10	Jun-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	75	75	76	73	75	79
BOD			1	2	<1			
COD			8	<5	<5			
Chloride	AO	250	14	12	12	13	12	12
Conductivity us/cm			222	210	214	213	210	207
DOC	AO	5	0.8	1	1	_	-	-
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001	<0.001	10.20	10.20	10120
Sulphate	AO	500	14	13	12			
Total Dissolved Solids	AO	500	144	137	139	138	137	135
Total Kjeldahl Nitrogen	7.0	300	0.14	<0.10	<0.10	<0.10	0.36	<0.10
Total phosphorous			0.92	0.43	0.62	10.10	0.50	10.10
Hardness as CaCO3	OG	500	80	90	81	84	84	93
Calcium	- 00	300	22	23	21	22	22	24
Magnesium			6	8	7	7	7	8
Potassium			3	3	4	3	2	3
Sodium	AO	200	9	6	7	5	4	6
Aluminum	OG	0.1	0.17	0.04	0.07	0.02	0.05	0.02
Barium	MAC	1	0.17	0.04	0.07	0.02	0.03	0.02
Beryllium	IVIAC	1						
Boron	10.4.0.0	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
	IMAC	5	0.01	<0.01	<0.01	0.04	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Cobalt			0.0147	0.0168	0.0004	0.0007	0.0002	<0.0002
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	0.09	0.05	0.05	0.04	0.07	0.03
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.05	0.05	0.02	0.02	0.02	0.02
Molybdenum			0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			10.5	9.5	9.3	8.2	9.5	8.8
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.186	0.108	0.087	0.073	0.069	0.07
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C				8.9	7.3	8.9	6.7	7.7
pH				8.8	8.3	8.4	8.5	8.2
Conductivity us/cm				223	181	215	159	170
			I .					

All concentrations in mg/L unless otherwise noted

Sample Location 95-3D

Sample Date			Oct-11	Jun-12	Oct-12	Jun-13	Nov-13	Apr-14
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	84	79	80	76	79	74
BOD								
COD								
Chloride	AO	250	12	12	11	11	10	8.3
Conductivity us/cm			221	213	216	208	217	208
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Phenols			10.20	<0.001	<0.001	<0.001	<0.001	10.20
Sulphate	AO	500		14	13	14	14	
Total Dissolved Solids	AO	500	144	138	38	135	141	106
Total Kjeldahl Nitrogen	7.0	333	0.12	<0.10	<0.10	<0.10	<0.10	0.17
Total phosphorous			0.12	10.20	10.20	10.20	10.110	0.17
Hardness as CaCO3	OG	500	86	75	91	86	95	94
Calcium		333	23	20	25	23	25	24.9
Magnesium			7	6	7	7	8	7.68
Potassium			3	2	3	3	3	2.8
Sodium	AO	200	6	5	5	5	5	5.6
Aluminum	OG	0.1	0.04	0.04	0.04	0.02	0.02	0.02
Barium	MAC	1	0.02	0.02	0.02	0.02	0.02	0.018
Beryllium	IVIAC		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0002
Boron	IMAC	5	<0.003	<0.003	<0.003	<0.01	<0.003	< 0.005
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00002
Chromium	MAC	0.05	0.001	<0.001	<0.001	<0.001	<0.001	< 0.002
Cobalt	IVIAC	0.05	<0.001	0.0003	<0.0002	0.0005	<0.001	0.0002
Copper	AO	1	<0.0002	<0.001	<0.0002	<0.001	<0.001	< 0.0001
Iron	AO	0.3	0.06	0.04	0.05	0.04	0.04	0.029
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.00002
Manganese	AO	0.01	0.02	0.001	0.001	0.001	0.001	0.022
Molybdenum	AU	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	0.022
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	< 0.01
Silicon			9.4	10	8.7	9.5	9.6	9.68
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	9.08
Strontium			0.069	0.067	0.067	0.073	0.062	0.074
Thallium			<0.0001	<0.001	<0.001	<0.0001	<0.002	< 0.00005
Titanium			<0.001	<0.001	<0.001	<0.001	<0.001	< 0.005
Vanadium			<0.01	<0.01	<0.01	<0.01	<0.01	0.0005
Zinc	AO	5	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.005
Arsenic	IMAC	0.025	\0.01	\0.01	\0.01	<0.01	\0.01	< 0.003
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						< 0.01
Phosphorus								< 0.01
pH (no units)	06	6 5 9 5	7 1 5					
Selenium	OG MAC	6.5-8.5 0.01	7.15					
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.3	8.4	6.8	8.5	7.9	7.7
pH				8.4			8.6	
Conductivity us/cm			8.3		7.4	7.1		8.5
Conductivity us/cm		1	216	186	213	167	216	186

All concentrations in mg/L unless otherwise noted

Sample Location 95-3D

Sample Date			Oct-14	Jun-15	Oct-15	May-16	Nov-16	Apr-17
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	76	78	78	83	81	79
BOD								
COD								
Chloride	AO	250	8.2	7.8	7.5	9.52	7.22	7.5
Conductivity us/cm	7.0		197	210	202	215	206	198
DOC	AO	5	137	210	202		200	130
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.1	< 0.1	<0.05	<0.05	< 0.1
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.1	< 0.1	<0.05	<0.05	< 0.1
Phenols			70.20		1012	10.00	10100	
Sulphate	AO	500						
Total Dissolved Solids	AO	500	107	137	121	110	136	109
Total Kjeldahl Nitrogen	7.0	300	0.05	0.1	< 0.05	<0.10	<0.10	< 0.05
Total phosphorous			0.03	0.1	10.03	10.10	10.10	1 0.03
Hardness as CaCO3	OG	500	99	94	98	89.0	85.3	
Calcium		300	23.8	24.3	24.5	23.6	22.7	25.5
Magnesium			7.46	7.96	8.84	7.31	6.94	7.86
Potassium			2.8	2.8	2.7	2.77	2.72	2.7
Sodium	AO	200	5.3	5.3	5.4	4.91	4.90	5.3
Aluminum	OG	0.1	0.03	0.02	0.01	0.012	0.016	0.03
Barium	MAC	1	0.018	0.02	0.01	0.012	0.010	0.03
Beryllium	IVIAC		< 0.001	< 0.0001	< 0.0013	<0.001	<0.017	< 0.0001
Boron	IMAC	5	0.006	< 0.0001	0.007	<0.001	<0.001	0.0001
Cadmium	MAC	0.005	0.0004		< 0.0007	<0.010	<0.010	< 0.00014
Chromium		0.005	< 0.002	< 0.00002 < 0.002	< 0.00002	<0.001	<0.001	< 0.00014
Cobalt	MAC	0.05						
	40	4	< 0.0001	< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001
Copper	AO	0.3	< 0.002	< 0.002	< 0.002	<0.003	<0.003	< 0.002
Iron Lead	AO		0.049	< 0.005	0.053	<0.010	<0.010	0.048
	MAC	0.01	0.0001	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002
Manganese	AO	0.05	0.023	0.02	0.026	0.019	0.016	0.021
Molybdenum Nickel			0.0008	0.0007	0.001	.0.000	.0.000	0.0009
			< 0.01	< 0.01	< 0.01	<0.003	<0.003	0.0006
Silicon			9.62	10.2	9.8	9.90	9.83	10.6
Silver			0.074	0.074	0.074	2 2 2 4	0.050	
Strontium			0.071	0.074	0.074	0.064	0.053	
Thallium			< 0.00005	< 0.00005	< 0.00005	<0.006	<0.006	< 0.00005
Titanium			< 0.005	< 0.005	< 0.005	<0.002	<0.002	< 0.005
Vanadium		_	0.001	0.0007	0.0004	<0.002	<0.002	0.0004
Zinc	AO	5	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01	< 0.01			
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								< 0.05
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.5	8	7.7	7.5	6.3	6.9
рН			8.1	7.5	7.4	7.9	8.2	7.7
Conductivity us/cm			199	225	187	196	204	205

All concentrations in mg/L unless otherwise noted

Sample Location 95-3D

PARAMETER Limit ODWO/S Alkalinity (C,CO3) OG 30-500 76 78 81 81 92 84	Sample Date			Oct-17	May-18	Oct-18	May-19	Oct-19	May-20
Alkalinity (C ₂ CO3) OG 30-500 76 78 81 81 92 84 BDO COD CDO Chloride AO 250 6.2 6 7 7 7 7 7 Conductivity us/cm 199 205 206 167 205 204 DOC AO 5	PARAMETER	Limit	ODWO/S						
BOD COD Chloride AO 250 6.2 6 7 7 7 7 7 7 7 7 7	Alkalinity (C _a CO3)	OG		76	78	81	81	92	84
Chloride									
Chloride	COD								
Conductivity us/cm		AO	250	6.2	6	7	7	7	7
DOC		7.0				-			
N-NO2 (Nitrite) MAC		AO	5	133	203	200			
N-NO3 (Nitrate) MAC 10 < 0.05 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10				< 0.05	< 0.10	< 0.10		<0.10	
Phenols Sulphate									
Sulphate		1417 (C	10	10.03	10.10	10.10	10.10	10.10	10.10
Total Kjeldahl Nitrogen AO 500 102 133 134 109 133 133 Total Kjeldahl Nitrogen < 0.1		AΩ	500						
Total phosphorous Col. 1.5 Col. Co				102	133	134	109	133	133
Total phosphorous Hardness as CaCO3		70	300						
Hardness as CaCO3				₹ 0.1	1.5	₹ 0.8	0.13	\0.13	\0.100
Calcium 23.7 25 21 27 25 25 Magnesium 7.85 8 7 8 8 7 Potassium 2.7 3 3 3 2 2 Sodium AO 200 5.4 5 5 5 5 5 Aluminum OG 0.1 0.03 < 0.01		OG	500	02	95	Ω1	100	95	01
Magnesium		- 00	300						
Potassium									
Sodium								_	
Aluminum		^^	200						
Barium									
Beryllium									
Boron		IVIAC	1						
Cadmium MAC 0.005 < 0.00014 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0			_						
Chromium MAC 0.05 < 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001									
Cobalt									
Copper		MAC	0.05						
Iron									
Lead MAC 0.01 < 0.00002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001									
Manganese AO 0.05 0.02 0.02 0.02 0.02 0.02 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.006 <0.066 0.066 0.066 0.066 0.063 <0.003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									
Molybdenum									
Nickel 0.0004 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.006 0.066 0.006 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <td></td> <td>AO</td> <td>0.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		AO	0.05						
Silicon 10.4 9.9 10.2 9.6 9.5 9.7 Silver 0.062 0.06 0.066 0.066 0.065 0.063 Thallium <0.00005									
Silver 0.062 0.06 0.066 0.066 0.065 0.063 Thallium < 0.00005				0.0004	< 0.005				
Strontium 0.062 0.06 0.066 0.065 0.063 Thallium < 0.00005				10.4	9.9	10.2	9.6	9.5	9.7
Thallium < 0.00005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001									
Titanium < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001				0.062	0.06	0.066			
Vanadium 0.0002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <t< td=""><td>Thallium</td><td></td><td></td><td>< 0.00005</td><td>< 0.0001</td><td></td><td></td><td></td><td></td></t<>	Thallium			< 0.00005	< 0.0001				
Zinc AO 5 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 Arsenic IMAC 0.025 IMAC	Titanium			< 0.005	< 0.01	< 0.01			
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 7.5 8.6 8.2 7.6 7.8 7.8 7.4	Vanadium			0.0002	< 0.001	< 0.001	<0.001	<0.001	<0.001
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4	Zinc	AO	5	< 0.005	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Mercury MAC 0.001 Image: contract of the contract of	Arsenic	IMAC	0.025						
Mercury MAC 0.001 Image: contract of the contract of	Fluoride	MAC	1.5						
N-NH3 (Ammonia) Phosphorus pH (no units)	Mercury	MAC	0.001						
Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4									
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4	Phosphorus								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4	pH (no units)	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4									
Dissolved Reactive P Field Parameters Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4									
Field Parameters 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4									
Temperature °C 7.6 7.5 7.4 7.2 7.4 7.5 pH 8.6 8.2 7.6 7.8 7.8 7.4									
pH 8.6 8.2 7.6 7.8 7.8 7.4				7.6	7 5	7.4	7 2	7.4	7.5
	-								

All concentrations in mg/L unless otherwise noted

Sample Location 95-3D

Sample Date Oct-20

PARAMETER	Limit	ODWO/S				
Alkalinity (C _a CO3)	OG	30-500	82			
BOD		33 333				
COD						
Chloride	AO	250	7			
Conductivity us/cm	AO	250	200			
DOC	AO	5	200			
N-NO2 (Nitrite)	MAC	1	<0.10			
N-NO3 (Nitrate)	MAC	10	<0.10			
Phenols	IVIAC	10	<0.10			
Sulphate	40	F00				
Total Dissolved Solids	AO	500	120			
	AO	500	130			
Total Kjeldahl Nitrogen			0.110			
Total phosphorous						
Hardness as CaCO3	OG	500	95			
Calcium			25			
Magnesium			8			
Potassium			3			
Sodium	AO	200	6			
Aluminum	OG	0.1	< 0.01			
Barium	MAC	1	0.02			
Beryllium			<0.0005			
Boron	IMAC	5	< 0.01			
Cadmium	MAC	0.005	<0.0001			
Chromium	MAC	0.05	< 0.001			
Cobalt			<0.0002			
Copper	AO	1	<0.001			
Iron	AO	0.3	0.05			
Lead	MAC	0.01	<0.001			
Manganese	AO	0.05	0.02			
Molybdenum	AO	0.05	<0.005			
Nickel			<0.005			
Silicon			9.0			
Silver			3.0			
Strontium			0.055			
Thallium			<0.0001			
Titanium			<0.001			
Vanadium			<0.01			
Zinc		_	<0.001			
	AO	5	<0.01			
Arsenic	IMAC	0.025				
Fluoride	MAC	1.5				
Mercury	MAC	0.001				
N-NH3 (Ammonia)						
Phosphorus						
pH (no units)	OG	6.5-8.5				
Selenium	MAC	0.01				
Tin						
Dissolved Reactive P						
Field Parameters						
Temperature °C			6.9			
рН			7.5			
Conductivity us/cm			212			

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			Sep-95	Aug-96	Nov-96	Jul-97	Nov-98	Jul-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	136	166	120	168	105	126
BOD					_			
COD			20					<3
Chloride	AO	250	6.5	0.6	<0.1	0.8	1	1.1
Conductivity us/cm	7.0		0.0	306	241	281	212	258
DOC	AO	5		333				
N-NO2 (Nitrite)	MAC	1						<0.1
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1	0.1	<0.1	<0.1	0.2
Phenols			0.019	0.002	<0.001	0.041	0.002	0.004
Sulphate	AO	500	5	5	6	5	6	5
Total Dissolved Solids	AO	500	164	180	135	188	124	
Total Kjeldahl Nitrogen	7.10	300	10.	100	100	100		<0.05
Total phosphorous								0.15
Hardness as CaCO3	OG	500						136
Calcium		300	37	44.9	37.6	45.3	29.6	36.9
Magnesium			10.6	13.7	10.4	12.9	8	10.6
Potassium			1.56	7.2	1.1	<0.04	1.4	3.7
Sodium	AO	200	3.9	7.2	1.7	1.9	1.6	1.8
Aluminum	OG	0.1	<0.01	1.53	0.03	0.05	<0.01	0.03
Barium	MAC	1	0.03	0.067	0.035	0.039	0.027	0.035
Beryllium	IVIAC		<0.005	<0.007	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.003	<0.003	<0.003	0.003	<0.003	0.003
Cadmium	MAC	0.005	0.0001	<0.001	<0.001	<0.01	<0.001	0.01
Chromium	MAC	0.005	0.0001	<0.001	<0.001	<0.01	<0.001	<0.01
Cobalt	IVIAC	0.03	0.013	0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.014	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.117	1.54	0.09	0.06	0.02	0.06
Lead	MAC	0.01	0.0018	<0.0002	<0.002	<0.1	<0.002	<0.0002
Manganese	AO	0.01	0.0018	0.08	0.03	0.05	0.002	0.02
Molybdenum	AU	0.03	<0.012	0.05	0.03	5	<0.02	<0.02
Nickel			<0.02	<0.03	<0.04	<0.02	<0.02	<0.02
Silicon			7.12	13.2	7.62	8.2	6.9	7.31
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium			0.054	0.071	0.05	0.061	0.01	0.055
Thallium			0.054	0.071	0.05	0.061	0.04	0.055
Titanium			<0.01	0.13	<0.01	<0.01	<0.01	<0.05
Vanadium			0.01	0.15	<0.01	0.007	0.005	<0.05
Zinc	AO	5	<0.01	<0.005	<0.005	<0.007	<0.003	<0.005
Arsenic	IMAC	0.025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoride	MAC	1.5	\U.1	\U.1	\U.UU1	\U.1	\U.1	\U.UU1
Mercury	MAC	0.001						<0.0001
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus			<0.100	0.1	ZO 1	∠0 1	<0.1	<0.01
pH (no units)	00	6.5-8.5	<0.100	0.1	<0.1	<0.1		<0.1
Selenium	OG		7.95	8.05	8.31	8.31	7.89	7.71
Tin	MAC	0.01	∠0.2	∠ 0.2	-0. 2	ر n ع	∠ 0.2	<0.001
Dissolved Reactive P			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Field Parameters								
Temperature °C								
pH		1						
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			Nov-99	Jun-00	Oct-00	Oct-00	Jun-01	Oct-01
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	114	176	155	160	173	167
BOD								
COD								
Chloride	AO	250	0.9	1	1	1	1.1	1.1
Conductivity us/cm			212	303	258	266	314	298
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1						
N-NO3 (Nitrate)	MAC	10	0.1	<0.1	<0.1	<0.1		
Phenols	1717.10		<0.001	0.002	<0.001	<0.001	0.004	0.004
Sulphate	AO	500	5	4	4	4	4	3
Total Dissolved Solids	AO	500	126	174	150	158	188	179
Total Kjeldahl Nitrogen	7.0	300	120	1,7	130	130	100	173
Total phosphorous							0.09	0.04
Hardness as CaCO3	OG	500					0.03	0.04
Calcium	- 00	300	36.5	40.1	38.5	41.9	47.9	45.9
Magnesium			9.08	10.3	11.5	12.7	12.1	12.3
Potassium			<0.4	<0.4	<0.4	<0.4	<0.4	2.7
Sodium	AO	200	1.8	1.7	1.7	1.9	1.6	2.7
Aluminum	OG	0.1	0.01	0.09	0.24	0.26	0.55	0.08
Barium	MAC	1	0.01	0.03	0.24	0.26	0.35	0.08
Beryllium	IVIAC	1						
Boron	18.4.6.6	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Cadmium	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0006
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt			0.02	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	<0.02	0.1	0.08	0.07	0.04	0.58
Lead	MAC	0.01	<0.0002	<0.0002	<0.0002	0.0012	0.0002	<0.0012
Manganese	AO	0.05	0.04	0.02	0.02	0.02	0.03	0.1
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			7	7.06	6.02	6.01	7.12	7.78
Silver			<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01
Strontium			0.05	0.05	0.055	0.06	0.065	0.06
Thallium								
Titanium			<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
Vanadium			<0.05	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	<0.1	<0.1	<0.1	<0.1	0.001	<0.001
Fluoride	MAC	1.5					0.1	0.1
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus			<0.01	<0.1	<0.1	<0.1		
pH (no units)	OG	6.5-8.5	8.2	8.28	7.99	8	7.73	8.37
Selenium	MAC	0.01						
Tin			<0.2	<0.2	<0.2	<0.2		
Dissolved Reactive P								
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			Jun-02	Nov-02	May-04	Sep-04	May-05	Nov-05
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	161	41	184	198	173	124
BOD							<1	<1
COD					9	10	<5	<5
Chloride	AO	250	1.4	1.4	1.4	1.3	2	<1
Conductivity us/cm			303	101	201	347	320	240
DOC	AO	5			2.5	1.1	1.5	1.2
N-NO2 (Nitrite)	MAC	1		0.5			<0.10	<0.10
N-NO3 (Nitrate)	MAC	10					<0.10	<0.10
Phenols			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	4	4	3	4	5	6
Total Dissolved Solids	AO	500	172	64			208	156
Total Kjeldahl Nitrogen	7.0	300	1,2	0-1			0.07	0.07
Total phosphorous					0.03	0.03	0.13	0.02
Hardness as CaCO3	OG	500			201	181	167	114
Calcium	- 00	300	55.9	11.8	55.1	47.8	47	31
Magnesium			14.2	2.9	15.3	14.8	12	9
Potassium			0.8	0.6	1.2	1	<1	<1
Sodium	AO	200	2	1.4	2.2	2.1	<2	<2
Aluminum	OG	0.1	<0.01	0.06	0.334	0.007	0.21	<0.01
Barium	MAC	1	0.047	0.005	0.334	0.007	0.21	0.01
Beryllium	IVIAC	1						
Boron	18.4.6.6	-	<0.005	<0.005	<0.001	<0.001	<0.001	<0.001
	IMAC	5	0.01	<0.01	<0.005	<0.005	<0.01	<0.01
Cadmium	MAC	0.005	<0.01	<0.01	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.01	<0.01	0.002	<0.001	0.002	<0.001
Cobalt		_	<0.01	<0.01	<0.005	<0.005	0.0003	<0.0002
Copper	AO	1	<0.01	<0.01	<0.002	<0.002	0.003	0.002
Iron	AO	0.3	0.02	<0.02	0.566	0.006	0.32	<0.03
Lead	MAC	0.01	<0.1	<0.1	0.0002	<0.0005	<0.001	<0.001
Manganese	AO	0.05	0.06	<0.01	0.044	0.01	0.03	0.02
Molybdenum			<0.02	<0.02	<0.01	<0.01	0.005	<0.005
Nickel			<0.02	<0.02	<0.01	<0.01	<0.005	<0.005
Silicon			8.32	5.65	8.2	7.32	8.8	8.2
Silver			< 0.01	<0.01	<0.005	<0.005	<0.0001	<0.0001
Strontium			0.07	0.015	0.072	0.066	0.07	0.056
Thallium							<0.0001	<0.0001
Titanium			< 0.01	<0.01	0.036	<0.005	0.02	<0.01
Vanadium			0.005	<0.005	<0.005	<0.005	0.005	0.001
Zinc	AO	5	< 0.01	<0.01	0.01	0.005	< 0.01	<0.01
Arsenic	IMAC	0.025	<0.1	<0.1	<0.001	0.001		
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			0.1					
Phosphorus			<0.1	<0.1				
pH (no units)	OG	6.5-8.5		8.05				
Selenium	MAC	0.01			< 0.001	0.001		
Tin			<0.2	<0.2	<0.05	<0.05		
Dissolved Reactive P								
Field Parameters								
Temperature °C							8.8	6.5
pH							6.96	7.82
Conductivity us/cm							292	283
· · · · · · · · · · · · · · · · · · ·		1		1	1	1		

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			May-06	Oct-06	May-07	Oct-07	May-08	Oct-08
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	174	158	169	135	152	139
BOD				<1	<1	1	<1	<1
COD			7	<5	<5	<5	5	8
Chloride	AO	250	<1	1	1	1	1	1
Conductivity us/cm			321	305	321	259	296	276
DOC	AO	5	1.7	1.2	1.9	1.4	1.5	1.4
N-NO2 (Nitrite)	MAC	1		<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10		0.1	<0.10	0.14	<0.10	<0.10
Phenols				<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500		6	5	6	5	5
Total Dissolved Solids	AO	500	209	198	209	168	192	179
Total Kjeldahl Nitrogen	7.0	300	0.05	<0.05	0.18	0.11	<0.10	<0.10
Total phosphorous			0.03	0.24	0.05	0.07	0.02	0.03
Hardness as CaCO3	OG	500		159	171	147	154	149
Calcium	- 00	300	44	44	47	39	42	40
Magnesium			13	12	13	12	12	12
Potassium			<1	1	<1	<1	<1	<1
Sodium	AO	200	<2	<2	<2	<2	<2	<2
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.04	0.04	0.04		0.04	0.01
	IVIAC	1	0.04			0.03		
Beryllium Boron	10.44.6		.0.04	<0.001	<0.001	<0.001	<0.001	<0.001
	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	0.004	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.001	<0.001	<0.001	0.001	<0.001	0.001
Cobalt		_	<0.0002	<0.0002	<0.0002	<0.0002	0.0338	0.0282
Copper	AO	1	0.023	0.046	0.003	0.003	<0.001	<0.001
Iron	AO	0.3	<0.03	<0.03	<0.03	<0.03	0.04	<0.03
Lead	MAC	0.01		<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.03	0.03	0.04	0.03	0.08	0.08
Molybdenum				<0.005	<0.005	<0.005	<0.005	<0.005
Nickel				<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			7.3	6	7.9	7.7	7.6	7.6
Silver				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.061	0.062	0.07	0.064	0.059	0.053
Thallium				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium				<0.01	<0.01	< 0.01	< 0.01	<0.01
Vanadium				0.002	0.002	0.003	0.003	0.004
Zinc	AO	5	< 0.01	0.01	< 0.01	0.01	< 0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			<0.02					
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P			0.07					
Field Parameters			2.0.					
Temperature °C			9.4	7.8	8.5	7.9		
pH			7.97	6.6	6.65	7.12		
Conductivity us/cm			235	246	275	201		
All concentrations in mg/L	1	!		+0	_,,,			

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			May-09	Sep-09	May-10	Oct-10	Jun-11	Oct-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	150	138	149	139	180	147
BOD			2	1				
COD			<5	<5				
Chloride	AO	250	1	1	<1	1	<1	<1
Conductivity us/cm			287	267	290	265	319	271
DOC	AO	5	1.7	1.5				
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			< 0.001	< 0.001				
Sulphate	AO	500	5	5				
Total Dissolved Solids	AO	500	187	174	189	172	207	176
Total Kjeldahl Nitrogen			<0.10	<0.10	<0.10	0.3	<0.10	<0.10
Total phosphorous			0.01	0.02	0.120			0.10
Hardness as CaCO3	OG	500	149	133	152	131	161	140
Calcium			40	35	41	36	43	38
Magnesium			12	11	12	10	13	11
Potassium			1	<1	1	<1	1	<1
Sodium	AO	200	3	3	<2	<2	<2	3
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.04	0.03	0.04	0.03	0.04	0.03
Beryllium	141710		<0.001	<0.001	<0.001	<0.001	<0.0005	<0.0005
Boron	IMAC	5	<0.01	<0.01	0.03	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.001	<0.001	<0.0001	<0.001	<0.001	<0.001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	0.002	0.001
Cobalt	141710	0.03	0.0242	0.0158	0.0146	0.0181	0.0071	0.0127
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	<0.03	<0.03	<0.03	<0.03	<0.04	<0.03
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.07	0.05	0.05	0.05	0.04	0.04
Molybdenum	7.0	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			7.6	7.9	7.1	7.4	7.6	6.8
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.058	0.056	0.056	0.05	0.067	0.048
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			0.002	0.002	0.002	0.002	0.002	0.002
Zinc	AO	5	<0.01	<0.01	<0.01	0.002	<0.01	<0.01
Arsenic	IMAC	0.025	10.01	10.01	10.01	0.01	١٥.٥١	10.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						8.03
Selenium	MAC	0.01						3.03
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			8.4	7.8	9	6.6	7.4	7.3
рН			8.2	8.5	8.2	8.4	8.1	7.9
Conductivity us/cm			309	223	278	201	244	268
All concentrations in mg/l	L	<u> </u>	303	223	2/0	201	244	200

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			Jun-12	Oct-12	Jun-13	Nov-13	Apr-14	Oct-14
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	158	145	170	164	164	149
BOD								
COD								
Chloride	AO	250	<1	<1	<1	1	0.8	0.9
Conductivity us/cm			292	273	318	310	315	274
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
Phenols			<0.001	<0.001	<0.001	<0.001	0.120	0.120
Sulphate	AO	500	4	5	<3	4		
Total Dissolved Solids	AO	500	190	177	207	202	170	151
Total Kjeldahl Nitrogen	,,,,	300	<0.10	<0.10	<0.10	<0.10	0.18	0.07
Total phosphorous			10.10	10.10	10.10	10.10	0.10	0.07
Hardness as CaCO3	OG	500	126	143	168	166	186	164
Calcium		300	34	39	46	45	50.5	42.3
Magnesium			10	11	13	13	14.5	12.4
Potassium			<1	<1	1	<1	1	1
Sodium	AO	200	2	<2	2	<2	2.3	2.1
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	0.02	0.01
Barium	MAC	1	0.04	0.01	0.05	0.01	0.02	0.01
Beryllium	IVIAC	1	<0.0005	<0.005	<0.005	<0.0005	< 0.0001	< 0.0001
Boron	INAAC	5		<0.005			< 0.0001	0.005
Cadmium	IMAC		<0.01		<0.01	<0.01		
Chromium	MAC	0.005	<0.0001	<0.0001	<0.001	<0.0001	< 0.00002	< 0.00002
Cobalt	MAC	0.05	<0.001	<0.001	0.001	<0.001	< 0.002	< 0.002
		4	0.0007	0.0073	0.009	0.0012	0.0021	0.002
Copper	AO	1	<0.001	<0.001	0.001	<0.001	0.0007	< 0.002
Iron	AO	0.3	<0.03	<0.03	<0.03	<0.03	< 0.005	< 0.005
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	< 0.00002	0.00002
Manganese	AO	0.05	0.03	0.04	0.06	0.03	0.054	0.039
Molybdenum			<0.005	<0.005	<0.005	<0.005	< 0.0001	< 0.0001
Nickel			<0.005	<0.005	<0.005	<0.005	< 0.01	< 0.01
Silicon			7.9	6.6	7.5	7.6	7.86	7.59
Silver			<0.0001	<0.0001	<0.0001	<0.0001		
Strontium			0.057	0.052	0.074	0.057	0.074	0.064
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	< 0.00005	< 0.00005
Titanium			<0.01	<0.01	<0.01	<0.01	< 0.005	< 0.005
Vanadium			0.003	0.002	0.002	0.002	0.0024	0.0033
Zinc	AO	5	< 0.01	<0.01	<0.01	<0.01	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)							< 0.01	< 0.01
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			9.5	6.8	8.7	7.4	7.8	7.4
рН			7.7	7	7.3	8.2	8.2	7.6
Conductivity us/cm			252	258	248	294	274	273

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			Jun-15	Oct-15	May-16	Nov-16	Apr-17	Oct-17
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	169	166	185	146	182	161
BOD								
COD								
Chloride	AO	250	0.9	0.8	1.22	0.79	0.7	0.7
Conductivity us/cm			318	305	350	278	330	307
DOC	AO	5	323					
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
N-NO3 (Nitrate)	MAC	10	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
Phenols	17.11 (0	10	10.2	10.1	10.03	10.03	10.12	1 0.03
Sulphate	AO	500						
Total Dissolved Solids	AO	500	207	201	178	168	186	162
Total Kjeldahl Nitrogen	AO	300	0.2	< 0.05	0.11	<0.10	0.07	< 0.1
Total phosphorous			0.2	₹ 0.05	0.11	₹0.10	0.07	₹ 0.1
Hardness as CaCO3	OG	500	179	187	183	140		168
Calcium	- 00	300	47.7	48.7	50.0	38.4	54.5	44.5
Magnesium			14.5	16	14.1	10.7	15.1	13.8
Potassium			14.5	10	1.06	0.92	1	0.9
Sodium	AO	200	2.1	2.3	2.06	1.87	2.2	2.2
Aluminum	OG	0.1	0.02	0.02	<0.004	0.014	0.04	0.03
Barium				0.02			0.04	
Beryllium	MAC	1	0.041		0.045	0.036		0.042
		_	< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Boron	IMAC	5	< 0.005	0.006	<0.010	<0.010	0.02	< 0.005
Cadmium	MAC	0.005	0.00003	< 0.00002	<0.001	<0.001	< 0.000014	
Chromium	MAC	0.05	< 0.002	0.003	<0.003	<0.003	< 0.002	< 0.002
Cobalt			0.0057	< 0.0001	<0.001	<0.001	0.0012	< 0.0001
Copper	AO	1	< 0.002	< 0.002	<0.003	<0.003	< 0.002	0.002
Iron	AO	0.3	< 0.005	0.018	<0.010	<0.010	< 0.005	< 0.005
Lead	MAC	0.01	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002	< 0.00002
Manganese	AO	0.05	0.058	0.06	0.051	0.050	0.063	0.054
Molybdenum			< 0.0001	< 0.0001			< 0.0001	< 0.0001
Nickel			< 0.01	< 0.01	<0.003	<0.003	0.0014	0.0009
Silicon			8.15	8.01	8.21	8.61	8.94	8.4
Silver								
Strontium			0.073	0.086	0.066	0.053		0.059
Thallium			< 0.00005	< 0.00005	<0.006	<0.006	< 0.00005	< 0.00005
Titanium			< 0.005	< 0.005	< 0.002	<0.002	< 0.005	< 0.005
Vanadium			0.0024	0.0019	< 0.002	< 0.002	0.0018	0.0017
Zinc	AO	5	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01				
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		2.02					< 0.05	
Dissolved Reactive P							3.03	
Field Parameters								
Temperature °C			9	7.5	7.8	6.6	6.8	7.5
рН		1	7.5	7.5	7.7	8	7.6	8.1
Conductivity us/cm			335	281	304	275	332	273
conductivity doj citi		1	555	201	JU 4	213	JJZ	2/3

All concentrations in mg/L unless otherwise noted

Sample Location 95-4S

Sample Date			May-18	Oct-18	May-19	Oct-19	May-20	Oct-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	169	148	184	145	180	161
BOD								
COD								
Chloride	AO	250	< 1	1	<1	<1	<1	1
Conductivity us/cm	, 10	230	324	286	286	269	321	292
DOC	AO	5	32 :	200	200	203	321	232
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
Phenols			10.20	10120	10.20	10.20	10.20	10.20
Sulphate	AO	500						
Total Dissolved Solids	AO	500	211	186	186	175	209	190
Total Kjeldahl Nitrogen	710	300	1.6	< 0.8	<0.15	<0.15	0.118	<0.100
Total phosphorous			1.0	10.0	10.13	10.13	0.110	10.100
Hardness as CaCO3	OG	500	185	135	188	145	178	170
Calcium		300	51	36	52	40	50	45
Magnesium			14	30	14	11	13	14
Potassium			14	< 1	<1	<1	<1	<1
Sodium	AO	200	2	2	2	<2	2	2
Aluminum	OG	0.1	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.04	0.01	0.04	0.05	0.05	0.04
Beryllium	IVIAC	тт	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.0003	< 0.0003	<0.003	<0.003	<0.003	<0.003
Cadmium	MAC	0.005	< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01
Chromium	MAC	0.005	< 0.0001	< 0.0001	0.001	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.05						
	40	4	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Copper	AO	0.3	< 0.001	< 0.001	0.002 <0.03	0.003 <0.03	<0.001 <0.03	0.005 <0.03
Iron Lead	AO		< 0.03	< 0.03	<0.03	<0.03	<0.03	<0.03
	MAC	0.01	< 0.001	< 0.001	0.06	0.001	0.001	0.06
Manganese	AO	0.05	0.05	0.05				
Molybdenum Nickel			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon			8.4	8.2	8.1	7.8	8.2	8.7
Silver			0.001	0.050	0.067	0.00	0.000	0.054
Strontium			0.061	0.058	0.067	0.06	0.066	0.054
Thallium			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Vanadium		_	0.001	0.002	0.001	0.001	0.001	0.001
Zinc	AO	5	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.4	7.4	7.2	7.1	7.6	6.8
рН			7.7	7.7	7.8	8.3	7.5	7.2
Conductivity us/cm			282	218	204	278	322	311

All concentrations in mg/L unless otherwise noted

Sample Location 95-4D

Sample Date			Nov-08	May-09	Sep-09	May-10	Oct-10	Jun-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	53	43	40	39	38	41
BOD			2	1	<1			
COD			13	10	<5			
Chloride	AO	250	52	53	52	54	54	56
Conductivity us/cm			297	281	282	276	277	273
DOC	AO	5	2.5	3	3.3	_		
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001	<0.001	0.120		0.20
Sulphate	AO	500	7	6	6			
Total Dissolved Solids	AO	500	193	183	183	179	180	177
Total Kjeldahl Nitrogen	7.0	300	0.22	0.13	<0.10	0.23	0.31	<0.10
Total phosphorous			2.69	0.66	0.91	0.23	0.51	10.10
Hardness as CaCO3	OG	500	59	58	51	44	37	46
Calcium	- 00	300	17	15	14	11	10	12
Magnesium			4	5	4	4	3	4
Potassium			3	3	2	2	2	2
Sodium	AO	200	33	33	30	33	28	29
Aluminum	OG	0.1	0.62	0.2	0.17	0.26	0.38	0.78
Barium	MAC	1	0.02	0.2	0.17	0.26	0.05	0.78
Beryllium	MAC	1						
Boron	10.4.0.0	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
Cadmium	IMAC	5	0.04	0.02	0.03	0.04	0.02	0.02
	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.003	0.002	0.002	<0.001	0.002	0.004
Cobalt		_	0.0318	0.0023	0.0399	0.0006	0.0005	0.0007
Copper	AO	1	0.001	<0.001	<0.001	<0.001	<0.001	0.002
Iron	AO	0.3	7.81	9.46	9.4	9.72	9.67	9.74
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.22	0.11	0.16	0.1	0.1	0.1
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			9.8	8.3	8.7	7.6	8.1	8.4
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.083	0.07	0.072	0.062	0.058	0.061
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			0.02	0.02	0.01	0.02	0.03	0.05
Vanadium			0.005	0.004	0.005	0.006	0.005	0.005
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C				8.1	7.5	8.6	6.4	7.6
рН				7.5	7.7	7.6	7.9	7.5
Conductivity us/cm				327	266	299	227	236
,, -		1	I.	<u> </u>	_00			_50

All concentrations in mg/L unless otherwise noted

Sample Location 95-4D

Alkalinity (C _c CO3)	Sample Date			Oct-11	Jun-12	Jun-12 BH 95-7	Oct-12	Jun-13	Nov-13
BOD Chloride AO 250 56 57 58 58 65 59		Limit	ODWO/S			QA/QC	1		
COD Chloride		OG	30-500	43	36	36	36	31	33
Chloride									
Conductivity us/cm									
DOC		AO	250	56	57	58	58	65	59
N-NO2 (Nitrite) MAC 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00				292	273	275	286	301	307
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		AO	5						
Phenols		MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sulphate		MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total Dissolved Solids AO 500 190 177 179 186 196 200					< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total Kjeldahl Nitrogen		AO	500		10	10	10	10	9
Total phosphorous	Total Dissolved Solids	AO	500	190	177	179	186	196	200
Total phosphorous	Total Kjeldahl Nitrogen			<0.10	<0.10	11	<0.10	<0.10	0.15
Calcium 14 9 9 14 15 15 Magnesium 4 3 3 4 5 5 Potassium 2<	Total phosphorous								
Calcium	Hardness as CaCO3	OG	500	51	35	35	51	58	58
Magnesium	Calcium			14	9	9	14	15	
Potassium	Magnesium								
Sodium									
Aluminum		AO	200						
Barium									
Beryllium									
Boron		1417 (C	-						
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00		IMAC	5						
Chromium									
Cobalt 0.0004 0.0005 0.0006 0.0004 0.0007 0.0003 Copper AO 1 <0.001									
Copper AO 1 <0.001 0.001 0.001 0.001 <0.001 Iron AO 0.3 9.86 12 11.3 9.58 12.4 12.2 Lead MAC 0.01 <0.001		IVIAC	0.03						
Iron		۸٥	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Manganese AO 0.05 0.1 0.11 0.11 0.1 0.13 0.11 Molybdenum <0.005									
Molybdenum <0.005									
Nickel		AU	0.05						
Silicon 7.9 9 9 7.4 8.4 8.2 Silver <0.0001									
Silver <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <									
Strontium 0.063 0.064 0.066 0.066 0.079 0.07 Thallium <0.0001					~				
Thallium <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.002 0.004 0.002 <0.004 0.002 <0.004 0.003 <0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									
Titanium 0.01 0.04 0.02 0.04 0.02 Vanadium 0.004 0.005 0.005 0.004 0.004 0.003 Zinc AO 5 <0.01									
Vanadium 0.004 0.005 0.004 0.004 0.003 Zinc AO 5 <0.01									
Zinc AO 5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P			_						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P									
N-NH3 (Ammonia) Phosphorus PH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P									
Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P OG 6.5-8.5 OG 6.5-8.5		MAC	0.001						
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P			1						
Selenium MAC 0.01 Tin Dissolved Reactive P									
Tin Dissolved Reactive P									
Dissolved Reactive P		MAC	0.01						
Field Devementary									
	Field Parameters								
Temperature °C 7.4 8.5 6.6 8.7 7.3				7.4	8.5		6.6	8.7	7.3
pH 6.8 6.8 6.5 7.3 7.2	-			6.8	6.8		6.5	7.3	7.2
Conductivity us/cm 304 263 310 248 294				304	263		310	248	294

All concentrations in mg/L unless otherwise noted

Sample Location 95-4D

Sample Date			Apr-14	Apr-14 BH 07-4	Oct-14	Jun-15	Oct-15	May-16
PARAMETER	Limit	ODWO/S		QA/QC	I	I		
Alkalinity (C _a CO3)	OG	30-500	30	30	31	31	31	32
BOD								
COD								
Chloride	AO	250	60.5	60.6	69.1	69.1	66.4	81.6
Conductivity us/cm			280	278	285	298	291	331
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	< 0.10	< 0.1	< 0.1	< 0.05
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.10	< 0.10	< 0.1	< 0.1	< 0.05
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	155	154	164	187	192	162
Total Kjeldahl Nitrogen			0.41	0.31	0.2	0.3	0.18	0.28
Total phosphorous								
Hardness as CaCO3	OG	500	60	59	68	61	63	60.9
Calcium			15.3	15.3	15.8	15.4	15.9	15.4
Magnesium			5.26	5.13	5.34	5.43	5.63	5.45
Potassium			2.6	2.5	2.5	2.4	2.2	2.52
Sodium	AO	200	29.3	29.2	28.1	30.3	29.9	32.5
Aluminum	OG	0.1	0.72	0.51	0.42	0.24	0.02	0.012
Barium	MAC	1	0.067	0.06	0.062	0.059	0.057	0.062
Beryllium	1417 (C	_	0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	<0.001
Boron	IMAC	5	0.041	0.017	0.019	0.012	0.023	0.013
Cadmium	MAC	0.005	0.00004	0.00004	< 0.00002	< 0.0002	< 0.00002	<0.001
Chromium	MAC	0.05	0.000	< 0.002	< 0.002	< 0.002	< 0.002	<0.001
Cobalt	IVIAC	0.03	0.002	0.0008	0.0005	0.0002	< 0.002	<0.003
Copper	AO	1	0.0003	0.0008	< 0.0003	< 0.002	< 0.0001	<0.001
Iron	AO	0.3	14.4	13.9	14.4	14.1	14.9	13.5
Lead	MAC	0.01	0.00047	0.00035	0.00042	0.00007	< 0.00002	<0.002
Manganese	AO	0.01	0.00047	0.00033	0.00042	0.00007	0.145	0.125
Molybdenum	AU	0.03	0.0002	0.0002	< 0.0001	0.0002	0.0003	0.123
Nickel			< 0.01	< 0.002	< 0.0001	< 0.01	< 0.01	<0.003
Silicon			8.69	8.44	8.29	8.61	7.93	8.02
Silver			8.09	0.44	0.29	0.01	7.95	8.02
Strontium			0.007	0.005	0.007	0.000	0.003	0.076
Thallium			0.087 < 0.00005	0.085	0.087	0.086	0.082	0.076
				< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.006
Titanium Vanadium			0.022	0.018	0.022	0.013	< 0.005	<0.002
Zinc	40	-	0.004	0.0036	0.0046	0.0032	0.0025	0.002
Arsenic	AO	5	< 0.005	< 0.005	< 0.005	< 0.005	0.009	<0.005
	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001	0.00	0.00	0.44	0.07	0.11	
N-NH3 (Ammonia)			0.08	0.09	0.11	0.07	0.11	
Phosphorus		6505						
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.3		7.2	8.5	7.4	7.8
pH			7.6		7.2	6.9	7.3	7
Conductivity us/cm		ise noted	277		319	362	293	337

All concentrations in mg/L unless otherwise noted

Sample Location 95-4D

Sample Date			May-16 Dup 1	Nov-16	Apr-17	Oct-17	May-18	Oct-18
PARAMETER	Limit	ODWO/S	QA/QC		1	ī	T	
Alkalinity (C _a CO3)	OG	30-500	30	33	37	35	37	38
BOD								
COD								
Chloride	AO	250	82.3	73.4	76.2	69.5	76	87
Conductivity us/cm			331	331	336	345	359	405
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.05	< 0.05	< 0.1	< 0.05	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	< 0.05	< 0.05	< 0.1	< 0.05	< 0.10	< 0.10
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	174	214	184	162	233	263
Total Kjeldahl Nitrogen			0.25	<0.10	0.32	0.3	1.6	< 0.8
Total phosphorous								
Hardness as CaCO3	OG	500	60.1	61.2		53	58	56
Calcium			15.1	15.7	17.1	12.6	15	14
Magnesium			5.43	5.34	5.59	5.14	5	5
Potassium			2.56	2.55	2.4	2.5	2	3
Sodium	AO	200	32.2	32.4	36.3	42.8	45	45
Aluminum	OG	0.1	0.012	0.022	0.02	0.01	< 0.01	< 0.01
Barium	MAC	1	0.062	0.052	0.072	0.053	0.06	0.07
Beryllium		_	<0.001	<0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005
Boron	IMAC	5	0.012	0.010	0.029	0.012	< 0.01	< 0.01
Cadmium	MAC	0.005	<0.001	<0.001	< 0.00014			< 0.0001
Chromium	MAC	0.05	<0.003	<0.003	< 0.00014	< 0.00014	< 0.001	< 0.001
Cobalt	IVIAC	0.03	<0.001	<0.003	< 0.002	< 0.002	< 0.0002	< 0.0002
Copper	AO	1	<0.001	<0.003	< 0.0001	< 0.002	< 0.001	< 0.001
Iron	AO	0.3	13.7	12.9	15.1	0.285	12.4	14.6
Lead	MAC	0.01	<0.002	<0.002	< 0.00002	0.283	< 0.001	< 0.001
Manganese	AO	0.01	0.127	0.110	0.135	0.00002	0.1	0.13
Molybdenum	AU	0.03	0.127	0.110	0.0003	0.0002	< 0.005	< 0.005
Nickel			<0.003	<0.003	0.0005	0.0002	< 0.005	< 0.005
Silicon			8.32	8.06	8.28	7.68	7.8	7.9
Silver			0.32	8.00	0.20	7.00	7.0	7.5
Strontium			0.075	0.070		0.07	0.072	0.083
Thallium			<0.006	<0.006	4.0.00005	< 0.00005	< 0.0001	< 0.0001
Titanium			<0.008	<0.000	< 0.0005 < 0.005	< 0.0005	< 0.0001	< 0.0001
Vanadium							0.002	0.002
Zinc	40	Г	0.002	<0.002	0.0023	0.0023	< 0.002	< 0.01
Arsenic	AO	5	<0.005	<0.005	< 0.005	< 0.005	< 0.01	< 0.01
	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								1
Phosphorus	66	6505						
pH (no units)	OG	6.5-8.5						1
Selenium	MAC	0.01						1
Tin					< 0.05			
Dissolved Reactive P								
Field Parameters								<u> </u>
Temperature °C				6.5	6.6	7.3	7.2	7.2
pH /				7.3	7	7.3	7	7.5
Conductivity us/cm				358	374	339	323	332

All concentrations in mg/L unless otherwise noted

Sample Location 95-4D

Sample Date May-19 Oct-19 May-20 Oct-20

PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	44	43	40	37		
BOD		30 300				3,		
COD								+
Chloride	AO	250	90	82	70	78		+
Conductivity us/cm	AO	230	340	387	333	346		+
DOC	AO	5	340	307	333	340		+
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10		+
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10		+
Phenols	IVIAC	10	\0.10	\0.10	<0.10	<0.10		+
Sulphate	AO	500						+
Total Dissolved Solids	AO	500	221	252	216	225	-	+
Total Kjeldahl Nitrogen	AU	300	<0.75	0.28	0.395	0.371		
Total phosphorous			<0.75	0.28	0.395	0.371		
Hardness as CaCO3	00	F00	72	67	Ε0	60		+
	OG	500	72	67	58	60		+
Calcium			19	17	15	16	1	+
Magnesium			6	6	5	5		1
Potassium Sodium	4.0	200	3	2	2	2	1	+
	AO	200	46	41	38	42		
Aluminum	OG	0.1	0.01	0.02	0.01	0.06		
Barium	MAC	1	0.07	0.07	0.06	0.07		
Beryllium			<0.0005	<0.0005	<0.0005	<0.0005		
Boron	IMAC	5	<0.01	0.01	<0.01	0.01		
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001		
Chromium	MAC	0.05	0.001	<0.001	<0.001	<0.001		
Cobalt			<0.0002	<0.0002	<0.0002	<0.0002		
Copper	AO	1	<0.001	<0.001	<0.001	0.004		
Iron	AO	0.3	14.3	14.1	11.7	12.4		
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001		
Manganese	AO	0.05	0.13	0.13	0.11	0.13		
Molybdenum			<0.005	<0.005	<0.005	<0.005		
Nickel			<0.005	<0.005	<0.005	<0.005		
Silicon			7.5	7.7	7.6	8.2		
Silver								
Strontium			0.087	0.084	0.068	0.064		
Thallium			<0.0001	<0.0001	<0.0001	<0.0001		
Titanium			< 0.01	<0.01	<0.01	<0.01		
Vanadium			0.002	0.003	0.003	0.003		
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01		
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						1
Selenium	MAC	0.01						1
Tin								1
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.1	7.2	7.6	7.0		1
pH			7.4	7.2	7.3	6.4		
Conductivity us/cm			252	416	362	389		
All concentrations in mg/Lu							1	

All concentrations in mg/L unless otherwise noted

Sample Date

PARAMETER	Limit	ODWO/S
Alkalinity (C _a CO3)	OG	30-500
BOD		
COD		
Chloride	AO	250
Conductivity us/cm		
DOC	AO	5
N-NO2 (Nitrite)	MAC	1
N-NO3 (Nitrate)	MAC	10
Phenols		
Sulphate	AO	500
Total Dissolved Solids	AO	500
Total Kjeldahl Nitrogen	7.0	
Total phosphorous		
Hardness as CaCO3	OG	500
Calcium	- 00	300
Magnesium		
Potassium		
Sodium	AO	200
Aluminum	OG	0.1
Barium	MAC	1
Beryllium	1711/10	-
Boron	IMAC	5
Cadmium	MAC	0.005
Chromium	MAC	0.05
Cobalt	IVIAC	0.05
Copper	AO	1
Iron	AO	0.3
Lead	MAC	0.01
Manganese	AO	0.01
Molybdenum	AU	0.03
Nickel		
Silicon		
Silver		
Strontium		
Thallium		
Titanium		
Vanadium		
Zinc	40	г
Arsenic	AO	5
Fluoride	IMAC	0.025
Mercury	MAC	1.5
•	MAC	0.001
N-NH3 (Ammonia)		
Phosphorus pH (no units)	00	6505
Selenium	OG	6.5-8.5
	MAC	0.01
Tin Dissolved Reactive P		
Field Parameters		
Temperature °C		
pH		+
-		+
Conductivity us/cm		

All concentrations in mg/L unless otherwise noted
Shaded values Exceed ODWS Criteria

Sample Location 95-5

Sample Date			Sep-95	Aug-96	Nov-96	Jul-97	Nov-98	Jul-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	42	77	40	44	40	40
BOD								
COD			30					<3
Chloride	AO	250	18	0.6	<0.1	0.8	0.9	0.9
Conductivity us/cm	-			160	86	89	85	89
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1						<0.1
N-NO3 (Nitrate)	MAC	10	0.8	<0.1	0.9	1	0.8	0.6
Phenols			0.026	0.022	<0.001	0.009	0.006	<0.001
Sulphate	AO	500	5	8	4	4	4	3
Total Dissolved Solids	AO	500	104	136	48	· · · · · · · · · · · · · · · · · · ·		
Total Kjeldahl Nitrogen	7.0	300	10.	130				0.06
Total phosphorous								0.46
Hardness as CaCO3	OG	500						40
Calcium	- 00	300	15	17.3	10.9	11	9.4	11
Magnesium			3.8	6.98	3.05	2.95	2.79	3.05
Potassium			1.4	5.8	0.7	<0.4	<0.4	1.5
Sodium	AO	200	5.6	2.1	1.2	1	1.1	1.2
Aluminum	OG	0.1	0.329	0.28	0.14	0.12	0.02	0.47
Barium	MAC	1	0.016	0.013	0.016	0.013	0.013	0.015
Beryllium	IVIAC		0.010	<0.015	<0.005	<0.005	<0.005	<0.015
Boron	IMAC	5	0.003	<0.003	<0.003	0.003	<0.003	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.01	<0.001	\0.01
								رم مر دم مر
Chromium	MAC	0.05	0.011	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	10		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.397	0.71	0.15	0.12	0.04	0.43
Lead	MAC	0.01	<0.0002	0.0002	<0.0002	<0.1	<0.0002	<0.0002
Manganese	AO	0.05	0.01	0.02	<0.01	<0.01	<0.01	0.03
Molybdenum			<0.02	0.04	0.03	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			6.13	6.53	6.01	6.07	5.6	6.76
Silver			<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Strontium			0.024	0.031	0.014		0.015	0.015
Thallium								
Titanium			0.015	0.01	<0.01		51	<0.05
Vanadium			<0.01	0.007	<0.005		<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	<0.01		0.04	<0.01
Arsenic	IMAC	0.025	0.1	<0.1	<0.001	<0.1	<0.1	<0.001
Fluoride	MAC	1.5						
Mercury	MAC	0.001						<0.0001
N-NH3 (Ammonia)								<0.01
Phosphorus		1	<0.1	0.1	<0.1	<0.1	<0.01	<0.10
pH (no units)	OG	6.5-8.5	7.93	7.96	7.82	8.66	8.63	8.03
Selenium	MAC	0.01						<0.001
Tin			<0.2	<0.2	0.2	<0.2	<0.2	<0.2
Dissolved Reactive P								
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			Nov-99	Jun-00	Oct-00	Jun-01	Oct-01	Jun-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	35	40	44	30	37	37
BOD				_				-
COD								
Chloride	AO	250	0.8	0.5	0.7	0.9	0.5	1.6
Conductivity us/cm	,.0		79	83	83	80	83	82
DOC	AO	5	, ,	- 55	- 55	- 00	- 55	
N-NO2 (Nitrite)	MAC	1						
N-NO3 (Nitrate)	MAC	10	0.6	0.4	0.4			
Phenols	141710	10	0.007	0.001	<0.001	0.028	<0.001	<0.001
Sulphate	AO	500	3	4	4	4	3	4
Total Dissolved Solids	AO	500	70	64	58	52	50	50
Total Kjeldahl Nitrogen	7.0	300	70	04	36	32	30	30
Total phosphorous						0.47	0.46	
Hardness as CaCO3	OG	500				0.47	0.40	
Calcium	00	300	9.74	9.62	14	9.42	11	11.3
Magnesium			2.51	2.56	2.89	2.5	2.9	2.82
Potassium						<0.4	0.7	
Sodium	40	200	1.2	0.9	<0.4			<0.4
Aluminum	AO OC	200	1.5	1.1	0.22	0.7	1.1	1
	OG	0.1	0.19	0.13		0.15	0.08	0.03
Barium	MAC	1	0.01	0.005	0.01	<0.005	0.01	0.007
Beryllium		_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0006	<0.01
Chromium	MAC	0.05	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Cobalt			< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Iron	AO	0.3	0.15	0.1	0.11	0.04	0.04	0.05
Lead	MAC	0.01	< 0.0002	< 0.0002	0.0018	0.0022	< 0.0012	<0.1
Manganese	AO	0.05	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Molybdenum			<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
Nickel			<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
Silicon			5.58	5.9	4.98	5.14	5.87	6.06
Silver			0.04	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Strontium			0.01	0.01	0.015	0.01	0.015	0.012
Thallium								
Titanium			< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01
Vanadium			<0.05	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	<0.1	<0.1	<0.1	0.001	<0.001	<0.1
Fluoride	MAC	1.5				0.1	0.2	0.1
Mercury	MAC	0.001				0.2	0.2	
N-NH3 (Ammonia)		3.301						0.6
Phosphorus			0.01	<0.1	<0.1			<0.1
pH (no units)	OG	6.5-8.5	7.45	7.74	7.96	7.25	7.8	
Selenium	MAC	0.01	,.,,	,,,¬	7.50	,.25	7.0	
Tin	IVIAC	0.01	<0.2	<0.2	<0.2			<0.2
Dissolved Reactive P			₹0.2	٧٠.٧	₹0.2			٠٠.٧
Field Parameters								
Temperature °C								
pH								
Conductivity us/cm								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			Nov-02	May-04	Sep-04	May-05	May-05	Nov-05
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	177	35	34	37	36	36
BOD						<1	<1	<1
COD				<2	8	<5	<5	<5
Chloride	AO	250	1.3	1.3	1.2	2	3	3
Conductivity us/cm			342	272	95	89	86	85
DOC	AO	5		<0.5	<0.5	<0.5	<0.5	0.5
N-NO2 (Nitrite)	MAC	1	<0.1			<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10				1.1	1.12	0.69
Phenols			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	3	3	3	4	5	5
Total Dissolved Solids	AO	500	198	3	3	58	56	55
Total Kjeldahl Nitrogen	7.0	300	130			0.21	0.26	<0.05
Total phosphorous				0.37	0.46	0.35	0.35	0.21
Hardness as CaCO3	OG	500		38	38	40	40	40
Calcium	00	300	52.9	10.6	10.2	11	11	11
Magnesium			13.9	2.76	2.93	3	3	3
Potassium			0.8	0.5	0.4	<1	<1	<1
Sodium	AO	200	2.3	1.2	1.1	<2	2	2
Aluminum	OG							
Barium		0.1	0.05	0.021	0.011	0.03	0.04	0.02
	MAC	1	0.045	0.008	0.007	<0.01	0.01	0.01
Beryllium Boron	10.4.4.6	-	<0.005	<0.001	<0.001	<0.001	<0.001	<0.001
	IMAC	5	<0.01	<0.005	<0.005	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.01	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.01	0.002	0.001	0.002	0.002	0.002
Cobalt			<0.01	<0.005	<0.005	0.0002	<0.0002	<0.0002
Copper	AO	1	<0.01	<0.002	<0.002	<0.001	<0.001	0.003
Iron	AO	0.3	0.02	0.009	0.008	0.01	0.02	0.03
Lead	MAC	0.01	<0.1	<0.0002	<0.0005	0.002	<0.001	<0.001
Manganese	AO	0.05	0.05	0.001	< 0.001	< 0.01	< 0.01	< 0.01
Molybdenum			<0.02	< 0.01	< 0.01	<0.005	<0.005	<0.005
Nickel			<0.02	< 0.01	< 0.01	0.005	<0.005	< 0.005
Silicon			7.94	5.78	5.46	7.6	7.5	6.5
Silver			< 0.01	<0.005	< 0.005	< 0.0001	< 0.0001	<0.0001
Strontium			0.075	0.011	0.012	0.013	0.013	0.017
Thallium						<0.0001	<0.0001	< 0.0001
Titanium			<0.01	<0.005	< 0.005	<0.01	<0.01	< 0.01
Vanadium			< 0.005	< 0.005	<0.005	0.004	0.004	0.004
Zinc	AO	5	<0.01	<0.005	<0.005	< 0.01	0.01	0.01
Arsenic	IMAC	0.025	<0.1	<0.001	0.001		-	-
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	,	3.301						
Phosphorus			<0.1					
pH (no units)	OG	6.5-8.5	8.14					
Selenium	MAC	0.01	0.14	<0.001	<0.001			
Tin	IVIAC	0.01	<0.2	<0.05	<0.05			
Dissolved Reactive P			٦٥.٧	₹0.05	₹0.05			
Field Parameters								
Temperature °C						8.6		7.1
рН						8.04		5.54
Conductivity us/cm						78		71
All concentrations in mall		i tl				/0		/ 1

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			May-06	Oct-06	May-07	Oct-07	May-08	Oct-08
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	41	38	41	38	39	39
BOD				<1	<1	2	<1	<1
COD			<5	<5	<5	<5	<5	5
Chloride	AO	250	2	2	1	<1	<1	1
Conductivity us/cm			95	89	88	85	87	85
DOC	AO	5	<0.5	<0.5	0.5	<0.5	<0.5	0.6
N-NO2 (Nitrite)	MAC	1		<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10		0.46	0.23	0.33	0.25	0.17
Phenols				<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500		6	4	5	4	4
Total Dissolved Solids	AO	500	62	58	57	55	57	55
Total Kjeldahl Nitrogen	7.0	300	<0.05	0.06	0.31	2.8	<0.10	<0.10
Total phosphorous			10.00	0.37	0.26	0.6	0.06	0.13
Hardness as CaCO3	OG	500		40	40	42	42	49
Calcium		300	11	11	11	12	12	13
Magnesium			3	3	3	3	3	4
Potassium			<1	<1	<1	<1	<1	<1
Sodium	AO	200	2	2	2	2	2	2
Aluminum	OG	0.1	0.02	0.02	0.01	0.02	0.02	0.07
Barium	MAC	1	0.02	0.02	0.01	0.02	0.02	0.01
Beryllium	IVIAC		0.01	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	MAC	0.005	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001
			0.002					
Chromium	MAC	0.05	0.002	0.002	0.001	0.002	0.001	0.003
Cobalt			<0.0002	<0.0002	<0.0002	<0.0002	0.0039	0.0256
Copper	AO	1	0.07	0.003	0.002	0.002	<0.001	<0.001
Iron	AO	0.3	0.03	0.03	0.03	0.03	0.03	0.05
Lead	MAC	0.01		<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.01	0.01	0.01	0.01	0.02	0.05
Molybdenum				<0.005	<0.005	<0.005	<0.005	<0.005
Nickel				<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			5.4	5.6	5.6	5.8	5.6	5.6
Silver				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.013	0.023	0.019	0.022	0.012	0.011
Thallium				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium				<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium				0.004	0.003	0.004	0.004	0.004
Zinc	AO	5	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			<0.02					
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P			0.07					
Field Parameters								
Temperature °C			11.6	7.8	8.5	8.2		
рН			8.5	7.13	7.22	7.64		
Conductivity us/cm			69	680	72	62		
All concentrations in mg/l			0.5	000	, ,	52		<u> </u>

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			May-09	Sep-09	May-10	May-10 QA/QC	Oct-10	Oct-10 QA/QC
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	42	41	38	38	35	35
BOD			<1	<1				
COD			<5	<5				
Chloride	AO	250	1	1	1	<1	1	<1
Conductivity us/cm			88	89	84	84	78	78
DOC	AO	5	0.6	0.8				
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	0.14	0.14
Phenols			< 0.001	<0.001				
Sulphate	AO	500	4	4				
Total Dissolved Solids	AO	500	57	58	55	55	51	51
Total Kjeldahl Nitrogen			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.09	0.15				
Hardness as CaCO3	OG	500	42	42	37	37	35	28
Calcium			12	12	10	10	9	8
Magnesium			3	3	3	3	3	2
Potassium			<1	<1	<1	<1	<1	<1
Sodium	AO	200	2	2	2	<2	2	2
Aluminum	OG	0.1	0.06	0.13	0.05	0.08	0.09	0.08
Barium	MAC	1	0.01	0.01	0.01	<0.01	0.01	<0.01
Beryllium	1717.10	-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	0.01	<0.01	0.02	0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.001
Chromium	MAC	0.05	0.001	0.002	<0.001	<0.001	0.002	0.002
Cobalt	IVIAC	0.03	0.0392	0.002	0.0069	0.001	0.0021	0.002
Copper	AO	1	< 0.001	<0.0178	<0.001	<0.0011	<0.0021	<0.001
Iron	AO	0.3	0.05	0.001	0.13	0.001	0.001	0.001
Lead	MAC	0.3	<0.001	<0.001	<0.001	<0.09	<0.001	<0.001
Manganese	AO	0.01	0.001	0.001	0.001	0.001	0.001	0.001
Molybdenum	AU	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005		<0.005	<0.005		
Silicon			5.6	<0.005 5.7	4.9		<0.005 5.4	<0.005 5.5
Silver						5	<0.0001	
Strontium			<0.0001	<0.0001	<0.0001	<0.0001		<0.0001
Thallium			0.013	0.012	0.012	0.013	0.009	0.01
Titanium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	40	-	0.003	0.003	0.003	0.003	0.004	0.004
Zinc Arsenic	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Fluoride	IMAC	0.025						
	MAC	1.5						
Mercury N-NH3 (Ammonia)	MAC	0.001						
Phosphorus pH (no units)	00	6505						
Selenium	OG	6.5-8.5						
	MAC	0.01						
Tin Dissolved Reactive P								
Field Parameters					4.5			
Temperature °C			8.7	7.7	10		6.7	
pH			9.1	7.6	8.4		8.1	
Conductivity us/cm			94	77	89		57	

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date	15	opwo/s	Jun-11	Oct-11	Oct-11 QA/QC	Jun-12	Oct-12	Jun-13
PARAMETER	Limit	ODWO/S		••	BH 95-7		••	
Alkalinity (C _a CO3)	OG	30-500	44	48	51	51	42	51
BOD								
COD								_
Chloride	AO	250	<1	<1	<1	<1	<1	<1
Conductivity us/cm			87	89	96	98	83	106
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	0.19	<0.10
Phenols						<0.001	<0.001	<0.001
Sulphate	AO	500				4	4	4
Total Dissolved Solids	AO	500	57	58	62	64	54	69
Total Kjeldahl Nitrogen			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total phosphorous								
Hardness as CaCO3	OG	500	42	49	49	35	40	51
Calcium			12	13	13	9	11	14
Magnesium			3	4	4	3	3	4
Potassium			<1	<1	<1	<1	<1	<1
Sodium	AO	200	2	3	2	3	2	2
Aluminum	OG	0.1	0.02	0.09	0.07	0.18	0.14	0.06
Barium	MAC	1	0.01	0.01	0.01	0.01	0.01	0.01
Beryllium			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.005	0.002	<0.001	<0.001	0.002	<0.001	0.002
Cobalt	IVIAC	0.03	0.002	0.0017	0.0138	0.002	0.0095	<0.002
	40	1						
Copper Iron	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	AO	0.3	0.03	0.08	0.07	0.13	0.09	0.04
	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.01	0.01	0.03	0.02	0.02	0.01
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			5.2	5.5	5.4	6	5	5.5
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.001	<0.0001
Strontium			0.013	0.014	0.013	0.014	0.012	0.017
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			0.003	0.003	0.003	0.004	0.004	0.003
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5		6.94	6.94			
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.9	7.7		8.9	7	8.9
рН			7.9	8.6		8.4	7	7.6
Conductivity us/cm			7.5	93		81	82	7.0
conductivity as/citi		<u> </u>	, ,	<i>)</i>		01	UZ	13

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date		opwo/s	Nov-13	Apr-14	Oct-14	Jun-15	Jun-15 QA/QC	Oct-15
PARAMETER	Limit	ODWO/S					BH 95-7	
Alkalinity (C _a CO3) BOD	OG	30-500	47	40	45	47	51	42
COD								
Chloride	4.0	250	.4		0.6	0.5	0.5	0.5
	AO	250	<1	0.0	0.6	0.5	0.5	0.5
Conductivity us/cm DOC	10	_	97	88	92	98	106	87
	AO	5	0.10	0.10	0.10	0.4	0.4	0.4
N-NO2 (Nitrite)	MAC	1	<0.10	< 0.10	< 0.10	< 0.1	< 0.1	< 0.1
N-NO3 (Nitrate)	MAC	10	<0.10	0.2	0.2	0.1	0.1	0.1
Phenols			<0.001					
Sulphate	AO	500	4					
Total Dissolved Solids	AO	500	63		49.9	59	64	52
Total Kjeldahl Nitrogen			<0.10	0.12	0.06	0.1	0.1	< 0.05
Total phosphorous								
Hardness as CaCO3	OG	500	45	46	46	48	47	51
Calcium			13	12.8	12.4	13.1	12.8	13.5
Magnesium			3	3.4	3.29	3.78	3.62	4.06
Potassium			<1	0.6	0.6	0.5	0.5	0.5
Sodium	AO	200	2	1.4	1.5	1.4	1.4	1.4
Aluminum	OG	0.1	0.06	0.08	0.06	0.13	0.1	0.02
Barium	MAC	1	0.01	0.01	0.009	0.01	0.009	0.01
Beryllium			<0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Boron	IMAC	5	< 0.01	< 0.005	0.005	< 0.005	< 0.005	0.007
Cadmium	MAC	0.005	< 0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Chromium	MAC	0.05	0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cobalt			0.0035	0.0024	0.003	0.0009	0.0073	< 0.0001
Copper	AO	1	<0.001	0.0003	< 0.002	< 0.002	< 0.002	< 0.002
Iron	AO	0.3	0.04	0.036	0.035	0.055	0.033	0.01
Lead	MAC	0.01	<0.001	0.00007	0.00006	< 0.00002	< 0.00002	< 0.00002
Manganese	AO	0.05	0.01	0.007	0.01	0.001	0.017	0.001
Molybdenum	7.0	0.03	<0.005	< 0.0001	< 0.0001	0.0005	0.0002	< 0.001
Nickel			<0.005	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01
Silicon			5.8	5.58	5.47	5.95	5.87	5.57
Silver			<0.0001	3.36	3.47	3.33	3.87	3.37
Strontium			0.0001	0.016	0.015	0.017	0.016	0.019
Thallium			<0.0013	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium			<0.001	< 0.005	< 0.005	< 0.0005	< 0.005	< 0.005
Vanadium			0.003	0.0029	0.0035	0.0032	0.0033	0.003
Zinc	AO	5	<0.003					
Arsenic	IMAC	0.025	\U.U1	< 0.005	< 0.005	< 0.005	< 0.005	0.007
Fluoride	MAC	1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001		10.01	4 0 01	. 0. 04	. 0.01	. 0.01
Phosphorus				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
•	0.0	6505						
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		1						
Dissolved Reactive P								
Field Parameters								
Temperature °C		1	7.6	7.8	7.5	8.3		7.7
pH			8.9	8.8	8.4	8.1		8.1
Conductivity us/cm		<u> </u>	95	77	94	102		80

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			May-16	Nov-16	Nov-16 QA/QC	Apr-17	Oct-17	May-18
PARAMETER	Limit	ODWO/S	I		BH 95-8			
Alkalinity (C _a CO3)	OG	30-500	54	47	46	38	50	47
BOD								
COD								
Chloride	AO	250	0.41	0.26	0.25	< 0.5	< 0.5	< 1
Conductivity us/cm			108	93	91	79	108	100
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.05	< 0.05	<0.05	< 0.1	< 0.05	< 0.10
N-NO3 (Nitrate)	MAC	10	0.06	< 0.05	0.06	< 0.1	0.19	< 0.1
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	50	68	68	42.4	53	65
Total Kjeldahl Nitrogen			< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.05
Total phosphorous								
Hardness as CaCO3	OG	500	49.9	41.5	40.9		53	49
Calcium			13.8	11.5	11.3	11.8	14.5	13
Magnesium			3.74	3.1	3.07	3.08	4.18	4
Potassium			0.63	0.51	0.51	0.4	0.4	< 1
Sodium	AO	200	1.42	1.29	1.27	1.4	1.6	< 2
Aluminum	OG	0.1	0.011	0.019	0.017	0.01	0.02	< 0.01
Barium	MAC	1	0.011	0.009	0.009	0.009	0.011	< 0.01
Beryllium	1111110	-	<0.001	<0.001	<0.001	< 0.0001	< 0.0001	< 0.0005
Boron	IMAC	5	< 0.01	< 0.01	< 0.01	0.02	0.006	< 0.01
Cadmium	MAC	0.005	<0.001	<0.001	<0.01		< 0.000014	< 0.001
Chromium	MAC	0.005	< 0.001	< 0.003	< 0.003	0.002	< 0.002	0.001
Cobalt	IVIAC	0.03						
	4.0	4	< 0.001	< 0.001	< 0.001	< 0.0001	< 0.0001	< 0.0002
Copper	AO	1	<0.003	<0.003	<0.003	< 0.002	< 0.002	< 0.001
Iron	AO	0.3	0.063	< 0.01	< 0.01	< 0.005	< 0.005	< 0.03
Lead	MAC	0.01	<0.002	<0.002	<0.002	< 0.00002	< 0.00002	< 0.001
Manganese	AO	0.05	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001	< 0.01
Molybdenum						< 0.0001	< 0.0001	< 0.005
Nickel			<0.003	<0.003	<0.003	0.0003	0.0003	< 0.005
Silicon			5.72	5.93	5.78	6.01	5.86	5.9
Silver								
Strontium			0.015	0.012	0.012		0.016	0.013
Thallium			<0.006	<0.006	<0.006	< 0.00005	< 0.00005	< 0.0001
Titanium			<0.002	<0.002	<0.002	< 0.005	< 0.005	< 0.01
Vanadium			0.003	0.003	0.002	0.0029	0.0026	< 0.003
Zinc	AO	5	0.009	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin						< 0.05		
Dissolved Reactive P						3.00		
Field Parameters								
Temperature °C			7.7	6.9		7.1	7.4	7.8
рН			8.1	8.4		8.1	9.1	8.2
Conductivity us/cm			98	96		84	96	86
Conductivity day citi	L				L	57	50	

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date		opuvo /s	May-18 QA/QC	Oct-18	Oct-18 QA/QC	May-19	May-19 QA/QC	Oct-19
PARAMETER	Limit	ODWO/S	BH 08-2		BH 08-2		BH 95-7	
Alkalinity (C _a CO3) BOD	OG	30-500	58	47	52	50	52	50
COD								
		250		_				
Chloride	AO	250	< 1	2	< 1	<1	<1	<1
Conductivity us/cm		_	95	100	111	86	93	99
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	< 0.0	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	0.1	0.12	0.1	0.10	<0.10	<0.10
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	62	65	72	56	60	64
Total Kjeldahl Nitrogen			0.9	1.6	1	0.16	<0.75	<0.15
Total phosphorous								
Hardness as CaCO3	OG	500	42	40	46	56	56	51
Calcium			12	11	12	16	16	14
Magnesium			3	3	4	4	4	4
Potassium			< 1	< 1	< 1	<1	<1	<1
Sodium	AO	200	< 2	< 2	< 2	<2	<2	<2
Aluminum	OG	0.1	< 0.01	0.01	0.03	< 0.01	< 0.01	0.01
Barium	MAC	1	< 0.01	0.01	0.01	< 0.01	< 0.01	0.02
Beryllium			< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Cadmium	MAC	0.005	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.001	0.001	0.001	0.002	0.002	0.001
Cobalt			0.00	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002
Copper	AO	1	< 0.001	< 0.0002	< 0.0002	<0.001	<0.001	0.003
Iron	AO	0.3	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03
Lead	MAC	0.01	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	< 0.001	< 0.01	< 0.01	<0.01	<0.01	<0.01
Molybdenum	70	0.03	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
Nickel			< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
Silicon			5.8	5.8	5.8	5.6	5.6	5.4
Silver			5.8	5.6	5.6	3.0	3.0	3.4
Strontium			0.014	0.017	0.018	0.022	0.016	0.017
Thallium			< 0.0014	< 0.017	< 0.0001	<0.0001	<0.001	<0.0017
Titanium			< 0.0001	< 0.01	< 0.001	<0.001	<0.001	<0.001
Vanadium			0.003	0.003	0.003	0.003	0.003	0.003
Zinc	AO	5	< 0.003			<0.003	<0.003	<0.003
Arsenic	IMAC	0.025	\ U.U3	< 0.01	< 0.01	\U.U1	\U.U1	\U.U1
Fluoride	MAC	1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001						
Phosphorus		1						
	0.0	6505						
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		1						
Dissolved Reactive P								
Field Parameters				7.4		7.0		7.0
Temperature °C		1		7.4		7.9		7.2
pH				8.1		8		8.7
Conductivity us/cm	<u> </u>	<u> </u>		80		75		109

All concentrations in mg/L unless otherwise noted

Sample Location 95-5

Sample Date			Oct-19 QA/QC	May-20	May-20 QA/QC	Oct-20		
PARAMETER	Limit	ODWO/S	BH 95-7		Dup #2	T		
Alkalinity (C _a CO3)	OG	30-500	52	52	54	57		
BOD								
COD								
Chloride	AO	250	<1	<1	<1	<1		
Conductivity us/cm			105	104	106	91		
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10		
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	0.15		
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	68	68	69	59		
Total Kjeldahl Nitrogen			<0.15	0.127	<0.100	<0.100		
Total phosphorous								
Hardness as CaCO3	OG	500	54	54	56	51		
Calcium			15	15	16	14		
Magnesium			4	4	4	4		
Potassium			<1	<1	<1	<1		
Sodium	AO	200	<2	<2	<2	<2		
Aluminum	OG	0.1	0.01	0.01	0.01	<0.01		
Barium	MAC	1	0.01	< 0.01	0.01	0.01		
Beryllium			<0.0005	<0.0005	<0.0005	<0.0005		
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01		
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001		
Chromium	MAC	0.05	0.001	0.001	0.001	0.001		
Cobalt	WIAC	0.03	<0.001	<0.001	<0.001	<0.0002		-
Copper	AO	1	<0.0002	<0.0002	<0.0002	0.005	-	-
Iron	AO	0.3	<0.001	<0.001	<0.001	<0.003		
Lead		0.3	<0.001	<0.001	<0.001	<0.001		
Manganese	MAC AO	0.01	<0.001	<0.001	<0.001	<0.001		
Molybdenum	AU	0.05	<0.01	<0.005	<0.01	<0.005		
Nickel			<0.005	<0.005	<0.005	<0.005		
Silicon			5.4	5.5	5.5	5.7		
Silver			5.4	5.5	5.5	5.7		
			0.017	0.016	0.015	0.012		
Strontium			0.017	0.016	0.015	0.012		
Thallium			<0.0001	<0.0001	<0.0001	<0.0001		
Titanium			<0.01	<0.01	<0.01	<0.01		
Vanadium	• • •		0.003	0.003	0.003	0.003		
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01		
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C				7.6		6.6		
рН				7.7		8.0		
Conductivity us/cm				98		105		<u> </u>

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			Aug-96	Nov-96	Jul-97	Nov-98	Jul-99	Nov-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	880	676	834	788	728	732
BOD								
COD							92	
Chloride	AO	250	93.5	89.2	84	89.3	81.2	75.8
Conductivity us/cm			1850	1680	1580	1660	1630	1565
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1					<0.1	
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols			0.001	0.002	0.015	0.005	<0.001	<0.001
Sulphate	AO	500	8	78	82	88	88	67
Total Dissolved Solids	AO	500	1150	1006	1060	1030		1080
Total Kjeldahl Nitrogen							2.39	
Total phosphorous							2.19	
Hardness as CaCO3	OG	500					771	
Calcium			252	233	244	209	214	198
Magnesium			72.5	61.5	61	61.6	56.6	54.5
Potassium			14.6	6.9	10.6	5.3	6.1	7.1
Sodium	AO	200	57	64.5	78.8	67.7	66.2	74.9
Aluminum	OG	0.1	0.04	0.25	0.04	0.01	<0.01	0.04
Barium	MAC	1	1.12	0.88	0.95	0.755	0.99	0.725
Beryllium	1717.10	_	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	0.21	0.28	0.34	0.27	0.37	0.31
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.01	<0.0001	0.57	<0.0001
Chromium	MAC	0.05	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Cobalt	IVIAC	0.03	0.03	<0.01	0.03	<0.01	<0.01	0.02
Copper	AO	1	<0.03	<0.01	<0.03	<0.01	<0.01	<0.01
Iron	AO	0.3	24	18.6	19.8	2.28	21.4	0.12
Lead	MAC	0.01	<0.0002	<0.0002	<0.1	<0.0002	<0.0002	<0.0002
Manganese	AO	0.01	32.2	31	30	26	26.4	24.9
Molybdenum	AU	0.05	0.16	0.16	0.18	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	0.18	<0.02	<0.02	<0.02
Silicon			22.5	22.7	22.9	20.5	22.6	19.4
Silver								
Strontium			0.02	<0.01 0.82	<0.01 0.85	<0.01	<0.01 0.88	0.02 0.77
Thallium			1.06	0.82	0.85	0.75	0.88	0.77
Titanium			<0.01	<0.01	<0.01	رم مر دم مر	<0.01	40.01
Vanadium				<0.01	<0.01	<0.01	< 0.01	<0.01
Zinc	AO	5	0.026 <0.01	0.024 <0.01	<0.005	<0.005 0.02	0.009 <0.01	<0.05 <0.01
Arsenic	IMAC	0.025	<0.01	0.006	<0.01 <0.1	<0.1	0.004	<0.01
Fluoride	MAC	1.5	√ U.1	0.000	√ 0.1	√ U.1	0.004	\U.1
Mercury							<0.0001	
N-NH3 (Ammonia)	MAC	0.001					<0.0001 0.78	
Phosphorus			0.2	<0.1	0.4	∠ 0.1	0.78	<0.01
pH (no units)	OG	6 5 9 5	6.89	8.03	0.4 6.98	<0.1 6.7	6.62	<0.01 7.83
Selenium		6.5-8.5	0.89	6.03	0.98	0.7	< 0.001	7.83
Tin	MAC	0.01	0.4	0.2	0.4	∠0.2		~0. 2
Dissolved Reactive P			0.4	0.3	0.4	<0.2	<0.2	<0.2
Field Parameters		1						
Temperature °C		1						
pH								
Conductivity us/cm		1						
Conductivity us/cm		<u> </u>						

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			Jun-00	Oct-00	Jun-01	Jun-01	Oct-01	Jun-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	770	788	640	610	497	669
BOD						5_5		
COD								
Chloride	AO	250	65.8	83.6	66.2	66.7	68.8	63.2
Conductivity us/cm			1483	1460	1300	1310	1170	1390
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1						
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1				
Phenols	1717 (C	10	0.016	0.014	0.028	0.066	<0.001	0.002
Sulphate	AO	500	51	92	88	89	87	60
Total Dissolved Solids	AO	500	906	1030	846	846	700	818
Total Kjeldahl Nitrogen	AO	300	300	1030	040	040	700	010
Total phosphorous					1.76	2.93	2.25	
Hardness as CaCO3	OG	500			1.70	2.55	2.23	
Calcium	- 00	300	198	200	177	177	151	196
Magnesium			50.7	64.5	47.4	47.7	47.7	50
Potassium			4.3	2.2	7.1	7.4	8.2	5.7
Sodium	AO	200	67	64.9	56.7	57.1	65.9	58.9
Aluminum	OG	0.1	0.32	0.59	1.37	1.45	0.07	0.15
Barium	MAC	1	0.92	0.59	0.89	0.895	0.865	1.02
Beryllium	IVIAC	1	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
Boron	IMAC	5	0.28	0.28	0.35	0.34	0.003	0.36
Cadmium								
	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0006	<0.01
Chromium	MAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt			<0.01	0.02	<0.01	<0.01	<0.01	0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	22.1	20.9	20.2	20.2	20.4	27.5
Lead	MAC	0.01	<0.0002	<0.0002	0.0004	0.0009	<0.0012	<0.1
Manganese	AO	0.05	24.1	23.3	21.3	21.4	21	23.5
Molybdenum			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			22.2	18.1	19.3	19.4	21.7	22.7
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Strontium			0.78	0.82	0.73	0.735	0.645	0.752
Thallium								
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Vanadium			0.01	0.015	0.01	0.01	0.015	<0.005
Zinc	AO	5	0.07	<0.01	< 0.01	< 0.01	0.02	< 0.01
Arsenic	IMAC	0.025	0.2	<0.1	0.008	0.008	0.007	<0.1
Fluoride	MAC	1.5			0.1	0.1	0.1	
Mercury	MAC	0.001						
N-NH3 (Ammonia)								<0.1
Phosphorus			<0.1	<0.1				0.2
pH (no units)	OG	6.5-8.5	7.41	6.88	6.62	6.79	8	
Selenium	MAC	0.01						
Tin			0.2	<0.2				0.2
Dissolved Reactive P								
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			May-04	May-06	May-07	May-08	May-09	May-10
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	609	544	560	504	442	411
BOD					2	6	2	
COD			88	66	70	58	58	
Chloride	AO	250	50.2	38	42	36	33	36
Conductivity us/cm			1360	1220	1350	1160	1080	1040
DOC	AO	5	25	24	30.2	23.9	18.5	
N-NO2 (Nitrite)	MAC	1	<0.1		<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	0.2		<0.10	<0.10	<0.10	<0.10
Phenols			<0.001		< 0.001	<0.001	<0.001	10120
Sulphate	AO	500	73		140	102	118	
Total Dissolved Solids	AO	500	784	793	878	754	702	676
Total Kjeldahl Nitrogen	Α0	300	4.53	3.62	7.15	4.56	4.33	4.26
Total phosphorous			2.87	3.02	2.71	5.64	2.42	7.20
Hardness as CaCO3	OG	500	610		589	521	450	440
Calcium	- 00	300	171	145	170	151	129	130
Magnesium			44.5	36	40	35	31	28
Potassium			12	12	13	13	12	12
Sodium	AO	200	58	42	50	41	40	35
Aluminum	OG	0.1	0.051	<0.01	<0.01	0.03	0.04	0.07
Barium		1			0.97	0.03	0.04	
	MAC	1	1.02	0.8				0.65
Beryllium	10.44.6	-	<0.001	0.52	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	0.48	0.52	0.78	0.61	0.65	0.61
Cadmium	MAC	0.005	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.005	0.005	0.006	0.007	0.006	0.004
Cobalt			<0.005	0.0059	0.0067	0.0345	0.0325	0.007
Copper	AO	1	<0.002	0.134	0.001	0.001	<0.001	0.001
Iron	AO	0.3	0.012	20.2	22.5	19.9	17.8	16.7
Lead	MAC	0.01	0.0006		< 0.001	< 0.001	< 0.001	< 0.001
Manganese	AO	0.05	20.2	16.7	17.2	13.9	12.3	12.2
Molybdenum			< 0.01		< 0.005	<0.005	<0.005	<0.005
Nickel			< 0.01		0.006	0.009	0.007	<0.005
Silicon			22	17.8	21.2	23.6	21	24
Silver			<0.005		< 0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium			0.681	0.593	0.732	0.68	0.556	0.531
Thallium					0.0002	< 0.0001	< 0.0001	<0.0001
Titanium			<0.005		< 0.01	< 0.01	< 0.01	< 0.01
Vanadium			0.013		0.017	0.019	0.015	0.013
Zinc	AO	5	< 0.005	0.01	0.02	< 0.01	<0.01	< 0.01
Arsenic	IMAC	0.025	0.007					
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)				3.3				
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001					
Tin	,	3.01	<0.05		1			
Dissolved Reactive P			10.00	0.12				
Field Parameters				J.12				
Temperature °C				10.6	10.1		9.7	11.2
рН				7.26	6.53		6.8	6.9
Conductivity us/cm				990	1221		1164	997
All activity as/citi	L	<u> </u>		550	1441	1	1104	531

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			Jun-11	Oct-11	Jun-12	Oct-12	Jun-13	Nov-13
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	479	447	402	383	485	436
BOD								
COD								
Chloride	AO	250	34	35	32	32	30	33
Conductivity us/cm			1050	1070	1010	965	1050	1060
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	111110	10	10.20	10.20	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500			127	111	77	92
Total Dissolved Solids	AO	500	682	696	656	627	682	689
Total Kjeldahl Nitrogen	AO	300	4.32	4.24	2.16	4.53	4.6	3.22
Total phosphorous			7.32	7.27	2.10	7.55	4.0	3.22
Hardness as CaCO3	OG	500	419	464	367	418	481	482
Calcium	- 00	300	125	133	104	123	140	142
Magnesium			26	32	26	27	32	31
Potassium			12	13	11	12	13	14
Sodium	AO	200	30	35	29	32	34	38
Aluminum	OG	0.1	0.08	0.32	0.12	0.04	0.08	0.03
Barium		1	0.08	0.32		0.65		
	MAC	1			0.66		0.81	0.67
Beryllium Boron	13.44.6	_	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	IMAC	5	0.52	0.64	0.74	0.6	0.61	0.69
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.007	0.005	0.005	0.003	0.005	0.003
Cobalt			0.0126	0.0046	0.0158	0.0106	0.0117	0.004
Copper	AO	1	0.001	0.001	0.001	<0.001	0.001	<0.001
Iron	AO	0.3	18.9	17.6	15.6	13.3	18.5	17.1
Lead	MAC	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	AO	0.05	13.4	10.4	10.8	9.1	11.6	9.77
Molybdenum			<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			24	18	18	16	19.2	17
Silver			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium			0.561	0.506	0.494	0.47	0.557	0.486
Thallium			<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
Titanium			< 0.01	<0.01	0.01	< 0.01	< 0.01	<0.01
Vanadium			0.014	<0.005	<0.005	0.008	<0.005	0.007
Zinc	AO	5	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)		0.00=						
Phosphorus								
pH (no units)	OG	6.5-8.5		6.86				
Selenium	MAC	0.01		0.00				
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			10.1	9.1	10.3	9.7	10.3	9.5
pH			7	6.6	6.5	6.5	6.6	6.8
Conductivity us/cm			849		914		874	
Conductivity us/cili		<u> </u>	849	1098	914	959	8/4	1085

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			Apr-14	Oct-14	Jun-15	Oct-15	May-16	Nov-16
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	373	387	395	350	407	393
BOD								
COD								
Chloride	AO	250	23.8	30.4	26.9	25.8	27	24
Conductivity us/cm			907	934	952	853	952	906
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	< 0.1	< 0.1	<0.25	<0.25
N-NO3 (Nitrate)	MAC	10	0.1	< 0.10	0.1	0.1	0.54	<0.25
Phenols				0.10	0.2	0.12		0.20
Sulphate	AO	500						
Total Dissolved Solids	AO	500	565	591	647	580	530	544
Total Kjeldahl Nitrogen	7.0	300	5.32	5.02	5.1	4.89	4.97	5.55
Total phosphorous			3.32	3.02	3.1	4.03	1.37	3.33
Hardness as CaCO3	OG	500	419	398	440	393	390	354
Calcium	- 00	300	122	123	128	111	113	105
Magnesium			27.6	28.1	29.1	27.8	26.2	22.4
Potassium			13.9	14	14.7	12.9	14.0	12.9
Sodium	AO	200	34.7	32.6	34.4	29.8	29.1	27.1
Aluminum	OG	0.1	0.1	0.08	0.13	0.03	0.010	0.007
Barium	MAC	1	0.638	0.66	0.13	0.606	0.601	0.543
Beryllium	IVIAC		< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001	<0.001
Boron	IMAC	5	0.737	0.793	0.819	0.824	0.635	0.737
Cadmium	MAC	0.005	< 0.00002	< 0.00002	< 0.00002	< 0.00002	<0.001	<0.001
Chromium	MAC	0.05	< 0.002	0.002	< 0.002	0.002	<0.003	<0.003
Cobalt			0.0046	0.0056	0.0086	0.0022	0.003	0.002
Copper	AO	1	0.0006	< 0.002	< 0.002	< 0.002	<0.003	<0.003
Iron	AO	0.3	15.4	16.8	15.7	15.2	13.9	12.2
Lead	MAC	0.01	0.00007	0.00007	0.00005	0.00004	<0.002	<0.002
Manganese	AO	0.05	9.82	10.3	10.3	10	9.03	7.99
Molybdenum			0.0003	0.0002	0.0002	0.0003		
Nickel			< 0.01	< 0.01	< 0.01	< 0.01	<0.003	<0.003
Silicon			18.7	18.3	15.3	18	18.1	15.9
Silver								
Strontium			0.498	0.508	0.525	0.445	0.443	0.383
Thallium			< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.006	<0.006
Titanium			< 0.005	< 0.005	< 0.005	< 0.005	<0.002	0.002
Vanadium			< 0.005	0.0096	0.0066	0.0048	0.004	0.003
Zinc	AO	5	< 0.005	< 0.005	< 0.005	0.007	0.008	<0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			3.8	4.22	4	3.85		
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			10.3	9.8	10.5	10.1	10.7	10
рН			6.8	6.8	6.5	6.8	6.5	6.9
Conductivity us/cm			832	932	1039	770	872	872

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date			Apr-17	Oct-17	May-18	Oct-18	May-19	Oct-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	355	393	343	326	302	356
BOD								
COD								
Chloride	AO	250	18.8	22.9	24	23	17	21
Conductivity us/cm			797	943	873	819	600	815
DOC	AO	5					8.5	
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.05	< 0.10	< 0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	0.2	< 0.05	< 0.10	< 0.10	<0.10	<0.10
Phenols			0.2		0.10	0.00		0.1_0
Sulphate	AO	500						
Total Dissolved Solids	AO	500	496	561	567	532	390	530
Total Kjeldahl Nitrogen	,	300	4.91	5.3	4.7	5.8	4.7	3.8
Total phosphorous					7			
Hardness as CaCO3	OG	500	359	442	405	306	318	348
Calcium			105	127	121	88	96	103
Magnesium			23.4	30.3	25	21	19	22
Potassium			14.1	15.4	14	12	12	11
Sodium	AO	200	28.3	33	31	26	21	25
Aluminum	OG	0.1	0.06	0.08	< 0.01	< 0.01	<0.01	0.02
Barium	MAC	1	0.53	0.703	0.56	0.52	0.41	0.54
Beryllium		_	< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.772	0.958	0.74	0.78	0.62	0.86
Cadmium	MAC	0.005	< 0.000020	0.000026	< 0.0001	< 0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	< 0.002	0.002	0.001	0.001	0.002	0.001
Cobalt	IVIAC	0.03	0.0018	0.0023	0.0025	0.0021	0.0019	0.001
Copper	AO	1	< 0.0018	< 0.0023	< 0.0023	< 0.0021	<0.0019	0.0022
Iron	AO	0.3	11.5	15.7	10.8	10.6	8.73	10.6
Lead	MAC	0.01	< 0.00002	0.00002	< 0.001	< 0.001	<0.001	<0.001
Manganese	AO	0.01	7.86	9.82	8.04	7.18	5.87	7.73
Molybdenum	AU	0.03	0.0003	0.0002	< 0.005	7.10	<0.005	<0.005
Nickel			0.0032	0.0002	< 0.005	< 0.005	<0.005	<0.005
Silicon			17.5	18.3	20.5	< 0.005	16.1	17
Silver			17.5	10.5	20.5		10.1	1,
Strontium			0.270	0.476	< 0.401	< 0.401	0.322	0.436
Thallium			0.379 < 0.00005	< 0.00005		< 0.401	<0.0001	<0.0001
Titanium			< 0.0005		< 0.0001		<0.001	<0.001
Vanadium			0.0047	< 0.005 0.0048	< 0.01 0.004	< 0.01 0.003	0.003	0.003
Zinc	40	5					<0.003	<0.01
Arsenic	AO IMAC	0.025	< 0.005	< 0.005	< 0.01	< 0.01	\U.U1	\U.UI
Fluoride		1.5						
Mercury	MAC MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			10.1	0.9	10.2	10	0.9	10.1
pH			6.5	9.8 6.9	10.2	10	9.8 6.8	6.7
Conductivity us/cm			813		6.6	6.9		824
All concentrations in mall			013	846	716	516	368	024

All concentrations in mg/L unless otherwise noted

Sample Location 95-6

Sample Date May-20 Oct-20

Nikalinity (C _x CO3) OG 30-500 354 371 ODD O	PARAMETER	Limit	ODWO/S				
SOD				354	371		T
DOD	BOD						1
Chloride	COD						
Description Property Proper		ΔΩ	250	19	23		+
AOC			250				
N-NO2 (Nitrite) MAC 1		۸٥	5	750	808		
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10				<0.10	<0.10		
Chenols Chen							+
Supple AO SOO ST S64 ST SOO ST S64 ST SOO ST SOO ST SOO ST ST		IVIAC	10	<0.10	<0.10		
Total Dissolved Solids		40	F00				+
State Content Conten				F47	EC4		
Total phosphorous Company Comp		AU	500				
Alardicis as CaCO3 OG 500 355 393 393 393 394 395 396 395 396 395 396 395 396 39				3.96	1.11		-
106			500	255	202		
Magnesium 22 25		OG	500				
13 13 13 13 13 13 13 13							
AO AO AO AO AO AO AO AO							
Muminum							
Barium			-				
Sery S							
Soron IMAC 5 0.85 0.86		MAC	1				
Cadmium				<0.0005	<0.0005		
Chromium MAC 0.05 0.002 0.001 Cobalt 0.0023 0.0022 Copper AO 1 0.004 0.002 Fron AO 0.3 10.9 10.3 Eead MAC 0.01 <0.001 <0.001 Manganese AO 0.05 7.4 7.67 Molybdenum	Boron	IMAC	5	0.85	0.86		
Cobalt Copper	Cadmium	MAC	0.005	< 0.0001	< 0.0001		
Cobalt Copper	Chromium	MAC	0.05	0.002	0.001		
Copper	Cobalt				0.0022		+
AO		AO	1				
Mac	Iron						
Manganese AO 0.05 7.4 7.67 Molybdenum <0.005	Lead						
Molybdenum							+
Sickel			0.05				
16.8 16							+
Silver							+
Comparison Com				10.0	10		+
Challium				0.425	0.340		+
100							
Anadium			+				+
AO			1				+
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus OH (no units) OG 6.5-8.5 Felenium MAC 0.01 Fin Dissolved Reactive P Field Parameters Femperature °C 10.0 9.3 OH 6.6 6.3			_				+
Fluoride				<0.01	<0.01		
Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus OH (no units) OG 6.5-8.5 Selenium MAC 0.01 Sin Oissolved Reactive P Sield Parameters Emperature °C 10.0 9.3 OH 6.6 6.3				-			
N-NH3 (Ammonia) Phosphorus OH (no units) OG 6.5-8.5 Gelenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Emperature °C OH OH OH OH OH OH OH OH OH O				-			
Phosphorus OH (no units) OG 6.5-8.5 Gelenium MAC 0.01 Fin Dissolved Reactive P Field Parameters Femperature °C 10.0 9.3 OH 6.6 6.3		MAC	0.001				
OH (no units) OG 6.5-8.5 Selenium MAC 0.01 Sin Sissolved Reactive P Sield Parameters Emperature °C 10.0 9.3 OH 6.6 6.3				1			
Selenium				1			
in Dissolved Reactive P Field Parameters Femperature °C 10.0 9.3 0H 6.6 6.3							
Dissolved Reactive P Field Parameters Femperature °C 10.0 9.3 OH 6.6 6.3		MAC	0.01				
Field Parameters 10.0 9.3 Femperature °C 10.0 9.3 OH 6.6 6.3	Tin						
Temperature °C 10.0 9.3 0H 6.6 6.3							
OH 6.6 6.3	Field Parameters						
					9.3		
	рН			6.6	6.3		
	Conductivity us/cm			788			

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			Aug-96	Nov-96	Jul-97	Nov-98	Jul-99	Nov-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	165	99	101	102	96	92
BOD								-
COD							3	
Chloride	AO	250	27.4	1.0	1.3	2.2	2.2	2.2
Conductivity us/cm			321	201	194	212	209	194
DOC	AO	5	011					
N-NO2 (Nitrite)	MAC	1					<0.1	
N-NO3 (Nitrate)	MAC	10	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Phenols			0.001	<0.001	0.056	0.006	0.025	<0.001
Sulphate	AO	500	10	8	8	10	9	9
Total Dissolved Solids	AO	500	258	113	130	140		132
Total Kjeldahl Nitrogen	,	333					0.11	
Total phosphorous							0.22	
Hardness as CaCO3	OG	500					105	
Calcium		333	41.9	29.8	27.2	28.4	27.1	27.6
Magnesium			12.40	9.16	8.90	8.88	8.89	8.33
Potassium			5.6	1.6	3.2	1.9	2.3	<0.005
Sodium	AO	200	15.8	2.1	1.9	2.1	2.1	2.7
Aluminum	OG	0.1	0.05	0.04	0.02	0.02	0.04	0.02
Barium	MAC	1	0.043	0.027	0.021	0.020	0.025	0.020
Beryllium	WIAC		0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	0.01	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.01	<0.001	0.01	<0.001
Chromium	MAC	0.005	<0.001	<0.001	<0.01	10.0001	<0.01	<0.01
Cobalt	WIAC	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.23	0.22	0.12	0.05	0.18	0.04
Lead	MAC	0.01	<0.0002	<0.0002	<0.1	<0.0002	<0.0002	<0.0002
Manganese	AO	0.05	0.18	0.08	0.06	0.15	0.06	0.17
Molybdenum	7.0	0.03	0.07	0.05	0.04	<0.02	<0.02	<0.02
Nickel			<0.02	<0.02	<0.02	<0.02	10.02	<0.02
Silicon			3.77	7.92	8.33	7.66	8.03	7.90
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium			0.267	0.043	0.041	0.040	0.040	0.046
Thallium			0.207	0.043	0.041	0.040	0.040	0.040
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			<0.005	<0.005	0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.01	<0.01	0.003	<0.01	<0.01	<0.003
Arsenic	IMAC	0.025	<0.1	0.002	<0.1	<0.1	<0.01	<0.01
Fluoride	MAC	1.5	.0.1	0.002	-5.1	-3.1	,0.001	.0.1
Mercury	MAC	0.001					<0.0001	
N-NH3 (Ammonia)		5.551					<0.001	
Phosphorus			0.1	0.1	<0.1	<0.1	<0.01	<0.1
pH (no units)	OG	6.5-8.5	7.54	8.22	8	7.82	7.73	8.12
Selenium	MAC	0.01	7.54	0.22	<u> </u>	7.02	<0.001	0.12
Tin		3.01	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2
Dissolved Reactive P			.0.2	-5.2	-0.2	10.02	-0.2	-0.2
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								
All		L	1	1		1		

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			Jun-00	Oct-00	Jun-01	Oct-01	Jun-02	Nov-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	100	100	150	82	80	79
BOD								
COD								
Chloride	AO	250	2.2	2.6	2.6	2.6	2.6	2.5
Conductivity us/cm	,,,,	230	199	207	183	184	185	190
DOC	AO	5	133	207	103	107	103	130
N-NO2 (Nitrite)	MAC	1						<0.1
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1				10.1
Phenols	1417 (C	10	0.002	0.002	0.011	<0.001	<0.001	<0.001
Sulphate	AO	500	9	10	11	12	10	11
Total Dissolved Solids	AO	500	120	126	120	70	110	116
Total Kjeldahl Nitrogen	AO	300	120	120	120	70	110	110
Total phosphorous					0.44	0.21		
Hardness as CaCO3	OG	500			0.44	0.21		
Calcium		300	27	25.7	24.8	24.2	26.8	25.7
Magnesium			8.01	8.56	7.33	7.65	7.83	7.77
Potassium			0.6	<0.4	0.8	<0.4	0.7	2
Sodium	AO	200	1.9	2.0	1.9	2.3	1.9	2.3
Aluminum	OG	0.1	0.08	0.17	0.27	0.05	<0.01	0.03
Barium	MAC	1	0.08	0.020	0.27	0.03	0.020	0.03
Beryllium	IVIAC	1	<0.015	<0.020	<0.015	<0.005	<0.005	<0.025
Boron	IMAC	5	<0.003	<0.003	<0.003	<0.003	0.003	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.01	<0.01
Chromium	MAC	0.005	<0.001	<0.001	<0.001	<0.000	<0.01	<0.01
Cobalt	IVIAC	0.05	<0.01	<0.01	<0.01	<0.01	0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.22	0.23	0.15	0.01	0.23	0.54
Lead	MAC	0.01	<0.0002	<0.0002	0.0005	<0.0012	<0.1	0.0014
Manganese	AO	0.01	0.05	0.05	0.0003	0.0012	0.12	0.0014
Molybdenum	AU	0.05	<0.03	<0.03	<0.04	<0.01	<0.02	<0.09
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			7.85	6.50	7.09	7.92	7.82	7.37
Silver								
Strontium			<0.01 0.040	<0.01 0.040	<0.01 0.035	<0.01	<0.01 0.037	<0.01
Thallium			0.040	0.040	0.035	0.030	0.037	0.040
Titanium			40.01	40.01	40.01	40.01	40.01	10.01
Vanadium			<0.01 <0.005	<0.01	<0.01	<0.01 <0.005	<0.01	<0.01
Zinc	40	5		<0.005 <0.01	<0.005		<0.005	<0.005
Arsenic	AO IMAC		<0.01 <0.1		<0.01 0.002	<0.01	<0.01 <0.1	<0.01 <0.1
Fluoride		0.025	<0.1	<0.1		0.001	<0.1	<0.1
Mercury	MAC	1.5			0.1	0.2		
N-NH3 (Ammonia)	MAC	0.001					<0.1	
Phosphorus			-01	ZO 1			<0.1	-01
pH (no units)	00	6.5-8.5	<0.1	<0.1	7.50	0.24	<0.1	<0.1
Selenium	OG		8.01	7.82	7.59	8.24		8.17
Tin	MAC	0.01	-0. 2	-0. 2			∠ 0.2	40.3
Dissolved Reactive P			<0.2	<0.2			<0.2	<0.2
Field Parameters								
Temperature ^o C								
pH								
Conductivity us/cm								
Conductivity us/cm		1						

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			May-04	Sep-04	May-05	Nov-05	May-06	Oct-06
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	65	74	79	79	80	80
BOD					<1	<1		<1
COD			3	2	<5	<5	<5	<5
Chloride	AO	250	2.4	2.5	2.0	2.0	1.0	1.0
Conductivity us/cm	-		65	185	173	173	174	176
DOC	AO	5	0.8	<0.5	0.5	0.8	0.6	<0.05
N-NO2 (Nitrite)	MAC	1			<0.10	<0.10		<0.10
N-NO3 (Nitrate)	MAC	10			<0.10	<0.10		<0.10
Phenols			<0.001	< 0.001	< 0.001	<0.001		< 0.001
Sulphate	AO	500	10	11	11	11		10
Total Dissolved Solids	AO	500			112	112	113	114
Total Kjeldahl Nitrogen					< 0.05	<0.05	<0.05	< 0.05
Total phosphorous			0.07	0.08	0.28	0.1		0.17
Hardness as CaCO3	OG	500	84	82	84	75		84
Calcium			21.8	20.6	22	20	21	22
Magnesium			7.19	7.47	7.0	6.0	7.0	7.0
Potassium			1.7	1.6	1	1	2	2
Sodium	AO	200	2.1	2.0	<2	<2	2.0	<2
Aluminum	OG	0.1	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.017	0.015	0.020	0.020	0.010	0.020
Beryllium	1717.10	_	<0.001	<0.001	<0.001	<0.001	0.010	<0.001
Boron	IMAC	5	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	10.01	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Cobalt		0.00	<0.005	<0.005	0.0003	<0.0002	<0.0002	<0.0002
Copper	AO	1	<0.002	<0.002	<0.001	<0.001	0.06	<0.001
Iron	AO	0.3	0.065	0.072	0.08	0.07	0.07	0.07
Lead	MAC	0.01	0.0003	<0.0005	0.001	<0.001		<0.001
Manganese	AO	0.05	0.031	0.027	0.040	0.030	0.03	0.03
Molybdenum			<0.01	< 0.01	<0.005	<0.005		<0.005
Nickel			<0.01	<0.01	<0.005	<0.005		<0.005
Silicon			7.41	7.23	9.00	8.20	6.90	7.60
Silver			<0.005	< 0.005	< 0.0001	<0.0001		<0.0001
Strontium			0.032	0.031	0.035	0.043	0.031	0.044
Thallium					<0.0001	<0.0001		<0.0001
Titanium			<0.005	<0.005	<0.01	<0.01		<0.01
Vanadium			<0.005	<0.005	<0.001	<0.001		<0.001
Zinc	AO	5	<0.005	<0.005	0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	<0.001	0.002				
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	-						0.03	
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001	<0.001				
Tin	-		<0.05	<0.05				
Dissolved Reactive P							0.07	
Field Parameters								
Temperature ^o C					7.6	6.7	8.1	7.8
pH					7.21	8.22	8.05	7.04
Conductivity us/cm					157	153	133	140
A.II. 1 12 2 7								

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			May-07	Oct-07	May-08	Oct-08	May-09	Sep-09
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	91	89	93	88	84	87
BOD			<1	<1	<1	<1	<1	1
COD			<5	<5	<5	8	<5	<5
Chloride	AO	250	1.0	1.0	1	1	1	1.0
Conductivity us/cm	,		192	185	193	185	175	182
DOC	AO	5	1.3	1.1	1.5	1.1	1.2	1.3
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	8	8	7	7	8	8
Total Dissolved Solids	AO	500	125	120	125	120	114	118
Total Kjeldahl Nitrogen	,	300	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.19	0.11	0.04	0.05	0.03	0.04
Hardness as CaCO3	OG	500	95	95	95	90	93	88
Calcium		200	25	25	25	23	24	22
Magnesium			8.0	8.0	8	8	8	8.00
Potassium			1	2	2	2	2	2
Sodium	AO	200	<2	<2	<2	<2	3	<2
Aluminum	OG	0.1	<0.01	<0.01	<0.01	0.01	<0.01	<0.01
Barium	MAC	1	0.020	0.020	0.02	0.02	0.02	0.020
Beryllium	1417 (C		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	141710	0.03	<0.0002	<0.0002	0.0332	0.0314	0.0277	0.0356
Copper	AO	1	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	0.08	0.09	0.12	0.09	0.12	0.07
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.04	0.04	0.11	0.10	0.09	0.09
Molybdenum	,	0.00	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			7.70	7.50	7.6	7.2	7.3	7.10
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.043	0.046	0.037	0.033	0.033	0.032
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			<0.001	<0.001	0.001	0.001	<0.001	<0.001
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	.0.01	.0.01	.0.01	.0.01	.0.01	10.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)		3.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		0.01						
Dissolved Reactive P	<u> </u>							
Field Parameters								
Temperature °C			7.7	7.6			8	7.1
pH			7.04	7.3			8.2	7.5
Conductivity us/cm			166	143			199	160
		L	100	TJ	1	1	-55	-50

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			May-10	Oct-10	Jun-11	Oct-11	Jun-12	Oct-12
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	88	80	100	98	98	97
BOD								
COD								
Chloride	AO	250	<1	1	1	1	1	2.0
Conductivity us/cm			188	175	199	200	200	203
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			10.120	10.20	10.120	10.20	<0.001	<0.001
Sulphate	AO	500					10	11
Total Dissolved Solids	AO	500	122	114	129	130	130	132
Total Kjeldahl Nitrogen	710	300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			10.20	10.10	10.20	10.20	10.20	10.10
Hardness as CaCO3	OG	500	90	75	102	95	76	100
Calcium	- 55	300	23	20	26	25	19	27
Magnesium			8	6	9	8	7	8.00
Potassium			2	1	2	2	1	2
Sodium	AO	200	<2	<2	<2	<2	2	2.0
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.02	0.02	0.02	0.02	0.02	0.020
Beryllium	IVIAC	T	<0.001	<0.001	<0.005	<0.005	<0.005	<0.0005
Boron	IMAC	5	0.001	<0.001	<0.0003	<0.0003	<0.003	<0.00
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.003	<0.001	<0.001	0.001	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.05	0.001	<0.001	0.001	0.0154	0.0003	0.0081
Copper	AO	1	<0.0091	<0.0173	<0.0010	<0.0134	<0.001	<0.001
Iron	AO	0.3	0.22	0.10	0.13	0.13	0.11	0.001
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	0.06	0.06	0.05	0.001	0.05	0.05
Molybdenum	AU	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			6.6	6.9	6.7	6.8	7.7	6.50
Silver				<0.0001	<0.0001	<0.0001	<0.0001	
Strontium			<0.0001					<0.0001
Thallium			0.035	0.032	0.038	0.037	0.038	0.038
Titanium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Vanadium			<0.01	<0.01	<0.01 <0.001	<0.01	<0.01	<0.01
	40		<0.001	<0.001		<0.001	<0.001	<0.001
Zinc Arsenic	AO	5	<0.01	0.02	<0.01	<0.01	<0.01	<0.01
Fluoride	IMAC	0.025						
Mercury	MAC	1.5						
N-NH3 (Ammonia)	MAC	0.001						
Phosphorus pH (no units)	00	6505				7.00		
Selenium	OG	6.5-8.5				7.09		
Tin	MAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			0.4	C F	7.0	7	0.4	6.7
			9.1	6.5	7.6	7	8.1	6.7
pH Conductivity us/sm			7.8	7.8	7.3	7.6	7.4	7.0
Conductivity us/cm			190	132	162	203	174	200

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			Oct-12	Jun-13	Jun-13	Nov-13	Nov-13	Apr-14
PARAMETER	Limit	ODWO/S	QA/QC		QA/QC		QA/QC	T
Alkalinity (C _a CO3)	OG	30-500	95	98	97	99	103	91
BOD								
COD								
Chloride	AO	250	2.0	2	2	2	2	1.9
Conductivity us/cm			205	214	210	221	222	208
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Phenols			<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Sulphate	AO	500	11	11	12	12	13	
Total Dissolved Solids	AO	500	133	139	136	144	144	110
Total Kjeldahl Nitrogen			<0.10	< 0.10	<0.10	<0.10	< 0.13	0.14
Total phosphorous								
Hardness as CaCO3	OG	500	100	104	104	109	112	108
Calcium			27	27	27	29	30	28.3
Magnesium			8.00	9	9	9	9	9.17
Potassium			2	2	2	2	2	1.7
Sodium	AO	200	2.0	2.0	2	<2	<2	2.4
Aluminum	OG	0.1	<0.01	0.01	<0.01	<0.01	<0.01	0.02
Barium	MAC	1	0.020	0.02	0.02	0.02	0.02	0.020
Beryllium		_	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0001
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.002
Cobalt	1111110	0.03	0.0016	0.0013	0.0102	0.0004	0.0023	0.0016
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.002	< 0.0001
Iron	AO	0.3	0.1	0.12	0.12	0.10	0.1	0.11
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	0.00002
Manganese	AO	0.05	0.04	0.05	0.06	0.04	0.05	0.05
Molybdenum	7.0	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	0.0003
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	< 0.01
Silicon			6.50	7.2	7.2	7.8	7.4	7.26
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	7.20
Strontium			0.039	0.043	0.044	0.039	0.04	0.045
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00005
Titanium			<0.001	<0.001	<0.001	<0.001	<0.001	< 0.005
Vanadium			<0.01	<0.01	<0.01	<0.01	<0.01	0.0006
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005
Arsenic	IMAC	0.025	₹0.01	₹0.01	₹0.01	₹0.01	₹0.01	< 0.003
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						< 0.01
Phosphorus								₹ 0.01
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.5-8.5						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C				9.3		8.3		7.4
pH				6.2		7.3		7.6
Conductivity us/cm				168		52		190

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			Oct-14	Jun-15	Oct-15	Oct-15	May-16	Nov-16
PARAMETER	Limit	ODWO/S				QA/QC		
Alkalinity (C _a CO3)	OG	30-500	90	95	88	89	99	87
BOD								
COD								
Chloride	AO	250	2.1	1.7	1.9	1.9	2.03	1.59
Conductivity us/cm			195	211	195	200	218	195
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.1	< 0.1	< 0.1	<0.05	<0.05
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.1	< 0.1	< 0.1	<0.05	<0.05
Phenols						_		
Sulphate	AO	500						
Total Dissolved Solids	AO	500	108	129	117	126	110	126
Total Kjeldahl Nitrogen			0.05	< 0.1	< 0.05	< 0.05	<0.10	<0.10
Total phosphorous					0.00	0.00		
Hardness as CaCO3	OG	500	102	109	109	107	104	90.6
Calcium			26.8	28	27	26.1	27.0	23.6
Magnesium			8.8	9.53	10.1	10.1	8.77	7.70
Potassium			1.7	1.7	1.6	1.6	1.72	1.68
Sodium	AO	200	2.3	2.2	2.3	1.9	2.12	2.20
Aluminum	OG	0.1	0.01	< 0.01	0.01	< 0.01	<0.004	0.020
Barium	MAC	1	0.019	0.02	0.022	0.02	0.020	0.017
Beryllium		_	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001	<0.001
Boron	IMAC	5	0.008	< 0.005	0.007	0.006	<0.010	<0.010
Cadmium	MAC	0.005	< 0.00002	< 0.00002	< 0.00002	< 0.00002	<0.001	<0.001
Chromium	MAC	0.05	< 0.002	< 0.002	0.002	< 0.002	<0.003	<0.003
Cobalt	1717 (C	0.03	0.003	0.0003	< 0.0001	< 0.0001	<0.001	<0.001
Copper	AO	1	< 0.002	< 0.002	< 0.002	< 0.002	<0.003	<0.003
Iron	AO	0.3	0.092	0.042	0.106	0.14	0.232	0.022
Lead	MAC	0.01	0.00009	< 0.00002	< 0.00002	< 0.00002	<0.002	<0.002
Manganese	AO	0.05	0.053	0.048	0.053	0.051	0.043	0.030
Molybdenum	-		0.0002	0.0003	0.0004	0.0004		
Nickel			< 0.01	< 0.01	< 0.01	< 0.01	<0.003	< 0.003
Silicon			7.26	7.59	7.5	7.37	7.35	7.64
Silver								
Strontium			0.043	0.046	0.046	0.043	0.039	0.031
Thallium			< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.006	<0.006
Titanium			< 0.005	< 0.005	< 0.005	< 0.005	<0.002	<0.002
Vanadium			0.001	0.001	0.0005	0.0006	<0.002	<0.002
Zinc	AO	5	< 0.005	< 0.005	0.006	< 0.005	0.006	<0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01	< 0.01	< 0.01		
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.3	8.6	7.2		7.4	6.4
pH			7.4	7.3	7.8		7.6	7.6
Conductivity us/cm			200	204	182		202	190
			*					·

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date			Apr-17	Oct-17	May-18	Oct-18	May-19	Oct-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	90	99	103	108	114	127
BOD								
COD								
Chloride	AO	250	1.5	1.3	2	2	1	1
Conductivity us/cm			193	212	219	222	190	247
DOC	AO	5					0.6	1.5
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.05	< 0.10	< 0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	< 0.1	< 0.05	< 0.10	< 0.10	<0.10	<0.10
Phenols	-	-		0.00				
Sulphate	AO	500						
Total Dissolved Solids	AO	500	107	110	142	144	124	161
Total Kjeldahl Nitrogen	7.0		< 0.05	< 0.1	< 0.8	0.9	<1.5	<0.15
Total phosphorous			7 0.00	1012		0.10		0.120
Hardness as CaCO3	OG	500		112	116	97	126	130
Calcium			27.8	28.5	30	24	34	34
Magnesium			8.87	9.88	10	9	10	11
Potassium			1.6	1.6	2	2	2	2
Sodium	AO	200	2.3	2.4	2	2	2	3
Aluminum	OG	0.1	0.03	0.03	< 0.01	< 0.01	<0.01	<0.01
Barium	MAC	1	0.022	0.022	0.02	0.02	0.02	0.03
Beryllium	IVIAC		< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.022	0.005	< 0.0003	< 0.000	<0.01	<0.01
Cadmium	MAC	0.005		< 0.00014	< 0.0001	< 0.0001	<0.001	<0.001
Chromium	MAC	0.005	< 0.00014	< 0.00014	< 0.0001	< 0.0001	<0.001	<0.001
Cobalt	IVIAC	0.03	< 0.002	< 0.002	< 0.0002	< 0.0001	<0.001	<0.001
Copper	AO	1	< 0.0001	< 0.0001	< 0.0002	< 0.0002	<0.001	0.003
Iron	AO	0.3	0.102	0.103	0.11	0.11	0.13	0.16
Lead	MAC	0.01	< 0.00002	< 0.00002	< 0.001	< 0.001	<0.001	<0.001
Manganese	AO	0.05	0.042	0.049	0.04	0.04	0.05	0.05
Molybdenum	70	0.03	0.0003	0.0002	< 0.005	< 0.005	<0.005	<0.005
Nickel			0.0006	0.0002	< 0.005	< 0.005	<0.005	<0.005
Silicon			7.99	5.11	7.7	7.8	7.5	7.4
Silver			7.99	3.11	7.7	7.8	7.5	7
Strontium				0.041	0.039	< 0.044	0.045	0.05
Thallium			< 0.00005	< 0.00005	< 0.0001	< 0.01	<0.0001	<0.0001
Titanium			< 0.005	< 0.005	< 0.001	< 0.001	<0.01	<0.01
Vanadium			0.0005	0.0005	< 0.001	< 0.0001	<0.001	<0.001
Zinc	AO	5	< 0.005	< 0.005	< 0.001	< 0.001	<0.001	<0.01
Arsenic	IMAC	0.025	\ U.UU3	\ U.UU3	\ 0.01	\ U.U1	-0.01	-0.01
Fluoride	MAC	1.5	+					
Mercury	MAC	0.001	+					
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01	< 0.05					
Dissolved Reactive P			< U.U5					
Field Parameters								
Temperature ^o C			6.0	7.2	7 2	7.4	7 /	7.2
pH			6.8 7.5	7.3 8.2	7.3 7.3	7.4 7.7	7.4 7.6	7.2 7.8
Conductivity us/cm				192	190			249
Conductivity us/cili			201	192	190	50	156	249

All concentrations in mg/L unless otherwise noted

Sample Location 96-1D

Sample Date May-20 Oct-20

Limit	ODWO/S						
OG		115	117				
AO	250	<1	5				
ΑO	5						
			<0.10				
	10	10.20	10.20				
ΔO	500						
		145	145				
	300						
		0.143	٧٥.١٥٥				
OG	500	11/	125				
	300						
ΛΩ	200						
IVIAC	1						
INAAC	-						
MAC	0.05						
	1						
AO	0.05						
		7.6	8.0				
		0.042	0.000				
		<0.01	<0.01				
MAC	0.001						
MAC	0.01						
		7.6					
	I .	224	241	1	1	1	1
	AO A	OG 30-500 AO 250 AO 5 MAC 1 MAC 10 AO 500 AO 500 AO 500 OG 500 OG 0.1 MAC 1 IMAC 5 MAC 0.005 MAC 0.005 MAC 0.01 AO 0.3 MAC 0.01 AO 0.05 MAC 0.01 AO 0.05 MAC 0.05 MAC 0.01 AO 0.05	OG 30-500 115 AO 250 <1	OG 30-500 115 117 AO 250 <1	OG 30-500 115 117 AO 250 <1	OG 30-500 115 117 AO 250 <1	OG 30-500 115 117 AO 250 <1

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Aug-96	Nov-96	Jul-97	Nov-98	Jul-99	Nov-99
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	93	88	67	97	82	72
BOD								
COD							6	
Chloride	AO	250	6.7	0.5	1.2	1.3	0.9	0.9
Conductivity us/cm	,		211	187	125	193	177	149
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1					<0.1	
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1	<0.1	<0.1	0.2	3
Phenols			0.001	<0.001	0.053	0.004	<0.001	0.005
Sulphate	AO	500	7	11	4	4	4	3
Total Dissolved Solids	AO	500	140	106	84	108		130
Total Kjeldahl Nitrogen	7.0	300	140	100	04	100	0.86	130
Total phosphorous							3.23	
Hardness as CaCO3	OG	500					61	
Calcium		300	23.4	29.2	14.4	22.1	17	17.7
Magnesium			7.98	6.02	3.45	5.51	4.53	4.64
Potassium			2.8	1.6	<0.4	2.9	3	2.1
Sodium	AO	200	4.3	3.2	1.6	2.6	1.5	2.2
Aluminum	OG	0.1	0.29	0.07	0.04	0.02	0.12	0.16
Barium	MAC	1	0.29	0.07	0.006	0.020	0.12	0.10
Beryllium	IVIAC	1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.020
Boron	IMAC	5	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.01	<0.001	<0.01	<0.001
Chromium	MAC		<0.001	<0.001	<0.01	<0.001	<0.01	<0.001
Cobalt	IVIAC	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	0.52	0.44	0.03	<0.01	0.2	0.14
Lead			0.00011	<0.0002	<0.1		<0.0002	<0.0002
Manganese	MAC AO	0.01 0.05	0.00011		<0.1	<0.0002 0.09	0.03	0.06
Molybdenum	AU	0.05	0.03	0.55 0.05	<0.01	<0.09	<0.03	0.00
Nickel			<0.04		<0.02		<0.02	<0.02
Silicon				<0.02		<0.02		
Silver			6.71	7.61	7.08	7.36	7.06	7.71
Strontium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium			0.052	0.107	0.042	0.055	0.035	0.050
Titanium			10.01	10.01	10.04	10.01	-0.01	-0.04
			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	40	-	0.01	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc Arsenic	AO	5	<0.01	<0.01	<0.01	0.02	<0.01	<0.01
Fluoride	IMAC	0.025	<0.1	<0.001	<0.1	<0.01	<0.001	<0.1
Mercury	MAC	1.5					40.0004	
N-NH3 (Ammonia)	MAC	0.001					<0.0001	
			0.0	.0.1	.0.1	.0.1	<0.01	.0.04
Phosphorus pH (no units)	00	65.05	0.2	<0.1	<0.1	<0.1	0.1	<0.01
Selenium	OG	6.5-8.5	7.8	8.17	8.16	7.09	7.38	7.98
	MAC	0.01	40.3	40.3	40.3	40.3	<0.001	40.00
Tin Dissolved Reactive P			<0.2	<0.2	<0.2	<0.2	<0.2	<0.02
Field Parameters								
Temperature ^o C								
pH								
Conductivity us/cm		<u> </u>						

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Jun-00	Oct-00	Jun-01	Oct-01	Jun-02	Nov-02
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	76	70	51	20	40	35
BOD								
COD								
Chloride	AO	250	1.1	1.4	1.4	1.2	1.2	1.3
Conductivity us/cm	7.0	230	134	153	115	80	90	88
DOC	AO	5	154	133	113	- 00	0.033	- 55
N-NO2 (Nitrite)	MAC	1					0.033	<0.1
N-NO3 (Nitrate)	MAC	10	<0.1	0.1				10.1
Phenols	1717.00	10	0.002	0.003	0.034	<0.001	<0.001	<0.001
Sulphate	AO	500	3	6	5	5	5	7
Total Dissolved Solids	AO	500	98	96	110	48	72	92
Total Kjeldahl Nitrogen	AO	300	30	30	110	70	,,,	32
Total phosphorous					1.04	0.56		
Hardness as CaCO3	OG	500			1.04	0.50		
Calcium	- 00	300	13.8	17	12.1	10.7	11.5	9.31
Magnesium			7.50	4.29	3.57	2.93	3.21	3
Potassium			<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Sodium	AO	200	1.3	5.0	1.2	1.7	1.3	1.9
Aluminum	OG	0.1	0.08	0.26	0.16	0.04	0.01	0.02
Barium	MAC	1	<0.005	0.010	<0.005	0.010	0.007	0.005
Beryllium	IVIAC		<0.005	<0.005	<0.005	<0.010	<0.005	<0.005
Boron	IMAC	5	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.006	<0.01	<0.01
Chromium	MAC	0.005	<0.001	<0.001	<0.001	<0.000	<0.01	<0.01
Cobalt	IVIAC	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	₹0.01	₹0.01
Iron	AO	0.3	0.11	0.27	0.03	0.05	0.03	0.04
Lead	MAC	0.01	<0.0002	<0.0002	0.0002	<0.0012	<0.1	<0.1
Manganese	AO	0.01	<0.002	0.002	<0.002	<0.0012	0.01	<0.1
Molybdenum	7.0	0.03	<0.01	<0.02	<0.01	<0.01	<0.02	<0.01
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			6.46	6.18	5.71	7.17	6.56	7.69
Silver			<0.01	<0.18	<0.01	<0.01	<0.01	<0.01
Strontium			0.035	0.040	0.035	0.035	₹0.01	0.01
Thallium			0.055	0.040	0.055	0.033		0.04
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			<0.005	<0.005	<0.005	<0.01	<0.005	<0.01
Zinc	AO	5	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Arsenic	IMAC	0.025	<0.01	<0.01	0.001	<0.01	<0.01	<0.01
Fluoride	MAC	1.5	\U.1	\U.1	0.001	0.1	\U.1	\0.1
Mercury	MAC	0.001			0.1	0.1		
N-NH3 (Ammonia)	IVIAC	0.001					<0.1	
Phosphorus			<0.1	<0.1			<0.1	<0.1
pH (no units)	OG	6.5-8.5	7.81	7.69	6.82	7.7	70.1	7.84
Selenium	MAC	0.01	7.01	7.05	0.02	,.,		7.04
Tin	IVIAC	0.01	<0.2	<0.2			<0.2	<0.2
Dissolved Reactive P			10.2	10.2			٧٠.٧	١٠.٧
Field Parameters								
Temperature °C								
рН								
Conductivity us/cm								
All activity as/citi		L						

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Aug-96	Nov-96	May-04	Sep-04	May-05	Nov-05
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	74		32	36	34	37
BOD	- 00	30 300	7 7		32	30	<1	<1
COD					<2	5	<5	<5
Chloride	AO	250	17.3	18.2	1.2	1.7	<1	3.0
Conductivity us/cm	AO	230	225	2420	75	86	81	88
DOC	AO	5	223	2420	<0.5	<0.5	<0.5	1.3
N-NO2 (Nitrite)	MAC	1			₹0.5	₹0.5	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.1				<0.10	<0.10
Phenols	IVIAC	10	0.009		<0.001	<0.001	<0.10	<0.10
Sulphate	AO	500	12		4	7	8	7
Total Dissolved Solids	AO	500	148		4	,	53	57
Total Kjeldahl Nitrogen	AU	300	140				<0.05	<0.05
Total phosphorous					0.5	0.25	0.03	
Hardness as CaCO3	00	F00			0.5	0.35		0.69
	OG	500	24.2		31	33	37	35
Calcium			21.3		8.12	8.7	10	9
Magnesium			7.03		2.51	3.11	3.0	3.0
Potassium		200	7.9		0.6	0.8	<1	<1
Sodium	AO	200	9.8		1.7	2.0	<2	<2
Aluminum	OG	0.1	5.41		0.015	<0.005	<0.01	<0.01
Barium	MAC	1	0.316		0.007	0.007	<0.01	<0.01
Beryllium			<0.005		<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	<0.01		<0.005	<0.005	<0.01	<0.01
Cadmium	MAC	0.005	<0.001		<0.0001	<0.0001	<0.0001	<0.001
Chromium	MAC	0.05	<0.01		<0.001	<0.001	<0.001	0.002
Cobalt			<0.01		<0.005	<0.005	0.0002	<0.0002
Copper	AO	1	0.02		<0.002	<0.002	<0.001	0.003
Iron	AO	0.3	6.74		0.007	0.646	<0.01	<0.03
Lead	MAC	0.01	0.0074		0.0002	0.001	0.001	<0.001
Manganese	AO	0.05	0.17		0.002	0.002	<0.01	<0.01
Molybdenum			0.05		< 0.01	< 0.01	<0.005	<0.005
Nickel			< 0.02		<0.01	<0.01	<0.005	<0.005
Silicon			14.00		6.79	7.78	8.60	9.70
Silver			< 0.01		< 0.005	<0.005	<0.0001	<0.0001
Strontium			0.145		0.035	0.034	0.038	0.043
Thallium							< 0.0001	<0.0001
Titanium			0.35		< 0.005	<0.005	< 0.01	< 0.01
Vanadium			0.021		<0.005	<0.005	<0.001	<0.001
Zinc	AO	5	0.032		< 0.005	0.006	0.01	0.02
Arsenic	IMAC	0.025	<0.1		<0.001	0.001		
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus			0.2					
pH (no units)	OG	6.5-8.5	7.6	6.68				
Selenium	MAC	0.01		2.00	<0.001	<0.001		
Tin	, (C	3.01	<0.2		<0.05	<0.05		
Dissolved Reactive P			-3.2		3.00			
Field Parameters								
Temperature °C							6.8	6.2
pH							8.08	8.15
Conductivity us/cm							67	76
All concentrations in mg/L		in a materal		<u> </u>	1	<u> </u>	07	70

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			May-06	Oct-06	May-07	Oct-07	May-08	Oct-08
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	32	30	27	33	28	24
BOD	- 00	30 300	32	<1	<1	<1	2	<1
COD			<5	<5	<5	<5	<5	8
Chloride	AO	250	3.0	2.0	2.0	1.0	<1	1
Conductivity us/cm	AO	230	74	80	71	80	62	59
DOC	AO	5	0.5	0.5	1.1	1.1	1.5	1.2
N-NO2 (Nitrite)	MAC	1	0.5	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10		<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	IVIAC	10		<0.10	<0.10	<0.10	<0.10	<0.10
Sulphate	AO	500		9	9	7	5	
Total Dissolved Solids	AO	500	48	52	46	52	40	6 38
Total Kjeldahl Nitrogen	AU	500	<0.05	0.06	0.16	0.15	<0.10	0.16
Total phosphorous			<0.05				0.06	
Hardness as CaCO3	00	F00		0.09	0.1	0.06		0.25
Calcium	OG	500	0	35	26	35	28	26
			8	9	7	9	8	7
Magnesium			3.0	3.0	2.0	3.0	2	2
Potassium		200	<1	<1	<1	<1	<1	<1
Sodium	AO	200	<2	<2	<2	2.0	<2	<2
Aluminum	OG	0.1	<0.01	<0.01	<0.01	<0.01	0.02	0.11
Barium	MAC	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Beryllium				<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.001	<0.001	<0.001	<0.001	0.002	0.002
Cobalt			<0.0002	<0.0002	<0.002	<0.0002	0.0334	0.0285
Copper	AO	1	0.162	0.002	0.004	0.002	<0.001	<0.001
Iron	AO	0.3	<0.03	<0.03	<0.03	<0.03	<0.03	0.12
Lead	MAC	0.01		<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	<0.01	<0.01	<0.01	<0.01	0.06	0.06
Molybdenum				<0.005	<0.005	<0.005	<0.005	<0.005
Nickel				<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			7.20	8.20	8.10	8.20	8.4	8.7
Silver				<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.033	0.048	0.037	0.044	0.029	0.028
Thallium				<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
Titanium				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium				<0.001	<0.001	<0.001	<0.001	0.001
Zinc	AO	5	0.01	0.01	0.02	0.02	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			<0.02					
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	-							
Dissolved Reactive P			0.06					
Field Parameters								
Temperature °C			7.5	8.5	6.9	8.3		
pH			8.21	7.21	7.12	7.38		
Conductivity us/cm		1	60	60	51	54		
All concentrations in ma/L							1	1

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			May-09	Sep-09	May-10	Oct-10	Jun-11	Oct-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	32	26	29	27	21	26
BOD			<1	<1				
COD			<5	<5				
Chloride	AO	250	1	1	2	1	<1	<1
Conductivity us/cm	,		74	63	60	58	47	54
DOC	AO	5	1	1.3			.,	0.
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001			0.120	0.20
Sulphate	AO	500	5	5				
Total Dissolved Solids	AO	500	48	41	39	38	31	35
Total Kjeldahl Nitrogen	,	333	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.06	0.07			0.120	0.20
Hardness as CaCO3	OG	500	35	26	26	23	17	23
Calcium			9	7	7	6	5	6
Magnesium			3	2	2	2	1	2
Potassium			<1	<1	<1	<1	<1	<1
Sodium	AO	200	2	<2	<2	<2	<2	<2
Aluminum	OG	0.1	0.04	0.08	0.02	0.04	0.02	0.02
Barium	MAC	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Beryllium	1717 (0	_	<0.001	< 0.001	< 0.001	< 0.001	<0.0005	<0.0005
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.00001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001
Cobalt		0.00	0.0228	0.0208	0.0007	0.0203	0.0086	0.0085
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	0.05	0.07	0.21	0.09	0.07	0.07
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.04	0.03	<0.01	0.04	0.02	0.02
Molybdenum			<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Silicon			8.1	7.5	6.7	7.3	6.5	7
Silver			< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
Strontium			0.035	0.032	0.03	0.028	0.023	0.024
Thallium			<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
Vanadium			<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Zinc	AO	5	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			8	7.8	7.8	7.3	6.5	8.3
рН			7.1	7.4	7.1	7.7	7.4	6.5
Conductivity us/cm			71	53	60	43	35	48

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Jun-12	Oct-12	Jun-13	Nov-13	Apr-14	Oct-14
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	27	27	25	22	25	22
BOD								
COD								
Chloride	AO	250	<1	<1	<1	<1	0.8	0.9
Conductivity us/cm	7.0		58	58	56	52	60	53
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	0.13	< 0.10	0.1
Phenols	-		<0.001	<0.001	<0.001	<0.001		-
Sulphate	AO	500	5	5	4	5		
Total Dissolved Solids	AO	500	38	38	36	34	31.6	29.2
Total Kjeldahl Nitrogen			<0.10	<0.10	<0.10	<0.10	0.15	0.21
Total phosphorous								
Hardness as CaCO3	OG	500	21	26	21	23	28	22
Calcium			5	7	5	6	7.33	5.72
Magnesium			2	2	2	2	2.25	1.81
Potassium			<1	<1	<1	<1	0.5	0.5
Sodium	AO	200	2	<2	<2	<2	1.8	1.8
Aluminum	OG	0.1	0.04	0.02	0.01	0.02	0.02	< 0.01
Barium	MAC	1	<0.01	<0.01	<0.01	<0.01	0.006	0.006
Beryllium		_	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0001	< 0.0001
Boron	IMAC	5	<0.01	<0.01	<0.01	<0.01	< 0.005	< 0.005
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	0.00003	< 0.00002
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	< 0.002	< 0.002
Cobalt			0.0072	0.0021	0.0038	0.0026	0.0014	0.0024
Copper	AO	1	< 0.001	< 0.001	< 0.001	< 0.001	0.0002	< 0.002
Iron	AO	0.3	< 0.03	< 0.03	< 0.03	< 0.03	< 0.005	0.102
Lead	MAC	0.01	<0.001	<0.001	< 0.001	<0.001	0.00003	< 0.00002
Manganese	AO	0.05	0.02	<0.01	< 0.01	< 0.01	0.005	0.013
Molybdenum			<0.005	<0.005	<0.005	<0.005	< 0.0001	< 0.0001
Nickel			<0.005	<0.005	<0.005	<0.005	< 0.01	< 0.01
Silicon			7.2	6.8	6.7	7.8	7.17	7.38
Silver			<0.0001	< 0.0001	< 0.0001	<0.0001		
Strontium			0.029	0.032	0.03	0.028	0.043	0.037
Thallium			< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.00005	< 0.00005
Titanium			< 0.01	< 0.01	< 0.01	< 0.01	< 0.005	< 0.005
Vanadium			<0.001	<0.001	<0.001	<0.001	0.0005	0.0004
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)							< 0.01	0.01
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.6	7.3	9.3	8.3	6.8	7.9
pH			6.3	6.9	5.6	7.3	7.1	6.8
Conductivity us/cm			48	56	38	52	55	55

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Jun-15	Oct-15	May-16	Nov-16	Apr-17	May-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	22	19	26	23	23	< 5
BOD						-		
COD								
Chloride	AO	250	0.7	0.6	0.40	0.40	< 0.5	0.6
Conductivity us/cm			63	53	58	51	51	43
DOC	AO	5				-		
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
N-NO3 (Nitrate)	MAC	10	< 0.1	0.1	<0.05	< 0.05	< 0.1	< 0.05
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	38	32	36	66	27	11
Total Kjeldahl Nitrogen			0.1	< 0.05	0.11	0.14	< 0.05	0.3
Total phosphorous				0.00	-			0.0
Hardness as CaCO3	OG	500	26	25	22.4	19.0		11
Calcium			6.73	6.2	5.93	4.90	6.33	2.47
Magnesium			2.23	2.2	1.84	1.65	1.99	1.14
Potassium			0.5	0.5	0.45	0.42	0.3	0.4
Sodium	AO	200	1.8	1.8	1.44	1.52	1.6	1.7
Aluminum	OG	0.1	0.01	< 0.01	0.008	0.018	0.01	0.52
Barium	MAC	1	0.006	0.007	0.008	0.007	0.007	0.006
Beryllium			< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Boron	IMAC	5	< 0.005	< 0.005	<0.010	<0.010	0.018	< 0.005
Cadmium	MAC	0.005	< 0.00002	< 0.00002	<0.001	<0.001		< 0.000014
Chromium	MAC	0.05	< 0.002	< 0.002	<0.003	<0.003	< 0.002	< 0.002
Cobalt	1711710	0.03	0.0005	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Copper	AO	1	< 0.002	< 0.002	<0.003	<0.003	< 0.002	< 0.002
Iron	AO	0.3	< 0.005	0.008	<0.010	0.084	< 0.005	0.521
Lead	MAC	0.01	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002	0.00003
Manganese	AO	0.05	0.003	0.005	0.003	0.006	0.003	0.009
Molybdenum			< 0.0001	< 0.0001			< 0.0001	< 0.0001
Nickel			< 0.01	< 0.01	<0.003	<0.003	0.0005	0.0005
Silicon			7.24	7.5	7.14	7.68	7.54	9.08
Silver								0.00
Strontium			0.043	0.043	0.031	0.029		0.018
Thallium			< 0.00005	< 0.00005	<0.006	<0.006	< 0.00005	< 0.00005
Titanium			< 0.005	< 0.005	<0.002	<0.002	< 0.005	0.023
Vanadium			0.0006	0.0003	<0.002	<0.002	0.0003	0.0002
Zinc	AO	5	< 0.005	< 0.005	0.013	<0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025			-			
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01				
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin							< 0.05	
Dissolved Reactive P			1				1	
Field Parameters								
Temperature ^o C			7.3	7.7	6.7	7.1	6.2	8.0
pH			7	7.8	7.7	7.6	6.5	6.5
Conductivity us/cm			63	52	53	54	55	37
A.II			1				1	

All concentrations in mg/L unless otherwise noted

Sample Location 96-1S

Sample Date			Oct-18	May-19	Oct-19	May-20	Oct-20	
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	25	26	26	18	24	
BOD								
COD								
Chloride	AO	250	< 1	<1	<1	<1	<1	
Conductivity us/cm	,,,,		60	40	56	44	52	
DOC	AO	5		<0.5	1.0	1.2	32	
N-NO2 (Nitrite)	MAC	1	< 0.10	<0.10	<0.10	<0.10	<0.10	
N-NO3 (Nitrate)	MAC	10	< 0.10	<0.10	<0.10	<0.10	<0.10	
Phenols			10120		0.120	0.120	0.120	
Sulphate	AO	500						
Total Dissolved Solids	AO	500	39	26	36	29	34	
Total Kjeldahl Nitrogen	7.0	333	2.2	0.17	<0.15	0.110	<0.100	
Total phosphorous			2.2	0.27	10.25	0.120	101200	
Hardness as CaCO3	OG	500	21	23	23	21	23	
Calcium		333	5	6	6	5	6	
Magnesium			2	2	2	2	2	
Potassium			< 1	<1	<1	<1	<1	
Sodium	AO	200	< 2	<2	<2	<2	<2	
Aluminum	OG	0.1	< 0.01	<0.01	0.28	<0.01	<0.01	
Barium	MAC	1	< 0.01	<0.01	0.01	<0.01	<0.01	
Beryllium	1417 (C	-	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Boron	IMAC	5	< 0.003	<0.01	<0.01	<0.01	<0.01	
Cadmium	MAC	0.005	< 0.001	<0.001	<0.001	<0.001	<0.001	
Chromium	MAC	0.005	< 0.001	<0.001	0.001	<0.001	<0.001	
Cobalt	IVIAC	0.03	0.0002	<0.0002	0.0004	<0.0002	<0.0002	
Copper	AO	1	0.0002	<0.0002	0.003	<0.0002	0.002	
Iron	AO	0.3	0.05	<0.03	0.44	<0.03	<0.03	
Lead	MAC	0.01	0.001	<0.001	<0.001	<0.001	<0.001	
Manganese	AO	0.05	0.001	<0.01	0.02	<0.01	<0.01	
Molybdenum	Α0	0.03	< 0.005	<0.005	<0.005	<0.005	<0.005	
Nickel			< 0.005	<0.005	<0.005	<0.005	<0.005	
Silicon			7.9	7	8	7	8	
Silver			7.5	,	- C	,	- C	
Strontium			0.038	0.032	0.037	0.029	0.03	
Thallium			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Titanium			< 0.001	<0.01	0.02	<0.01	<0.01	
Vanadium			< 0.01	<0.001	0.001	<0.001	<0.01	
Zinc	AO	5	< 0.001	<0.01	<0.01	<0.01	<0.01	
Arsenic	IMAC	0.025	₹ 0.02	-0.01	10.01	.0.01	10.01	
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			no data	6.1	8.1	6.8	8.0	
рН			no data	7.4	7.9	7.4	5.5	
Conductivity us/cm			no data	39	47	46	56	
22		L	no data	3,5	٦,	-70		

All concentrations in mg/L unless otherwise noted

Sample Location 96-2

PARAMETER Limit ODWO/S Alcalimity (L_CU3) OG 30-500 106 394 22 320 187 56 6 6 6 6 6 6 6 6	Sample Date			May-07	Apr-17	Oct-17	May-18	May-19	Oct-19
Alkalinity (C ₂ CO3) OG 30-500 106 394 22 320 187 56 BOD COD Chloride AO 250 9.0 17.7 <1 14 12 <1 Conductivity us/cm	PARAMETER	Limit	ODWO/S						
SOD	Alkalinity (C _a CO3)	OG		106	394	22	320	187	56
COD	BOD								
Chloride	COD								
Conductivity us/cm		AO	250		17.7	< 1	14	12	<1
DOC									
N-NO2 (Nitrite) MAC		AO	5		555			0.0	200
N-NO3 (Nitrate)					< 0.1	< 0.10	< 0.10	<0.10	<0.10
Phenols									
Sulphate						0.20	0.20		0.20
Total Dissolved Solids		AO	500						
Total phosphorous					456	31	441	240	90
Total phosphorous		,,,,	333						
Hardness as CaCO3						010		0.00	0.20
Calcium 37 118 4 107 62 17 Magnesium 10.0 23 2.0 21 11 4 Potassium 2 10.1 <1		OG	500		390	18	354	200	59
Magnesium									
Potassium									
Sodium									
Aluminum		AO	200	_					
Barium MAC 1 0.040 0.199 < 0.01 0.13 0.07 0.02 Beryllium < 0.001									_
Beryllium									
Boron		1711/10	_						
Cadmium MAC 0.005 <0.0001 0.000063 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0		IMAC	5						
Chromium MAC 0.05 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 Cobalt <0.0002									
Cobalt < <0.0002 0.0009 < 0.0002 < 0.0004 < 0.0002 Copper AO 1 0.003 0.008 < 0.001									
Copper AO 1 0.003 0.008 < 0.001 0.003 0.004 < 0.001 Iron AO 0.3 <0.03			0.00						
Iron		AO	1						
Lead MAC 0.01 <0.001 <0.00002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <									
Manganese AO 0.05 <0.01 2.15 <0.01 0.29 0.04 0.02 Molybdenum <0.005	Lead							<0.001	<0.001
Molybdenum	Manganese							0.04	0.02
Nickel County								<0.005	<0.005
Silicon 6.50 10.8 7.30 8.5 8.5 9.1 Silver <0.0001								<0.005	<0.005
Silver <0.0001	Silicon							8.5	9.1
Strontium 0.178 0.541 0.028 0.388 0.275 0.084 Thallium <0.0001	Silver						0.0		
Thallium <0.0001	Strontium				0.541	0.028	0.388	0.275	0.084
Titanium								< 0.0001	<0.0001
Vanadium 0.001 0.0025 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Titanium							< 0.01	< 0.01
Zinc AO 5 0.01 < 0.005 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Vanadium							< 0.001	<0.001
Arsenic IMAC 0.025		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 8.2 6.8 6.9 5.5 5.4 pH (6.93 6.4 7 7.1 7.4	Arsenic								
Mercury MAC 0.001	Fluoride								
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH 6.93 6.4 7 7.1 7.4	Mercury								
Phosphorus Description Description		-							
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Selenium Seleni	Phosphorus								
Selenium MAC 0.01 .		OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 8.2 6.8 6.9 5.5 5.4 pH 6.93 6.4 7 7.1 7.4	Selenium								
Field Parameters 8.2 6.8 6.9 5.5 5.4 pH 6.93 6.4 7 7.1 7.4	Tin	-							
Temperature °C 8.2 6.8 6.9 5.5 5.4 pH 6.93 6.4 7 7.1 7.4	Dissolved Reactive P								
pH 6.93 6.4 7 7.1 7.4									
pH 6.93 6.4 7 7.1 7.4	Temperature °C			8.2	6.8	6.9	5.5	5.4	
	Conductivity us/cm			259	804	43	564	240	

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			Aug-96	Nov-96	Jul-99	Nov-99	Jun-00	Jun-01
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	57	50	50	85	61	62
BOD								
COD					<3			
Chloride	AO	250	6.4	<0.1	1.0	1.1	1.0	1.1
Conductivity us/cm			146	130	141	148	139	133
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1			<0.1			
N-NO3 (Nitrate)	MAC	10	<0.1	<0.1	0.2	<0.1	<0.1	
Phenols			<0.001	0.003	<0.001	<0.001	<0.001	0.002
Sulphate	AO	500	11	14	12	13	12	13
Total Dissolved Solids	AO	500	102	71		110	84	98
Total Kjeldahl Nitrogen					0.09		<u> </u>	
Total phosphorous					0.13			0.08
Hardness as CaCO3	OG	500			62			0.00
Calcium		333	22	15.4	15.9	23.8	16.4	15.7
Magnesium			7.72	5.17	5.34	5.21	5.26	5.05
Potassium			8.4	1.6	4.2	2.6	1.2	0.4
Sodium	AO	200	13.0	2.2	2.2	2.9	2.1	1.7
Aluminum	OG	0.1	9.07	0.03	0.01	<0.01	0.06	0.19
Barium	MAC	1	0.125	0.015	0.015	0.035	0.010	0.010
Beryllium	IVIAC		<0.005	<0.015	<0.015	<0.005	<0.010	<0.005
Boron	IMAC	5	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.001	\0.01	<0.001	<0.001	<0.001
Chromium	MAC	0.005	0.001	<0.001	<0.01	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Copper	AO	1	0.05	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	AO	0.3	8.02	0.1	0.1	0.12	0.11	0.05
Lead	MAC	0.01	0.0067	<0.0002	<0.0002	<0.0002	<0.0002	0.0002
Manganese	AO	0.05	0.10	0.0002	<0.002	0.0002	<0.002	<0.01
Molybdenum	7.0	0.03	0.10	0.02	<0.01	<0.02	<0.01	<0.01
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon			37.00	6.03	5.74	4.98	5.83	5.13
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium			0.078	0.027	0.025	0.040	0.030	0.030
Thallium			0.078	0.027	0.023	0.040	0.030	0.030
Titanium			0.4	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium			0.026	<0.01	<0.01	<0.01 <0.05	<0.01	<0.01
Zinc	AO	5	0.026	<0.005	0.003	<0.03	<0.005	<0.005
Arsenic	IMAC	0.025	<0.1	0.001	<0.001	<0.01	<0.01	0.001
Fluoride	MAC	1.5	\U.1	0.001	\U.UUI	\U.1	\U.1	0.001
Mercury	MAC				∠0.0001			0.1
N-NH3 (Ammonia)	IVIAC	0.001			<0.0001 <0.01			
Phosphorus			0.3	<0.1	0.01	<0.01	<0.1	
pH (no units)	OG	6.5-8.5	8.01	8.01	7.8	7.90	7.9	7.59
Selenium	MAC	0.01	0.01	0.01	<0.001	7.90	7.9	7.59
Tin	IVIAC	0.01	∠0.2	∠ 0.2		∠0.2	∠0.2	
Dissolved Reactive P			<0.2	<0.2	<0.2	<0.2	<0.2	
Field Parameters		1						
Temperature ^o C								
pH								
Conductivity us/cm		1						
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			Jun-01	Oct-01	Jun-02	Jun-02	Nov-02	May-04
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	51	52	54	52	72	50
BOD								
COD								<2
Chloride	AO	250	1.1	1.2	1.2	1.2	1.2	1.2
Conductivity us/cm	,		132	139	134	135	176	134
DOC	AO	5						<0.5
N-NO2 (Nitrite)	MAC	1					<0.1	10.0
N-NO3 (Nitrate)	MAC	10					1012	
Phenols			0.008	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	12	12	13	12	13	12
Total Dissolved Solids	AO	500	86	83	94	80	92	
Total Kjeldahl Nitrogen		333	- 33	- 55		- 55		
Total phosphorous			0.07	0.1				0.03
Hardness as CaCO3	OG	500	0.07	0.2				62
Calcium		333	15.5	16.7	17.9	16.5	24.8	15.9
Magnesium			4.98	5.07	5.64	5.25	5.29	5.35
Potassium			1.2	2.6	<0.4	2	<0.4	2
Sodium	AO	200	1.9	2.2	2	2	2.4	2.3
Aluminum	OG	0.1	0.20	0.01	0.01	<0.01	0.04	<0.005
Barium	MAC	1	0.010	0.015	0.014	0.013	0.015	0.014
Beryllium	WIAC	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001
Boron	IMAC	5	<0.01	0.01	<0.01	0.01	<0.01	<0.005
Cadmium	MAC	0.005	<0.001	<0.0006	<0.01	<0.01	<0.01	<0.0001
Chromium	MAC	0.005	<0.001	<0.00	<0.01	<0.01	<0.01	<0.001
Cobalt	IVIAC	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Copper	AO	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.002
Iron	AO	0.3	0.06	0.06	0.05	0.04	0.04	0.036
Lead	MAC	0.01	<0.0002	<0.0012	<0.1	<0.1	<0.1	<0.0002
Manganese	AO	0.05	<0.002	0.012	0.01	0.01	<0.1	0.006
Molybdenum	AO	0.03	<0.02	<0.02	<0.02	<0.02	<0.01	<0.01
Nickel			<0.02	<0.02	<0.02	<0.02	<0.02	<0.01
Silicon			5.08	5.62	5.86	5.87	5.63	5.86
Silver			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Strontium			0.030	0.025	0.028	0.027	0.03	0.027
Thallium			0.030	0.023	0.028	0.027	0.03	0.027
Titanium			<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Vanadium			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	AO	5	<0.003	<0.01	<0.003	<0.003	<0.003	<0.005
Arsenic	IMAC	0.025	0.002	0.001	<0.01	<0.01	<0.01	0.001
Fluoride	MAC	1.5	0.002	0.001	\0.1	\0.1	₹0.1	0.001
Mercury	MAC	0.001	0.1	0.2				
N-NH3 (Ammonia)	IVIAC	0.001			<0.1	<0.1		
Phosphorus					<0.1	<0.1	<0.1	
pH (no units)	OG	6.5-8.5	7.61	7.81	\U.1	\U.1	8.15	
Selenium	MAC	0.01	7.01	7.01			0.13	0.001
Tin	IVIAC	0.01			<0.2	<0.2	<0.2	<0.5
Dissolved Reactive P					\U. Z	\U. Z	\U. Z	\U.J
Field Parameters								
Temperature ^o C								
pH								
Conductivity us/cm								
Conductivity ds/cm		<u> </u>						

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			May-04	Sep-04	May-05	Nov-05	May-06	Oct-06
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	51	48	58	57	56	55
BOD					<1	<1		<1
COD			<2	7	<5	<5	<5	<5
Chloride	AO	250	1.2	1.1	<1	<1	<1	<1
Conductivity us/cm	-		114	141	133	139	136	137
DOC	AO	5	<0.5	<0.5	0.9	0.9	0.5	<0.5
N-NO2 (Nitrite)	MAC	1	<0.1	0.0	<0.10	<0.10		<0.10
N-NO3 (Nitrate)	MAC	10	0.1		<0.10	<0.10		<0.10
Phenols			<0.001	<0.001	<0.001	<0.001		<0.001
Sulphate	AO	500	12	13	14	13		14
Total Dissolved Solids	AO	500	67		87	90	88	89
Total Kjeldahl Nitrogen		333	<0.05		0.09	0.05	0.08	<0.05
Total phosphorous			0.03	0.03	0.00	0.02	0.00	0.12
Hardness as CaCO3	OG	500	60	60	58	58		58
Calcium		333	15	14.9	15	15	15	15
Magnesium			5	5.46	5	5	5	5
Potassium			2	1.9	2	2	2	2
Sodium	AO	200	3	2.2	<2	<2	3	<2
Aluminum	OG	0.1	0.006	0.006	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.013	0.013	0.01	0.01	0.01	0.01
Beryllium	IVIAC	-	>0.013	<0.001	<0.001	<0.001	0.01	<0.001
Boron	IMAC	5	<0.005	<0.005	<0.01	<0.01	<0.01	<0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.001	<0.001	\0.01	<0.001
Chromium	MAC	0.005	<0.0001	<0.001	<0.001	<0.0001	<0.001	<0.001
Cobalt	IVIAC	0.03	<0.001	<0.001	0.0002	<0.001	<0.001	<0.001
Copper	AO	1	<0.002	<0.002	0.001	<0.0002	0.067	0.002
Iron	AO	0.3	0.035	0.036	0.05	0.04	0.03	0.04
Lead	MAC	0.01	0.0002	<0.0005	0.002	<0.001	0.03	<0.001
Manganese	AO	0.05	0.005	0.005	<0.01	<0.01	<0.01	<0.01
Molybdenum	AO	0.03	<0.01	<0.01	<0.005	<0.005	10.01	<0.01
Nickel			<0.01	<0.01	<0.005	<0.005		10.003
Silicon			5.83	5.72	7	6.7	5.5	6.9
Silver			<0.005	<0.005	<0.0001	<0.0001	3.3	<0.0001
Strontium			0.026	0.026	0.029	0.033	0.027	0.039
Thallium			0.020	0.020	<0.0001	<0.0001	0.027	<0.0001
Titanium			<0.005	<0.005	<0.001	<0.001		<0.01
Vanadium			<0.005	<0.005	<0.001	<0.001		<0.01
Zinc	AO	5	<0.005	<0.005	<0.001	<0.001	<0.01	0.001
Arsenic	IMAC	0.025	<0.003	0.003	~U.U1	~U.UI	\U.U1	0.01
Fluoride	MAC	1.5	\U.UU1	0.001				
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001					0.02	
Phosphorus							0.02	
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001	<0.001				
Tin	IVIAC	0.01	\0.001	<0.5				
Dissolved Reactive P				\U. J			0.05	
Field Parameters							0.03	
Temperature °C					8.3	6.6	9.3	7.7
рН					9.27	8.28	8.16	7.7
Conductivity us/cm					123	121	204	128
Conductivity ds/CIII	L	L	<u> </u>		123	171	204	120

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Alkalinity (C,CO3) OG 30-500 57 54 56 57 57 57 56 BBOD	Sample Date			May-07	Oct-07	May-08	May-09	Sep-09	May-10
Alkalinity (C,CO3) OG 30-500 57 54 56 57 57 57 56 BBOD CD CDD CDD CDD CDD CDD CDD CDD CDD CD	PARAMETER	Limit	ODWO/S						
SOD	Alkalinity (C _a CO3)	OG		57	54	56	57	57	56
Section Sect	BOD				<1	<1			
Chloride	COD			<5		<5		<5	
Conductivity us/cm	Chloride	AO	250						<1
DOC N-NO2 (Nitrite) MAC 1	Conductivity us/cm						140	141	
N-NO2 (Nitrite) MAC	DOC	AO	5						
N-NO3 (Nitrate)	N-NO2 (Nitrite)								<0.10
Phenols	N-NO3 (Nitrate)		10						
Sulphate	Phenols								
Total Dissolved Solids AO 500 91 88 91 91 92 92 70 10 10 10 10 10 10 10 10 10 10 10 10 10	Sulphate	AO	500						
Total phosphorous 0.1	Total Dissolved Solids								92
Total phosphorous	Total Kjeldahl Nitrogen								
Hardness as CaCO3 OG 500 65 67 61 65 58 58 58 Calcium 16 17 16 16 15 15 15 15 Magnesium 6 6 6 5 6 5 5 5 5 Potassium 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Calcium	Hardness as CaCO3	OG	500						58
Magnesium 6 6 5 6 5 5 Potassium 2	Calcium								
Potassium									
Sodium	Potassium								
Aluminum	Sodium	AO	200						
Barium	Aluminum								
Beryllium	Barium								
Boron	Beryllium								
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	-	IMAC	5						
Chromium									
Cobalt	Chromium								
Copper AO 1 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 Iron AO 0.3 <0.03	Cobalt								
Iron	Copper	AO	1						
Lead	Iron		0.3						
Manganese AO 0.05 <0.01 <0.01 0.06 0.06 0.04 0.02 Molybdenum <0.005	Lead								
Nickel Co.005 C	Manganese			< 0.01	<0.01	0.06	0.06	0.04	0.02
Nickel Co.005 C				<0.005		<0.005	<0.005	<0.005	<0.005
Silver	Nickel			<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Strontium 0.028 0.039 0.029 0.029 0.029 0.030 Thallium 0.0001 <0.0001	Silicon			6	5.9	5.7	5.7	5.6	5.1
Strontium 0.028 0.039 0.029 0.029 0.029 0.030 Thallium 0.0001 <0.0001	Silver			<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Titanium < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0	Strontium			0.028		0.029	0.029	0.029	0.030
Vanadium <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Thallium			0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
Zinc AO 5 <0.01 0.02 <0.01 <0.01 <0.01 Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus	Titanium			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Zinc AO 5 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 Arsenic IMAC 0.025 Fluoride MAC 1.5	Vanadium			<0.001	0.001	< 0.001	<0.001	< 0.001	< 0.001
Fluoride MAC 1.5	Zinc	AO	5						
Mercury MAC 0.001 Image: Control of the control of t	Arsenic	IMAC	0.025						
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH 7.43 7.29 8.7 8.5 8.7	Fluoride	MAC	1.5						
Phosphorus Description	Mercury	MAC	0.001						
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Image: Control of the properties of	N-NH3 (Ammonia)								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Semperature "C" 8.2 8 9.1 6.7 8.0 9.1 8.7 8.5 8.7 8.0 9.1 8.0 9.1 8.0 <td>Phosphorus</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Phosphorus								
Tin Dissolved Reactive P Field Parameters Temperature "C 8.2 8 9.1 6.7 8.0 pH 7.43 7.29 8.7 8.5 8.7	pH (no units)	OG	6.5-8.5						
Dissolved Reactive P Bield Parameters Bield Paramet	Selenium	MAC	0.01						
Field Parameters B.2 8 9.1 6.7 8.0 Temperature ^U C 8.2 8 9.1 6.7 8.0 pH 7.43 7.29 8.7 8.5 8.7	Tin								
Temperature ^o C 8.2 8 9.1 6.7 8.0 pH 7.43 7.29 8.7 8.5 8.7	Dissolved Reactive P								
pH 7.43 7.29 8.7 8.5 8.7	Field Parameters								
·	· ·								8.0
Conductivity us/cm 118 115 152 124 140	рН								8.7
	Conductivity us/cm			118	115		152	124	140

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			Oct-10	Jun-11	Jun-12	Jun-13	Apr-14	Oct-14
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	57	62	62	62	56	58
BOD				-	-			
COD								
Chloride	AO	250	<1	<1	<1	<1	0.8	0.8
Conductivity us/cm	,		142	144	140	141	140	132
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	< 0.1	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	< 0.10	< 0.10
Phenols			10.120	10.20	<0.001	<0.001		70.20
Sulphate	AO	500			13	12		
Total Dissolved Solids	AO	500	92	94	91	92	71.9	71.6
Total Kjeldahl Nitrogen	710	300	<0.10	<0.10	<0.10	<0.10	0.15	< 0.05
Total phosphorous			10.20	10.20	10.20	10.20	0.13	10.03
Hardness as CaCO3	OG	500	58	60	51	65	65	65
Calcium	- 55	300	15	16	12	16	16.7	15.8
Magnesium			5	5	5	6	5.76	5.54
Potassium			2	2	2	2	2	1.9
Sodium	AO	200	<2	2	3	2	2.6	2.4
Aluminum	OG	0.1	<0.10	<0.01	<0.01	<0.01	0.01	< 0.01
Barium	MAC	1	0.01	0.01	0.01	0.01	0.014	0.013
Beryllium	IVIAC		<0.001	<0.005	<0.0005	<0.005	< 0.0014	< 0.0001
Boron	IMAC	5	<0.001	<0.003	0.0003	<0.003	< 0.005	0.007
Cadmium	MAC	0.005	<0.001	<0.001	<0.0001	<0.001	0.00004	< 0.0002
Chromium	MAC	0.003	<0.001	<0.001	<0.001	<0.001	< 0.002	< 0.002
Cobalt	IVIAC	0.03	0.0003	0.0004	<0.001	0.001	< 0.002	< 0.002
Copper	AO	1	<0.001	<0.001	<0.0002	<0.001	< 0.0001	< 0.0001
Iron	AO	0.3	0.05	0.001	0.04	0.001	0.031	0.057
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	< 0.00002	< 0.00002
Manganese	AO	0.01	<0.001	<0.001	<0.001	0.001	0.005	0.007
Molybdenum	70	0.03	<0.005	<0.01	<0.01	<0.005	0.0007	0.0005
Nickel			<0.005	<0.005	<0.005	<0.005	< 0.01	< 0.01
Silicon			5.6	5	5.8	5.5	5.72	5.65
Silver			<0.0001	<0.0001	<0.0001	<0.0001	3.72	3.03
Strontium			0.03	0.028	0.0001	0.029	0.033	0.031
Thallium			<0.001	<0.0001	<0.0001	<0.0001	< 0.00005	< 0.00005
Titanium			<0.001	<0.001	<0.001	<0.001	< 0.005	< 0.005
Vanadium			<0.01	<0.01	<0.01	<0.01	0.0004	0.0004
Zinc	AO	5	<0.001	<0.001	<0.001	<0.001	< 0.005	< 0.005
Arsenic	IMAC	0.025	\U.U1	\U.U1	\U.U1	\U.U1	\ U.UU3	\ U.UU3
Fluoride	MAC	1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001					< 0.01	< 0.01
Phosphorus							< U.U1	< U.U1
pH (no units)	OG	6.5-8.5						
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7	7 4	0.4	0.3	7 7	7.4
pH			7	7.4 8.2	8.4 7.9	9.2	7.7	7.4
Conductivity us/cm			8.3			6.7	8.4	7.9
Conductivity us/cm		L	107	113	123	113	126	132

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			Jun-15	Oct-15	May-16	Nov-16	Apr-17	Oct-17
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	59	58	62	98	59	57
BOD								
COD								
Chloride	AO	250	0.8	0.7	0.76	0.53	< 0.5	0.6
Conductivity us/cm	7.10		139	137	146	146	136	135
DOC	AO	5		207				
N-NO2 (Nitrite)	MAC	1	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
N-NO3 (Nitrate)	MAC	10	< 0.1	< 0.1	<0.05	<0.05	< 0.1	< 0.05
Phenols	-	-		0.1				0.00
Sulphate	AO	500						
Total Dissolved Solids	AO	500	85	82	60	110	71.5	69
Total Kjeldahl Nitrogen			0.2	< 0.05	<0.10	<0.10	0.12	< 0.1
Total phosphorous								_
Hardness as CaCO3	OG	500	66	70	61.7	57	65	65
Calcium			16.6	16.8	15.6	14.6	16.5	16.1
Magnesium			6.02	6.81	5.52	4.99	5.85	5.99
Potassium			2	1.8	1.94	1.83	1.9	1.8
Sodium	AO	200	2.6	2.3	2.29	2.24	2.4	2.5
Aluminum	OG	0.1	< 0.01	< 0.01	0.004	0.009	0.02	0.02
Barium	MAC	1	0.013	0.015	0.015	0.015	0.014	0.014
Beryllium			< 0.0001	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001
Boron	IMAC	5	< 0.005	0.005	<0.010	<0.010	< 0.005	< 0.005
Cadmium	MAC	0.005	< 0.00002	< 0.00002	<0.001	<0.001	< 0.000020	
Chromium	MAC	0.05	< 0.002	< 0.002	<0.003	<0.003	< 0.002	< 0.002
Cobalt			0.0007	< 0.0001	< 0.001	< 0.001	< 0.0001	< 0.0001
Copper	AO	1	< 0.002	< 0.002	< 0.003	< 0.003	< 0.002	< 0.002
Iron	AO	0.3	0.016	0.042	0.031	< 0.010	0.043	0.04
Lead	MAC	0.01	< 0.00002	< 0.00002	<0.002	<0.002	< 0.00002	< 0.00002
Manganese	AO	0.05	0.004	0.006	0.005	0.004	0.005	0.005
Molybdenum			0.0005	0.0007			0.0006	0.0005
Nickel			< 0.01	< 0.01	< 0.003	< 0.003	0.0003	0.0003
Silicon			4.69	5.87	5.92	5.49	6.12	6.33
Silver								
Strontium			0.034	0.033	0.028	0.025	0.029	0.028
Thallium			< 0.00005	< 0.00005	<0.006	<0.006	< 0.00005	< 0.00005
Titanium			< 0.005	< 0.005	< 0.002	<0.002	< 0.005	< 0.005
Vanadium			0.0006	0.0003	< 0.002	<0.002	0.0006	0.0003
Zinc	AO	5	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)			< 0.01	< 0.01				
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			8	7.5	8.3	6.7	6.9	7.4
pH			7.2	7.9	7.4	8.2	7.4	8.2
Conductivity us/cm			152	126	132	136	138	120

All concentrations in mg/L unless otherwise noted

Sample Location 96-3

Sample Date			May-18	Oct-18	May-19	Oct-19	May-20	Oct-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	57	61	63	66	64	62
BOD								
COD								
Chloride	AO	250	< 1	3	<1	<1	<1	5
Conductivity us/cm	,		137	142	125	145	141	136
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10
Phenols			10.20	10120	10.20	10.20	10.120	10120
Sulphate	AO	500						
Total Dissolved Solids	AO	500	89	92	81	94	92	88
Total Kjeldahl Nitrogen	710	300	< 0.8	< 0.8	<0.75	<0.15	0.192	0.156
Total phosphorous			10.0	10.0	10.73	10.23	0.132	0.130
Hardness as CaCO3	OG	500	65	56	72	67	70	67
Calcium	- 55	300	16	14	19	17	18	17
Magnesium			6	5	6	6	6	6
Potassium			2	2	2	2	2	2
Sodium	AO	200	2	2	2	3	3	3
Aluminum	OG	0.1	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.01	0.01	0.01	0.02	0.02	0.02
Beryllium	IVIAC		< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.00	< 0.003	<0.003	<0.003	<0.003	<0.01
Cadmium	MAC	0.005	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.005	< 0.0001	< 0.0001	<0.0001	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.03	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Copper	AO	1	< 0.001	< 0.0002	<0.0002	0.003	<0.0002	0.015
Iron	AO	0.3	0.04	0.04	0.04	0.06	0.04	0.04
Lead	MAC	0.01	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01
Molybdenum	70	0.03	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Nickel			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon			6.4	6.2	5.9	5.8	6.1	6.2
Silver			0.4	0.2	3.3	3.0	0.1	0.2
Strontium			0.028	0.03	0.031	0.031	0.032	0.025
Thallium			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01
Vanadium			< 0.01	< 0.01	<0.01	<0.01	<0.001	<0.01
Zinc	AO	5	< 0.001	< 0.001	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	` 0.01	` 0.01	10.01	.0.01	-0.01	10.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			7.4	7.2	7.1	7.2	7.0	6.7
рН			7.4	6.8	7.5	8.1	7.7	7.6
Conductivity us/cm			119	112	107	144	142	145
conductivity do/citi			113	117	107	1777	174	1-13

All concentrations in mg/L unless otherwise noted

Sample Location 03-01

May-04 May-09 Jun-1	1 Jun-15
---------------------	----------

PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	4	<5	7	No Sample		
BOD				2		•		
COD			192	70	2			
Chloride	AO	250	2.1	2.0	_			
Conductivity umhos/cm			56	45	44			
DOC	AO	5	240	29.1				
N-NO2 (Nitrite)	MAC	1	<0.1	<0.10	<0.10			
N-NO3 (Nitrate)	MAC	10	0.2	<0.10	<0.10			
Phenols			0.016	<0.001	0.120			
Sulphate	AO	500	12	9				
Total Dissolved Solids	AO	500	23	29	29			
Total Kjeldahl Nitrogen			4.77	0.92	2.16			
Total phosphorous			1	0.16				
Hardness	OG	500	4	12	23			
Calcium		300	1	3	6			
Magnesium			0.38	1	2			
Potassium			0.6	<1	<1			
Sodium	AO	200	24.0	<2	2			
Aluminum	OG	0.1	0.97	0.88	2.58			
Barium	MAC	1	0.040	0.020	0.04			
Beryllium	IVIAC		<0.001	<0.001	<0.0005			
Boron	IMAC	5	0.005	<0.001	<0.003			
Cadmium	MAC	0.005	0.0001	<0.001	<0.001			
Chromium	MAC	0.005	0.0001	0.002	0.006			
Cobalt	IVIAC	0.03	<0.005	0.002	0.0068			
Copper	AO	1	<0.003	0.0194	0.003			
Iron	AO	0.3	1.74	2.58	7.78			-
Lead	MAC	0.01	0.0009	<0.001	0.003			
Manganese	AO	0.01	0.0009	0.18	0.003			
Molybdenum	AU	0.03	<0.03	<0.005	<0.005			
Nickel			<0.01	<0.005	<0.005			
Silicon			6.02	6.10	7.70			
Silver			<0.005	<0.0001	<0.0001			
Strontium			0.032	0.024	0.0001			
			0.032					
Thallium				<0.0001	<0.0001			
Titanium			0.006	<0.01	0.02			
Vanadium			<0.005	0.002	0.004			
Zinc	AO	5	0.018	<0.01	0.01			
Arsenic	IMAC	0.025	<0.001					
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01	<0.001					
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C				8.7	12.8		-	
рН				6.2	6.0			
Conductivity us/cm				58	47			
All concentrations in mg/L ur	aloce othorwic	o notod			•			

All concentrations in mg/L unless otherwise noted

Sample Location 07-2D

			Oct-07	May-08	May-09	Sep-09	May-10	Oct-10
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	354	397	432	481	450	467
BOD		00000	2	1	3	2		.07
COD			51	66	60	66		
Chloride	AO	250	50	45	42	44	45	50
Conductivity us/cm	7.10	230	1010	1070	1160	1280	1240	1300
DOC	AO	5	18	22.8	20.6	20.6	12.10	1300
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	1711/10	10	< 0.001	<0.001	<0.001	<0.001	10.120	10.120
Sulphate	AO	500	123	118	159	182		
Total Dissolved Solids	AO	500	657	696	754	832	806	845
Total Kjeldahl Nitrogen	7.0	300	1.25	1.27	1.16	1.3	1.13	0.89
Total phosphorous			12.1	27.9	17.8	9.01	1.15	0.05
Hardness as CaCO3		500	445	499	563	577	593	583
Calcium		300	127	142	161	165	173	166
Magnesium			31	35	39	40	39	41
Potassium			6	6	6	6	6	5
Sodium	AO	200	38	43	44	41	48	42
Aluminum	OG	0.1	0.02	1.6	0.1	0.28	0.13	0.13
Barium	MAC	1	0.51	0.5	0.57	0.28	0.13	0.13
Beryllium	IVIAC	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	0.67	0.46	0.78	0.65	0.83	0.85
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.005	0.0001	0.0001	0.006	0.005	0.005	0.0001
Cobalt	IVIAC	0.05	0.007	0.007	0.0194	0.003	0.0054	0.004
Copper	AO	1	0.0032	0.0302	<0.0194	<0.0040	<0.0034	<0.0033
Iron	AO	0.3	26.4	25.7	22.9	21.9	23.3	19.6
Lead	MAC	0.01	<0.001	0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	10.9	8.59	9.95	9.81	10	10.6
Molybdenum	AO	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			0.06	0.016	0.003	0.006	0.007	<0.005
Silicon			13.8	16	16	14	20	15
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.652	0.568	0.612	0.633	0.588	0.654
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.001	0.05	<0.001	0.001	0.001	0.01
Vanadium			0.012	0.03	0.014	0.02	0.12	0.007
Zinc	AO	5	0.012	0.013	0.014	<0.011	<0.12	<0.01
Arsenic	IMAC	0.025	0.03	0.02	0.03	<0.01	<0.01	\0.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5	+					
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			0		0.1	7.0	0	0.4
pH			9 6.64		9.1	7.8	9 6.9	8.4
Conductivity us/cm					6.9	7		7.1
Conductivity us/cm		1	848		1259	1090	1140	906

All concentrations in mg/L unless otherwise noted

Sample Location 07-2D

PARAMETER Limit ODWO/S				Jun-11	Jun-12	Jun-13	Apr-14	Oct-14	Jun-15
BOD COD COD	PARAMETER	Limit	ODWO/S						
BOD COD Chloride AO 250 45 55 47 42.9 47.1 42.1	Alkalinity (C _a CO3)	OG	30-500	367	415	390	381	348	381
Chloride	BOD								
Conductivity us/cm	COD								
Service Serv	Chloride	AO	250	45	55	47	42.9	47.1	42.1
DOC	Conductivity us/cm								
N-NO2 (Nitrite) NAC 10		AO	5						
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.10 <0.10 <0.00 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	N-NO2 (Nitrite)			< 0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.1
Phenois Sulphate	N-NO3 (Nitrate)								
Sulphate	Phenols				< 0.001	< 0.001			
Total Dissolved Solids	Sulphate	AO	500						
Total phosphorous Hardness as CaCO3 500 448 435 466 536 484 475 Calcium 130 123 134 154 136 135 Magnesium AO 200 36 35 42 43.9 39.6 40.6 Aluminum MAC 1 0.40 1 0.40 1 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 1 0.45 0.43 0.47 1 0.87 0.33 Barium MAC 0.005 0.0005 0.0005 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.005 0.0006 0.005 0.0006 0.005 0.0006 0.005 0.0006 0.005 0.0006 0.005 0.0006 0.006	Total Dissolved Solids			648			696	625	687
Total phosphorous	Total Kjeldahl Nitrogen								
Hardness as CaCO3	Total phosphorous								
Calcium 130 123 134 154 136 135 Magnesium 30 31 32 36.9 33.3 33.1 Potassium 6 5 6 5.5 6.3 6.1 Sodium AO 200 36 35 42 43.9 39.6 40.6 Aluminum OG 0.1 <0.01			500	448	435	466	536	484	475
Magnesium	Calcium								
Potassium	Magnesium								
Sodium									
Aluminum	Sodium	AO	200						
Barium	Aluminum			-		0.47			
Beryllium	Barium						0.508		
Boron	Beryllium								
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0003 <0.00002 <0.00002 Chromium MAC 0.05 0.002 0.006 0.005 0.003 0.004 <0.002		IMAC	5						
Chromium MAC 0.05 0.002 0.006 0.005 0.003 0.004 < 0.002 Cobalt 0.0022 0.0043 0.0052 0.0036 0.003 0.002 Copper AO 1 0.003 0.002 0.001 < 0.002	Cadmium			-					
Cobalt 0.0022 0.0043 0.0052 0.0036 0.003 0.0027 Copper AO 1 0.003 0.002 0.001 0.001 <0.002	Chromium								
Copper AO 1 0.003 0.002 0.001 0.001 < 0.002 < 0.002 Iron AO 0.3 <0.03									
Iron	Copper	AO	1	-					
Lead MAC 0.01 <0.001 <0.001 <0.001 0.00053 0.00054 0.00003 Manganese AO 0.05 7.6 8.55 8.38 8.93 8.29 7.7 Molybdenum <0.005									
Manganese AO 0.05 7.6 8.55 8.38 8.93 8.29 7.7 Molybdenum <0.005									
Molybdenum	Manganese								
Nickel 0.007 0.006 0.006 < 0.01 < 0.01 < 0.01 Silicon 11 17 15.2 15.1 14.7 15.2 Silver <0.0001									
Silicon 11 17 15.2 15.1 14.7 15.2 Silver <0.0001						0.006			
Silver <0.0001 <0.0001 <0.0001 <0.0001 Strontium 0.497 0.547 0.533 0.601 0.546 0.558 Thallium <0.0001	Silicon								
Strontium 0.497 0.547 0.533 0.601 0.546 0.558 Thallium <0.0001	Silver			<0.0001	<0.0001				
Thallium <0.0001 <0.0001 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0009 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.006 <0.001 <0.006 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<	Strontium						0.601	0.546	0.558
Vanadium 0.004 <0.005 0.006 0.0093 0.0112 0.0064 Zinc AO 5 <0.01	Thallium								
Vanadium 0.004 <0.005 0.006 0.0093 0.0112 0.0064 Zinc AO 5 <0.01	Titanium			< 0.01	0.03	0.04	0.033	0.045	0.009
Zinc AO 5 <0.01 <0.01 0.006 0.006 < 0.005 Arsenic IMAC 0.025 IMAC IMAC 1.5 IMAC	Vanadium			0.004	<0.005	0.006	0.0093	0.0112	
Arsenic IMAC 0.025 ————————————————————————————————————	Zinc	AO	5	-					< 0.005
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 9 9.3 9.5 8.4 8.5 9.2 pH (6.9 6.6 6.3 7 6.7 6.6									
Mercury MAC 0.001 0.46 0.49 0.51 Phosphorus 0G 6.5-8.5 0 0.46 0.49 0.51 Phosphorus 0G 6.5-8.5 0 <td>Fluoride</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Fluoride								
N-NH3 (Ammonia) 0.46 0.49 0.51 Phosphorus 0 0.51 0 pH (no units) 0G 6.5-8.5 0 Selenium MAC 0.01 0 Tin 0 0 0 Dissolved Reactive P 0 0 0 Field Parameters 0 0 0 0 Temperature "C 0 0 0 0 0 0 0 pH 0	Mercury								
Phosphorus Dissolved Reactive P Field Parameters Permission of the parameters of the parameters of the parameters of the parameter of	N-NH3 (Ammonia)						0.46	0.49	0.51
Selenium MAC 0.01 Image: Control of the control of t	Phosphorus								
Selenium MAC 0.01 Image: Control of the control of t	pH (no units)	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 9 9.3 9.5 8.4 8.5 9.2 pH 6.9 6.6 6.3 7 6.7 6.6									
Field Parameters 9 9.3 9.5 8.4 8.5 9.2 pH 6.9 6.6 6.3 7 6.7 6.6									
Temperature °C 9 9.3 9.5 8.4 8.5 9.2 pH 6.9 6.6 6.3 7 6.7 6.6	Dissolved Reactive P								
pH 6.9 6.6 6.3 7 6.7 6.6									
	Temperature °C			9	9.3	9.5	8.4	8.5	9.2
Conductivity us/cm 880 981 831 963 1091 1073	•			6.9	6.6	6.3	7	6.7	6.6
	Conductivity us/cm			880	981	831	963	1091	1073

All concentrations in mg/L unless otherwise noted

Sample Location 07-2D

BOD COD Chloride AO 250 47.5 48.1 43.2 47.3 43 43.3 43.3 43.3 43.5 43.				Oct-15	Oct-15	May-16	Nov-16	Apr-17	Apr-17 BH 08-4
BOD COD	PARAMETER	Limit	ODWO/S		QA/QC				QA/QC
COD	Alkalinity (C _a CO3)	OG	30-500	402	443	336	390	378	
Chloride	BOD								
Conductivity us/cm	COD								
Conductivity us/cm	Chloride	AO	250	47.5	48.1	43.2	47.3	43	43.3
DOC	Conductivity us/cm								
N-NO2 (Nitrite) MAC 10 < 0.1 < 0.1 < 0.25 < 0.25 < 0.1 < 0.1 < 0.1 N-NO3 (Nitrate) MAC 10 < 0.1 < 0.1 < 0.25 < 0.25 < 0.25 < 0.1 0.3	DOC	AO	5						
N-NO3 (Nitrate) MAC 10 <0.1 <0.1 <0.25 <0.25 <0.25 <0.1 0.3 Phenols Sulphate AO 500	N-NO2 (Nitrite)			< 0.1	< 0.1	<0.25	<0.25	< 0.1	< 0.1
Phenois Soulphate	N-NO3 (Nitrate)								
Total Kjeldahl Nitrogen Total Nitrogen Total Kjeldahl Nitrogen Total	Phenols								
Total Kjeldahl Nitrogen Total Nitrogen Total Kjeldahl Nitrogen Total Nit	Sulphate	AO	500						
Total phosphorous Total phosph	Total Dissolved Solids			721	787	500	530	631	641
Total phosphorous Hardness as CaCO3	Total Kjeldahl Nitrogen								
Hardness as CaCO3 Calcium 152 151 106 115 141 137 Magnesium 40.5 40.5 26.1 26.0 33 32.7 Potassium AO 200 43.4 43.2 36.8 34.9 45.3 44.7 Aluminum OG 0.1 0.06 0.07 0.038 0.018 0.09 0.08 Barium MAC 1 0.446 0.472 0.384 0.348 0.431 0.439 Beryllium Calcium MAC 0.005 0.00002 0.0001 0.006 0.07 0.038 0.018 0.09 0.08 Beryllium MAC 0.005 0.00002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0002 0.0003 0.	Total phosphorous								
Second	Hardness as CaCO3		500	547	544	372	394	488	477
Magnesium 40.5 40.5 26.1 26.0 33 32.7 Potassium 6.3 6.3 6.17 5.58 6.9 6.8 Sodium AO 200 43.4 43.2 36.8 34.9 45.3 44.7 Aluminum OG 0.1 0.06 0.07 0.038 0.018 0.09 0.08 Barium MAC 1 0.446 0.472 0.384 0.348 0.431 0.439 Beryllium <0.0001	Calcium								
Potassium	Magnesium								
Sodium	Potassium								
Aluminum	Sodium	AO	200						
Barium MAC 1 0.446 0.472 0.384 0.348 0.431 0.439 Beryllium <0.0001	Aluminum								
Beryllium	Barium								
Boron	Beryllium								
Cadmium MAC 0.005 < 0.00002 < 0.00002 < 0.0001 < 0.00020 < 0.00020 < 0.00020 < 0.0003 < 0.0002 < 0.000020 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.00002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0003 < 0.0003 < 0.0003	-	IMAC	5						
Chromium MAC 0.05 0.002 < 0.002 < 0.003 < 0.003 < 0.002 0.002 Cobalt 0.0031 0.0031 0.003 0.003 0.002 0.002 Copper AO 1 < 0.002									
Cobalt 0.0031 0.0031 0.003 0.003 0.0024 0.0023 Copper AO 1 <0.002									
Copper AO 1 < 0.002 < 0.002 < 0.003 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.0002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00003 < 0.00003 < 0.00003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.00003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003			0.00						
Iron		AO	1						
Lead									
Manganese AO 0.05 10.1 10 6.30 6.52 7.56 7.33 Molybdenum 0.0005 0.0005 0.0003 0.0004 0.0005 Nickel < 0.01									
Molybdenum									
Nickel			0.00			0.00	0.01		
Silicon 14.3 14.2 13.9 12.6 13.7 13.6 Silver 0.64 0.635 0.452 0.447 0.519 0.515 Thallium < 0.00005						< 0.003	< 0.003		
Silver 0.64 0.635 0.452 0.447 0.519 0.515 Thallium < 0.00005	Silicon								
Strontium 0.64 0.635 0.452 0.447 0.519 0.515 Thallium < 0.00005									20.0
Thallium < 0.00005 < 0.0005 < 0.006 < 0.00005 < 0.00005 < 0.00005 < 0.0000 < 0.00005 < 0.00005 < 0.0000 < 0.0000 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005				0.64	0.635	0.452	0.447	0.519	0.515
Titanium < 0.005 < 0.002 0.002 < 0.005 < 0.005 Vanadium 0.004 0.0042 0.003 0.002 0.005 0.005 Zinc AO 5 0.007 < 0.005									
Vanadium 0.004 0.0042 0.003 0.002 0.005 0.005 Zinc AO 5 0.007 < 0.005									
Zinc AO 5 0.007 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005									
Arsenic IMAC 0.025 —		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 0.49 0.48 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 8.6 8.9 8.5 8.5 pH 6.9 6.6 7.1 6.5	Arsenic			3.00.	2.200	2.2.00			
Mercury MAC 0.001 0.49 0.48 N-NH3 (Ammonia) 0.49 0.48 0.48 Phosphorus 0.00 0.49 0.48 Phosphorus 0.00 0.00 0.00 Selenium MAC 0.01 0.01 Tin 0.00 0.00 0.00 Dissolved Reactive P 0.00 0.00 0.00 Field Parameters 0.00 0.00 0.00 0.00 Temperature "C 0.00 0	Fluoride								
N-NH3 (Ammonia) 0.49 0.48 ————————————————————————————————————									
Phosphorus Dissolved Reactive P Field Parameters 8.6 8.9 8.5 8.5 PH 6.9 6.6 7.1 6.5	N-NH3 (Ammonia)			0.49	0.48				
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Oissolved Reactive P Oissolved Reactive P Field Parameters Oissolved Rea	Phosphorus				21.0				
Selenium MAC 0.01 .	-	OG	6.5-8.5						
Tin	Selenium								
Dissolved Reactive P Bield Parameters Field Parameters 8.6 Temperature °C 8.6 pH 6.9 6.6 7.1 6.5									
Temperature °C 8.6 8.9 8.5 8.5 pH 6.9 6.6 7.1 6.5	Dissolved Reactive P								
pH 6.9 6.6 7.1 6.5	Field Parameters								
	Temperature °C			8.6		8.9	8.5	8.5	
Conductivity us/cm 950 820 734 1010	рН			6.9		6.6	7.1	6.5	
	Conductivity us/cm			950		820	734	1010	

All concentrations in mg/L unless otherwise noted

Sample Location 07-2D

			Oct-17	May-18	Oct-18	May-19	Oct-19	May-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	361	372	361	360	388	347
BOD		30 300	301	3,2	301	300	300	317
COD								
Chloride	AO	250	36.6	40	39	37	44	32
Conductivity us/cm	7.0	230	931	975	941	816	1010	872
DOC	AO	5	331	373	341	010	1010	0,2
N-NO2 (Nitrite)	MAC	1	< 0.05	< 0.10	< 0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	< 0.05	< 0.10	< 0.10	<0.10	<0.10	<0.10
Phenols	1717 10	10	10.03	10.10	10.10	10.20	10.20	10120
Sulphate	AO	500						
Total Dissolved Solids	AO	500	546	634	612	530	656	567
Total Kjeldahl Nitrogen	7.0	300	2.2	2.1	4.2	<3.0	1.21	1.15
Total phosphorous			2.2	2.1	7.2	13.0	1.21	1.13
Hardness as CaCO3		500	434	468	367	454	451	411
Calcium		300	123	138	104	134	131	120
Magnesium			30.8	30	26	29	30	27
Potassium			6.7		6	6	6	7
Sodium	AO	200	40.7	42	37	37	38	38
Aluminum	OG	0.1	0.08	0.04	0.03	0.01	0.02	0.05
Barium	MAC	1	0.441	0.4	0.42	0.38	0.39	0.36
Beryllium	IVIAC		< 0.0001	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.915	0.72	0.89	1	1.1	0.98
Cadmium	MAC	0.005	< 0.000014	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.005	< 0.00014	0.001	0.0001	0.0001	0.0001	0.001
Cobalt	IVIAC	0.03	0.0023	0.0029	0.001	0.0029	0.001	0.0024
Copper	AO	1	< 0.0023	< 0.0023	< 0.0027	<0.001	0.002	<0.001
Iron	AO	0.3	13.9	12.2	13	12.5	13.7	11.8
Lead	MAC	0.01	< 0.00002	< 0.001	< 0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	6.62	6.69	6.38	6.2	7.42	5.84
Molybdenum	70	0.03	0.0004	< 0.005	< 0.005	<0.005	<0.005	<0.005
Nickel			0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
Silicon			14.6	19.1	13.4	13.1	14.2	13.3
Silver			14.0	13.1	15.4			20.0
Strontium			0.489	0.488	0.495	0.473	0.552	0.483
Thallium			< 0.00005	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Titanium			< 0.005	< 0.001	< 0.001	<0.01	<0.01	<0.01
Vanadium			0.0034	0.003	0.002	0.003	0.003	0.002
Zinc	AO	5	< 0.005	< 0.003	< 0.002	<0.01	<0.01	0.01
Arsenic	IMAC	0.025	` 0.003	` U.UI	` 0.01	-0.01	-0.01	3.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P		1						
Field Parameters		1						
Temperature °C			8.7	8.8	8.8	9	8.9	8.7
рН		1	7.0	6.9	6.8	6.8	6.6	6.6
Conductivity us/cm			809	783	561	429	1013	889
Conductivity 03/CIII		1	603	/03	201	423	1012	007

All concentrations in mg/L unless otherwise noted

Sample Location 07-2D

Oct-20

PARAMETER	Limit	ODWO/S					
Alkalinity (C _a CO3)	OG	30-500	370				
BOD		3333	0.0				
COD							
Chloride	AO	250	34				
Conductivity us/cm	,		948				
DOC	AO	5	0.0				
N-NO2 (Nitrite)	MAC	1	<0.10				
N-NO3 (Nitrate)	MAC	10	<0.10				
Phenols							
Sulphate	AO	500					
Total Dissolved Solids	AO	500	616				
Total Kjeldahl Nitrogen	-		0.122				
Total phosphorous							
Hardness as CaCO3		500	446				
Calcium			129				
Magnesium			30				
Potassium			7				
Sodium	AO	200	41				
Aluminum	OG	0.1	0.01				
Barium	MAC	1	0.38				
Beryllium		_	<0.0005				
Boron	IMAC	5	1.00				
Cadmium	MAC	0.005	<0.0001				
Chromium	MAC	0.05	0.001				
Cobalt			0.0029				
Copper	AO	1	0.004				
Iron	AO	0.3	11.0				
Lead	MAC	0.01	<0.001				
Manganese	AO	0.05	6.46				
Molybdenum	-		<0.005				
Nickel			< 0.005				
Silicon			13.0				
Silver							
Strontium			0.427				
Thallium			< 0.0001				
Titanium			< 0.01				
Vanadium			0.002				
Zinc	AO	5	< 0.01				
Arsenic	IMAC	0.025					
Fluoride	MAC	1.5					
Mercury	MAC	0.001					
N-NH3 (Ammonia)							
Phosphorus							
pH (no units)	OG	6.5-8.5					
Selenium	MAC	0.01					
Tin		-					
Dissolved Reactive P							
Field Parameters							
Temperature [°] C			8.3				
pH			6.3				
Conductivity us/cm			984				
All concentrations in ma/L u		1 1			I .	1	

All concentrations in mg/L unless otherwise noted

Sample Location 07-2S

			Oct-07	May-08	May-09	Sep-09	May-10	Oct-10
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	83	385	547	126	74	67
BOD		00000	1	3	3	<1		0.
COD			16	32	33	<5		
Chloride	AO	250	14	34	30	10	3	3
Conductivity us/cm	,,,,		212	859	1090	296	167	156
DOC	AO	5	7.6	12.8	10.2	2.7		
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	0.14	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	17.17 (C	10	<0.001	<0.001	<0.001	<0.001	10.120	10.120
Sulphate	AO	500	10	44	37	14		
Total Dissolved Solids	AO	500	138	558	708	192	109	101
Total Kjeldahl Nitrogen	710	300	2.18	0.96	0.67	<0.10	0.18	<0.10
Total phosphorous			0.12	0.86	0.05	0.17	0.10	10.10
Hardness as CaCO3		500	87	400	598	134	80	71
Calcium		300	25	114	172	37	22	20
Magnesium			6	28	41	10	6	5
Potassium			2	5	4	2	1	1
Sodium	AO	200	9	35	20	5	3	<2
Aluminum	OG	0.1	<0.01	<0.01	<0.01	0.02	0.01	0.04
Barium	MAC	1	0.07	0.37	0.39	0.02	0.01	0.04
Beryllium	IVIAC	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	0.001	0.001	0.001	0.001	0.001	<0.001
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.001	<0.001	<0.001
Chromium	MAC	0.005	<0.0001	0.003	0.005	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.05	<0.001	0.0341	0.003	0.0155	0.0013	0.0007
Copper	AO	1	0.0002	<0.001	<0.001	<0.0133	<0.0013	<0.001
Iron	AO	0.3	4.87	28.2	23.7	4.14	1.89	1.43
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	0.001	0.76	0.56	0.14	0.001	0.04
Molybdenum	AU	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	0.009	0.007	<0.005	<0.005	<0.005
Silicon			6.4	10.3	10.6	6	5.3	5.8
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.0001	0.232	0.379	0.09	0.044	0.0001
Thallium			<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001
Titanium			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium			0.001	0.007	0.011	0.001	<0.01	<0.001
Zinc	AO	5	0.001	0.007	<0.011	<0.01	<0.001	<0.001
Arsenic	IMAC	0.025	0.03	0.02	\U.U1	~ 0.01	~ 0.01	\U.U1
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			0.2		0 1	0.7	0.7	0.7
pH			9.3		8.1	8.7	9.7	8.7
Conductivity us/cm			7.08		7.1	7.6	7.8	8.2
Conductivity us/cill		1	174		1233	292	171	119

All concentrations in mg/L unless otherwise noted

Sample Location 07-2S

PARAMETER Limit ODWO/S Alkalinity (C,CO3) OG 30-500 193 225 90 142 89 88 88 COD COD				Jun-11	Jun-12	Jun-13	Apr-14	Oct-14	Jun-15
BOD COD COD	PARAMETER	Limit	ODWO/S						
BOD COD Chloride	Alkalinity (C _a CO3)	OG		193	225	90	142	89	88
Chloride	BOD								
Conductivity us/cm	COD								
Conductivity us/cm	Chloride	AO	250	6	7	1	2.5	3.1	1.4
DOC	Conductivity us/cm			401	462	180			184
N-NO2 (Nitrite) NAC 10		AO	5						
Phenols	N-NO2 (Nitrite)			<0.10	<0.10	<0.10	< 0.10	< 0.10	< 0.1
Phenois	N-NO3 (Nitrate)	MAC	10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.1
Sulphate	Phenols				<0.001	< 0.001			
Total Dissolved Solids AO 500 261 300 117 163 99.6 112 103 103 0.13	Sulphate	AO	500						
Total phosphorous	Total Dissolved Solids		500	261	300	117	163	99.6	112
Total phosphorous	Total Kjeldahl Nitrogen			0.33	0.18	0.13	0.33	0.12	0.3
Calcium 53 49 22 46.3 26.5 25.6 Magnesium 13 15 6 11.9 6.73 7.02 Potassium 2 2 2 2 1.7 1.5 1.5 Sodium AO 200 9 5 4 3.1 2.8 2.6 Aluminum OG 0.1 0.01 0.02 0.02 0.04 0.04 0.05 Barium MAC 1 0.09 0.11 0.05 0.066 0.36 0.042 Beryllium Co.0005 <0.0005	Total phosphorous								
Calcium 53 49 22 46.3 26.5 25.6 Magnesium 13 15 6 11.9 6.73 7.02 Potassium 2 2 2 2 1.7 1.5 1.5 Sodium AO 200 9 5 4 3.1 2.8 2.6 Aluminum OG 0.1 0.01 0.02 0.02 0.04 0.04 0.05 Baryllium MAC 1 0.09 0.11 0.05 0.066 0.036 0.042 Beryllium MAC 0.005 <0.0001	Hardness as CaCO3		500	186	184	80	165	97	93
Magnesium Hagnesium 13 15 6 11.9 6.73 7.02 Potassium 2 2 2 2 1.5 1.5 1.5 Sodium AO 200 9 5 4 3.1 2.8 2.6 Aluminum OG 0.1 0.01 0.02 0.02 0.04 0.04 0.05 Barium MAC 1 0.09 0.11 0.05 0.066 0.036 0.0001 <0.0001	Calcium			53	49		46.3	26.5	25.6
Potassium	Magnesium				15	6	11.9	6.73	
Sodium									
Aluminum	Sodium	AO	200	9		4			
Barium	Aluminum			0.01	0.02	0.02	0.04		
Beryllium	Barium	MAC	1	0.09	0.11	0.05	0.066	0.036	
Boron	Beryllium								
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.00002 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0000 <0.0000 <0.0000	-	IMAC	5						
Chromium MAC 0.05 <0.001 0.002 <0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.000 <	Cadmium								
Cobalt 0.0075 0.0079 0.0099 0.0024 0.0023 0.0002 Copper AO 1 <0.001	Chromium								
Copper AO 1 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 Iron AO 0.3 3.48 3.26 2.56 2.06 0.972 1.38 1.38 1.38 1.26 2.56 2.06 0.972 1.38	Cobalt								
Iron	Copper	AO	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 0.0003 0.00004 <0.00002 Manganese AO 0.05 0.11 0.12 0.09 0.076 0.045 0.06 Molybdenum <0.005									
Manganese AO 0.05 0.11 0.12 0.09 0.076 0.045 0.06 Molybdenum <0.005	Lead								
Molybdenum	Manganese								
Nickel	Molybdenum			<0.005	<0.005	<0.005	< 0.0001	< 0.0001	< 0.0001
Silicon 6.7 6.9 6.9 6 5.86 6.23 Silver <0.0001	Nickel			< 0.005	<0.005	<0.005		< 0.01	
Silver <0.0001 <0.0001 <0.0001 <0.0001 <0.0054 0.055 Strontium 0.102 0.124 0.048 0.092 0.054 0.055 Thallium <0.0001	Silicon				6.9	6.9		5.86	6.23
Strontium 0.102 0.124 0.048 0.092 0.054 0.055 Thallium <0.0001	Silver			< 0.0001	< 0.0001	< 0.0001			
Thallium <0.0001 <0.0001 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.00009 0.0005 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015	Strontium					0.048	0.092	0.054	0.055
Vanadium 0.001 0.002 <0.001 0.0009 0.0009 Zinc AO 5 <0.01	Thallium								
Vanadium 0.001 0.002 <0.001 0.001 0.0009 0.0009 Zinc AO 5 <0.01	Titanium			< 0.01	< 0.01	< 0.01	< 0.005	< 0.005	< 0.005
Zinc AO 5 <0.01 <0.01 <0.005 <0.005 <0.005 Arsenic IMAC 0.025	Vanadium			0.001	0.002	< 0.001	0.001	0.0009	
Arsenic IMAC 0.025 ————————————————————————————————————	Zinc	AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.7 8.9 8 7.7 8.8 8.7 pH (no units) 8 7 6.7									
Mercury MAC 0.001 0.002 0.04 0.07 Phosphorus 0.02 0.04 0.07 Phosphorus 0.02 0.04 0.07 Phosphorus 0.01 0.01 0.01 Tin 0.01 0.01 0.01 Tin 0.01 0.01 0.01 0.01 Pield Parameters 0.01 <td>Fluoride</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Fluoride								
N-NH3 (Ammonia) 0.02 0.04 0.07 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.7 8.9 8 7.7 8.8 8.7 pH 7.7 7.3 6.7 8 7 6.7	Mercury								
Phosphorus Dissolved Reactive P Phosphorus <	N-NH3 (Ammonia)						0.02	0.04	0.07
Selenium MAC 0.01 Image: Control of the control of t	Phosphorus								
Selenium MAC 0.01 Image: Control of the control of t	-	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 7.7 8.9 8 7.7 8.8 8.7 pH 7.7 7.3 6.7 8 7 6.7									
Field Parameters 7.7 8.9 8 7.7 8.8 8.7 PH 7.7 7.3 6.7 8 7 6.7									
Temperature °C 7.7 8.9 8 7.7 8.8 8.7 pH 7.7 7.3 6.7 8 7 6.7	Dissolved Reactive P								
pH 7.7 7.3 6.7 8 7 6.7									
	Temperature °C			7.7	8.9	8	7.7	8.8	8.7
Conductivity us/cm 315 418 148 281 188 203	•			7.7	7.3	6.7	8	7	6.7
	Conductivity us/cm			315	418	148	281	188	203

All concentrations in mg/L unless otherwise noted

Sample Location 07-2S

			Oct-15	May-16	Nov-16	Apr-17	Oct-17	May-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	88	253	186	133	72	344
BOD		30 300					, _	
COD								
Chloride	AO	250	4.3	9.64	3.16	2.7	1.9	8
Conductivity us/cm			189	539	365	264	156	680
DOC	AO	5	103		333	20.	130	
N-NO2 (Nitrite)	MAC	1	< 0.1	<0.05	<0.05	< 0.1	< 0.05	< 0.10
N-NO3 (Nitrate)	MAC	10	< 0.1	<0.05	<0.05	0.1	< 0.05	< 0.10
Phenols			10.2		0.00	0.2	7 0.00	7 0120
Sulphate	AO	500						
Total Dissolved Solids	AO	500	114	270	218	145	83	442
Total Kjeldahl Nitrogen			0.06	0.56	0.17	0.14	0.4	1.1
Total phosphorous			0.00	0.50	0.27	0.1.	0	2.2
Hardness as CaCO3		500	96	250	167	139	75	396
Calcium		300	25.7	69.8	47.4	39	21.4	< 0.0001
Magnesium			7.73	18.5	11.9	10.2	5.25	27
Potassium			1.5	2.65	1.98	1.6	2.9	2
Sodium	AO	200	4	8.91	4.34	3	2.1	6
Aluminum	OG	0.1	0.03	0.012	0.016	0.03	0.03	< 0.01
Barium	MAC	1	0.039	0.171	0.073	0.063	0.05	0.13
Beryllium	WIAC	-	< 0.0001	<0.001	<0.001	< 0.0001	< 0.0001	< 0.0005
Boron	IMAC	5	0.016	0.121	0.018	0.023	0.008	0.21
Cadmium	MAC	0.005	< 0.00002	<0.001	<0.001		< 0.000014	0.21
Chromium	MAC	0.05	< 0.002	<0.003	<0.003	< 0.002	< 0.002	< 0.001
Cobalt	WIAC	0.03	< 0.0001	<0.003	<0.001	< 0.002	< 0.0001	0.0003
Copper	AO	1	< 0.002	<0.003	<0.003	0.002	0.002	< 0.001
Iron	AO	0.3	1.21	9.47	2.72	2.24	2.58	3.27
Lead	MAC	0.01	< 0.00002	<0.002	<0.002	< 0.00002	< 0.00002	< 0.001
Manganese	AO	0.05	0.037	0.186	0.074	0.085	0.069	0.13
Molybdenum	7.0	0.03	< 0.0001	0.100	0.074	< 0.0001	< 0.0001	< 0.005
Nickel			< 0.001	<0.003	<0.003	0.001	0.0005	< 0.005
Silicon			6.17	8.64	5.62	6.06	6.11	6.8
Silver			0.17	0.0 1	3.02	0.00	0.11	0.0
Strontium			0.057	0.166	0.086	0.071	0.046	0.174
Thallium			< 0.00005	<0.006	<0.006	< 0.00005	< 0.00005	< 0.0001
Titanium			< 0.005	<0.002	<0.002	< 0.005	< 0.005	< 0.01
Vanadium			0.0005	<0.002	<0.002	0.0008	0.0004	< 0.001
Zinc	AO	5	0.006	0.002	<0.005	< 0.005	< 0.005	< 0.001
Arsenic	IMAC	0.025	2.300	3.300	10.000	1 5.555		10.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)		2.001	0.04					
Phosphorus			0.01					
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		0.01						
Dissolved Reactive P								
Field Parameters								
Temperature [°] C			8.6	8.3	8.1	7.9	8.6	7.6
pH			7.6	6.9	7.5	6.9	7.5	7.2
Conductivity us/cm			175	538	358	272	145	571
						•		

All concentrations in mg/L unless otherwise noted

Sample Location 07-2S

			Oct-18	May-19	Oct-19	May-20	Oct-20		
PARAMETER	Limit	ODWO/S							
Alkalinity (C _a CO3)	OG	30-500	95	148	96	475	83		
BOD									
COD									
Chloride	AO	250	2	3	2	9	2		
Conductivity us/cm			175	250	189	835	168		
DOC	AO	5							
N-NO2 (Nitrite)	MAC	1	< 0.10	<0.10	<0.10	<0.10	<0.10		
N-NO3 (Nitrate)	MAC	10	< 0.10	<0.10	<0.10	<0.10	<0.10		
Phenols									
Sulphate	AO	500							
Total Dissolved Solids	AO	500	114	162	123	543	109		
Total Kjeldahl Nitrogen	-		< 0.8	<0.75	0.16	0.62	0.57		
Total phosphorous					010				
Hardness as CaCO3		500	72	155	85	460	85		
Calcium			19	44	24	130	24		
Magnesium			6	11	6	33	6	1	
Potassium			2	2	2	3	1		
Sodium	AO	200	2	7	2	18	2		
Aluminum	OG	0.1	0.02	<0.01	0.98	<0.01	<0.01		
Barium	MAC	1	0.04	0.07	0.06	0.22	0.04		
Beryllium	1417 (C		< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Boron	IMAC	5	0.03	0.11	<0.01	0.34	<0.01		
Cadmium	MAC	0.005	< 0.0001	<0.0001	<0.001	<0.0001	<0.0001		1
Chromium	MAC	0.05	< 0.001	<0.001	0.003	<0.001	<0.001		
Cobalt	WIAC	0.03	< 0.0002	0.0002	0.0012	0.0006	<0.0002		
Copper	AO	1	0.004	<0.001	0.029	<0.001	0.005		1
Iron	AO	0.3	1.45	2.68	4.81	9.12	0.003		
Lead	MAC	0.01	0.001	<0.001	<0.001	<0.001	<0.001		
Manganese	AO	0.05	0.001	0.09	0.07	0.21	0.03		1
Molybdenum	AO	0.03	< 0.005	<0.005	<0.005	<0.005	<0.005		
Nickel			₹ 0.005	<0.005	0.009	<0.005	<0.005		
Silicon			6.3	8	6.8	10.7	6.1		1
Silver			0.5		0.0	2017	0.12		
Strontium			0.048	0.074	0.054	0.291	0.038		
Thallium			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001		
Titanium		+	< 0.001	<0.001	0.0001	<0.001	<0.001		
Vanadium			< 0.001	<0.01	0.003	<0.01	<0.001		
Zinc	AO	5	0.02	<0.01	0.04	<0.01	<0.01		
Arsenic	IMAC	0.025	0.02	-0.01	3.01	-0.01	.0.01		
Fluoride	MAC	1.5							
Mercury	MAC	0.001							
N-NH3 (Ammonia)	IVIAC	0.001							
Phosphorus									
pH (no units)	OG	6.5-8.5							
Selenium	MAC	0.3-8.3							
Tin	IVIAC	0.01							
Dissolved Reactive P		1							
Field Parameters									
Temperature °C			8.5	7.4	8.2	6.9	7.6		
рН			6.8	6.6	6.9	6.6	6.8		
Conductivity us/cm			136	186	184	810	178		
Conductivity do/ citi			130	100	104	910	1/0		L

All concentrations in mg/L unless otherwise noted

Sample Location 07-3D

DADAMETER	1::	00140/5	Oct-07	May-08	Oct-08	May-09	May-09 Dup	Sep-09
PARAMETER Alkalinity (C _a CO3)	Limit OG	ODWO/S 30-500	494	385	382	314	319	421
BOD		30 300	9	5	3	8	12	8
COD			52	48	48	33	30	37
Chloride	AO	250	17	15	13	12	12	12
Conductivity us/cm	AO	230	943	763	817	635	639	861
DOC	AO	5	19	17.2	13.5	10.4	9.8	14
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	0.11	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	WIAC	10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500	5	3	7	9	9	4
Total Dissolved Solids	AO	500	613	496	531	413	415	560
Total Kjeldahl Nitrogen	70	300	4.42	5.79	0.45	9.24	7.22	4.13
Total phosphorous			0.15	6.2	0.43	0.12	0.34	0.14
Hardness as CaCO3		500	403	365	315	207	202	339
Calcium		300	125	115	98	63	61	101
Magnesium			22	115	17	12	12	
Potassium				21			15	21
Sodium	40	200	15	23	18	15		14
Aluminum	AO	200	25		21	14	13	19
	OG	0.1	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	MAC	1	0.49	0.41	0.32	0.4	0.41	0.39
Beryllium	10.44.0	_	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IMAC	5	0.23	0.17	0.2	0.17	0.17	0.18
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.008	0.006	0.006	0.005	0.004	0.006
Cobalt			0.0272	0.0621	0.0529	0.013	0.0395	0.0287
Copper	AO	1	0.004	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	65.3	55	49.1	46.4	45.3	56.9
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	6.6	6.21	5.15	4.18	4.23	4.69
Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			19	22	24	23	20	19
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.487	0.472	0.442	0.435	0.408	0.391
Thallium			<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Titanium			< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
Vanadium			0.008	0.008	0.011	0.009	0.005	0.008
Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature 'C			8.6	7.5	7.6	7.9	7.8	7.7
рН			6.7	6.8	6.6	6.5	6.4	6.2
Conductivity us/cm			799	547	654	810	646	700
All concentrations in mg/L			155	JT/	054	010	070	,00

All concentrations in mg/L unless otherwise noted

Sample Location 07-3D

PARAMETER Limit ODWO/S				May-10	Oct-10	Jun-11	Oct-11	Jun-12	Oct-12
Alkalinity (C ₂ CO3) OG 30-500 355 327 339 354 325 329 BDD CDD CDD CDD CDD CDD CDD CDD CDD CDD	PARAMETER	Limit	ODWO/S						
BOD Chloride	Alkalinity (C _a CO3)	OG		355	327	339	354	325	329
Chloride	BOD								
Conductivity us/cm	COD								
Conductivity us/cm	Chloride	AO	250	10	11	12	11	10	8
DOC	Conductivity us/cm								
N-NO2 (Nitrate) MAC 1		AO	5						
N-NO3 Nitrate MAC	N-NO2 (Nitrite)			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols Sulphate AO 500 Sulphate AO 500 464 424 435 434 401 413 415 415 416 416 413 416 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 416 418 418 416 418	N-NO3 (Nitrate)		10						
Sulphate	Phenols							< 0.001	<0.001
Total Dissolved Solids AO 500 464 424 435 434 401 413 Total Kjeldahl Nitrogen 5.31 5.02 7.27 4.72 5.26 4.89 Total phosphorous	Sulphate	AO	500						
Total phosphorous				464	424	435	434		
Total phosphorous Calcium	Total Kjeldahl Nitrogen			5.31	5.02				
Hardness as CaCO3									
Calcium			500	255	229	240	283	162	203
Magnesium	Calcium								
Potassium	Magnesium								
Sodium				20		22			
Aluminum	Sodium	AO	200						
Barium	Aluminum								
Beryllium	Barium								
Boron	Beryllium								
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0		IMAC	5						
Chromium MAC 0.05 <0.001 0.004 0.007 0.003 0.005 0.004 Cobalt 0.02 0.0299 0.0204 0.0312 0.0258 0.0295 Copper AO 1 <0.001									
Cobalt 0.02 0.0299 0.0204 0.0312 0.0258 0.0295 Copper AO 1 <0.001	Chromium								
Copper									
Iron		AO	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005									
Manganese AO 0.05 5.91 5.11 4.84 4.3 4.26 3.76 Molybdenum <0.005									
Molybdenum	Manganese								
Nickel									
Silicon 20.8 19 19.5 19.8 19 18.9									
Silver	Silicon								
Strontium 0.369 0.311 0.314 0.313 0.391 0.383 Thallium <0.0001	Silver							-	
Thallium < 0.0001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.000005 < 0.00005 < 0.00005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.00125 0.01125 0.01125 0.0112 < 0.005 < 0.005 < 0.005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	Strontium					0.314	0.313	0.391	0.383
Titanium < 0.01 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <t< td=""><td>Thallium</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Thallium								
Vanadium 0.007 0.006 0.0052 0.0051 0.0125 0.0112 Zinc AO 5 <0.01									
Zinc	Vanadium								
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 4.43 4.54 6.47 6.38 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Image: Control of the		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 4.43 4.54 6.47 6.38 Phosphorus 9H (no units) OG 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.6 6.5-8.5 6.6 6.5-8.5 6.6 6.5-8.5 6.6 6.5-8.5 6.6 6.5-8.5 6.6 6.5				-					
Mercury MAC 0.001 4.43 4.54 6.47 6.38 Phosphorus Phosphorus <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature "C pH 6.38 4.43 4.54 6.47 6.38 6.38 6.47 6.38 7.5 7.7 6.88 6.60									
Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 8.4 7.5 7.7 pH 6.8 6.6 6.5						4.43	4.54	6.47	6.38
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 8.4 7.5 7.7 pH 6.8 6.6 6.5									-
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 8.4 7.5 7.7 pH 6.8 6.6 6.5		OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 8.4 7.5 7.7 pH 6.8 6.6 6.5									
Field Parameters 8.4 7.5 7.7 pH 6.8 6.6 6.5									
Temperature °C 8.4 7.5 7.7 pH 6.8 6.6 6.5	Dissolved Reactive P								
pH 6.8 6.6 6.5	Field Parameters								
pH 6.8 6.6 6.5	Temperature [°] C			8.4		7.5		7.7	
	рН								
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 07-3D

PARAMETER	Limit	ODWO/S	Jun-13	Nov-13	Apr-14	Apr-14 BH 07-7 QA/QC	Oct-14	Oct-14 BH 07-4 QA/QC
Alkalinity (C _a CO3)	OG	30-500	307	276	254	257	364	353
BOD						-		
COD								
Chloride	AO	250	9	7	6.1	6.1	8.2	8.4
Conductivity us/cm			616	558	554	557	746	724
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10
N-NO3 (Nitrate)	MAC	10	<0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10
Phenols			< 0.001	< 0.001				
Sulphate	AO	500	6	7				
Total Dissolved Solids	AO	500	400	363	322	384	501	486
Total Kjeldahl Nitrogen			4.91	4.27	6.12	5.65	6.66	7.26
Total phosphorous								
Hardness as CaCO3		500	208	231	215	216	231	229
Calcium			65	71	66.6	67.1	69.5	69
Magnesium			11	13	11.7	11.8	13.8	13.7
Potassium			20	19	15.6	15.6	21.5	21.3
Sodium	AO	200	11	12	10.9	10.9	12.6	12.4
Aluminum	OG	0.1	<0.01	<0.01	0.03	0.03	0.02	0.02
Barium	MAC	1	0.4	0.32	0.358	0.351	0.126	0.126
Beryllium		_	<0.0005	<0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Boron	IMAC	5	0.12	0.11	0.117	0.117	0.146	0.145
Cadmium	MAC	0.005	<0.0001	<0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Chromium	MAC	0.05	0.002	0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cobalt	1711/10	0.03	0.0181	0.018	0.0133	0.0122	0.0256	0.0236
Copper	AO	1	<0.001	<0.001	< 0.0001	< 0.0001	< 0.002	< 0.002
Iron	AO	0.3	57.9	45	44.4	43.6	1.95	1.69
Lead	MAC	0.01	<0.001	<0.001	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Manganese	AO	0.05	3.92	3.41	4	3.96	2.93	3
Molybdenum	, 10	0.03	0.0004	0.0007	•	3.30	0.0003	0.0003
Nickel			< 0.01	< 0.01	<0.003	<0.003	0.0026	0.0035
Silicon			18.4	21.7	20.0	18.6	17.9	18
Silver								
Strontium			0.413	0.383	0.356	0.291	0.25	0.29
Thallium			< 0.00005		<0.006	<0.006	< 0.00005	< 0.00005
Titanium			< 0.005	< 0.005	<0.002	<0.002	< 0.005	< 0.005
Vanadium			0.007	0.0036	0.004	0.003	0.0034	0.0035
Zinc	AO	5	< 0.005	< 0.005	<0.005	0.006	< 0.005	< 0.005
Arsenic	IMAC	0.025		3.333	0.000		3.333	0.000
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)		0.002	4.65	4.27				
Phosphorus				/				
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		0.01						
Dissolved Reactive P								
Field Parameters								
Temperature "C			8	7.7	7.9	7.4	7.1	7.5
pH			6.3	6.7	6.4	6.7	6	6.6
Conductivity us/cm			757	568	746	655	536	533
All concentrations in mg/L		 	, ,,	330	, 10	555	550	555

All concentrations in mg/L unless otherwise noted

Sample Location 07-3D

PARAMETER Limit ODWO/S Alkalinity (_CO3) OG 30-500 330 279 312 299 235 261				Jun-15	Oct-15	May-16	Nov-16	Apr-17	Oct-17
SOC COD Chloride COD Chloride Conductivity us/cm Conductiv	PARAMETER	Limit	ODWO/S						
BOD COD Chloride	Alkalinity (C _a CO3)	OG		330	279	312	299	235	261
Chloride	BOD								
Conductivity us/cm	COD								
Conductivity us/cm	Chloride	AO	250	5.8	6	10.0	5.43	5.2	5.8
DOC	Conductivity us/cm								
N-NO2 (Nitrate) MAC 10 < 0.1 < 0.1 < 0.1 < 0.10 < 0.05	DOC	AO	5						
N-NO3 (Nitrate)	N-NO2 (Nitrite)			< 0.1	< 0.1	<0.10	< 0.05	0.3	< 0.05
Phenois Sulphate	N-NO3 (Nitrate)								
Total Kjeldahl Nitrogen Total Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Nitrogen	Phenols								
Total Dissolved Solids	Sulphate	AO	500						
Total phosphorous Society Total phosphorous Total phosphor	Total Dissolved Solids			420	367	356	338	251	269
Total phosphorous Source S	Total Kjeldahl Nitrogen								
Hardness as CaCO3	Total phosphorous								
Calcium 73.2 67.2 77.6 60.5 50.6 50.3 Magnesium 13.3 13.7 12.8 10.2 9.58 10.6 Potassium 17.9 17.3 19.8 17.5 16.3 21.2 Sodium AO 200 11.9 10.8 10.1 9.36 8.2 8.9 Aluminum OG 0.1 0.02 0.02 0.005 0.005 0.00 1.02 0.02 0.005 0.00 0.02 0.02 0.00 0.00 0.00 0.00 1.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000			500	238	224	246	193	166	169
Magnesium	Calcium								
Potassium	Magnesium								
Sodium									
Aluminum	Sodium	AO	200						
Barium	Aluminum								
Beryllium	Barium								
Boron	Beryllium		-						
Cadmium MAC 0.005 < 0.00002 < 0.00002 < 0.001 < 0.00002 < 0.000000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.0000 < 0.0000 < 0.00000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000	-	IMAC	5						
Chromium MAC 0.05 < 0.002 < 0.002 < 0.003 < 0.002 < 0.002 Cobalt 0.0239 0.0203 0.025 0.021 0.0149 0.0169 Copper AO 1 < 0.002									
Cobalt 0.0239 0.0203 0.025 0.021 0.0149 0.0169 Copper AO 1 < 0.002									
Copper AO 1 < 0.002 < 0.002 < 0.003 < 0.002 0.002 Iron AO 0.3 59.6 62.4 65.2 55.2 4.81 8.38 Lead MAC 0.01 < 0.00002			0.00						
Iron		AO	1						
Lead MAC 0.01 < 0.00002 < 0.0002 < 0.002 < 0.0002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00002 < 0.00003 < 0.0003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.0002 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003									
Manganese AO 0.05 4.22 4.51 4.99 3.59 2.99 2.69 Molybdenum 0.0004 0.0007 0.0003 0.0003 0.0003 Nickel < 0.01									
Molybdenum									
Nickel		7.0	0.03				3.33		
Silicon 18.4 21.7 20.0 18.6 17.9 18 Silver 0.413 0.383 0.356 0.291 0.25 0.29 Thallium < 0.00005						<0.003	<0.003		
Silver 0.413 0.383 0.356 0.291 0.25 0.29 Thallium < 0.00005									
Strontium 0.413 0.383 0.356 0.291 0.25 0.29 Thallium < 0.00005									
Thallium < 0.00005 < 0.0005 < 0.006 < 0.00005 < 0.00005 < 0.00005 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005				0.413	0.383	0.356	0 291	0.25	0.29
Titanium < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 Vanadium 0.007 0.0036 0.004 0.003 0.0034 0.0035 Zinc AO 5 < 0.005									
Vanadium 0.007 0.0036 0.004 0.003 0.0034 0.0035 Zinc AO 5 < 0.005									
Zinc AO 5 < 0.005 < 0.005 0.006 < 0.005 < 0.005 Arsenic IMAC 0.025 IMAC 0.001 IMAC IMAC IMAC 0.001 IMAC IMAC 0.001 IMAC									
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 4.65 4.27 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 4.65 4.27 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6				5.555	2.203	3.000	3.550	5.555	3.000
Mercury MAC 0.001 4.65 4.27 Phosphorus Phosphorus Phosphorus Phosphorus Phosphorus pH (no units) OG 6.5-8.5 Phosphorus Phos									
N-NH3 (Ammonia) 4.65 4.27 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature °C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6									
Phosphorus Dissolved Reactive P Field Parameters 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6				4.65	4.27				
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Image: Control of the control of t	,								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Selenium Temperature "C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6	-	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters Temperature C B 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6.6									
Dissolved Reactive P Field Parameters Temperature °C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6		,	2.01						
Temperature °C 8 7.7 7.9 7.4 7.1 7.5 pH 6.3 6.7 6.4 6.7 6 6.6									
pH 6.3 6.7 6.4 6.7 6 6.6	Field Parameters								
pH 6.3 6.7 6.4 6.7 6 6.6	Temperature [°] C			8	7.7	7.9	7.4	7.1	7.5
	рН								
	Conductivity us/cm				568		655	536	

All concentrations in mg/L unless otherwise noted

Sample Location 07-3D

			May-18	Oct-18	May-19	Oct-19	May-20	Oct-20
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	314	261	361	258	285	294
BOD		30 300	01.					
COD								
Chloride	AO	250	7	7	12	5	6	8
Conductivity us/cm	7.0	230	625	523	670	504	606	550
DOC	AO	5	023	323	8.9	5.6	6.8	330
N-NO2 (Nitrite)	MAC	1		< 0.10	<0.10	0.75	0.12	<0.10
N-NO3 (Nitrate)	MAC	10		< 0.10	<0.10	<0.10	<0.10	<0.10
Phenols	1717.00	10		10.10	10.20	10.20	10.20	10.120
Sulphate	AO	500						
Total Dissolved Solids	AO	500		340	436	328	394	358
Total Kjeldahl Nitrogen	7.0	300		5.8	6.9	4.87	6.08	4.31
Total phosphorous				3.0	0.5	4.07	0.00	4.51
Hardness as CaCO3		500	272	181	332	184	229	222
Calcium		300	86	56	105	57	72	69
Magnesium			14	10	17	10	12	12
Potassium			13	10	16	12	15	14
Sodium	AO	200	9	8	14	7	10	8
Aluminum	OG	0.1	< 0.01	< 0.01	<0.01	0.02	<0.01	<0.01
Barium	MAC	1	0.32	0.32	0.45	0.02	0.39	0.34
Beryllium	IVIAC	1	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	0.000	0.000	0.51	0.09	0.28	0.09
Cadmium	MAC	0.005	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.005	0.001	0.001	0.002	0.001	0.001	0.001
Cobalt	IVIAC	0.05	0.001	0.001	0.002	0.001	0.001	0.001
Copper	AO	1	< 0.001	< 0.0183	<0.0238	0.0133	0.0194	0.0222
Iron	AO	0.3	47.7	44.5	57.5	50.4	50.1	44.60
Lead	MAC	0.01	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	3.81	3.08	4.4	3.76	3.74	3.52
Molybdenum	AU	0.05	< 0.0005	< 0.005	<0.005	<0.005	<0.005	<0.005
Nickel			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon			25.2	7.6	19	19.6	17.6	18.0
Silver			25.2	7.0	13	13.0	17.0	10.0
Strontium			0.289	0.053	0.385	0.291	0.31	0.26
Thallium					<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.0001 <0.01	<0.0001 <0.01	<0.001	<0.001	<0.001	<0.001
Vanadium			0.003	0.004	0.003	0.003	0.003	0.003
Zinc	AO	5	< 0.003	< 0.004	<0.003	<0.01	<0.01	<0.003
Arsenic	IMAC		< 0.01	< 0.001	\0.01	₹0.01	₹0.01	₹0.01
Fluoride	MAC	0.025 1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium								
Tin	MAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature [°] C			0.7	7 5	77	7 5	7 2	67
pH			8.2	7.5 6.5	7.7 6.6	7.5 6.6	7.3 6.6	6.7 6
Conductivity us/cm			6.51					
conductivity us/ciii			792	436	423	593	656	656

All concentrations in mg/L unless otherwise noted

Sample Location 07-3S

PARAMETER Limit ODWO/S Alkalinity (C,CO3) OG 30-500 184 173 192 205 241 131 1 1 1 1 1 1 1 1				Oct-07	May-08	Oct-08	May-09	Sep-09	May-10
BOD	PARAMETER	Limit	ODWO/S						
BOD	Alkalinity (C _a CO3)		30-500	184	173	192	205	241	131
Chloride	BOD								
Chloride	COD			<5	5	8	25	<5	
Solution Solution	Chloride	AO	250						2
DOC	Conductivity us/cm								
N-NO2 (Nitrite) MAC 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		AO	5						
N-NO3 (Nitrate)	N-NO2 (Nitrite)				<0.10				<0.10
Phenols Sulphate	N-NO3 (Nitrate)								
Sulphate	Phenols								
Total Dissolved Solids	Sulphate	AO	500						
Total phosphorous 0.26 0.15 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									177
Total phosphorous	Total Kjeldahl Nitrogen								<0.10
Hardness as CaCO3									
Section Sect			500						134
Magnesium	Calcium								
Potassium	Magnesium								
Sodium	· ·								
Aluminum		AO	200						
Barium	Aluminum								
Beryllium									
Boron									
Cadmium MAC 0.005 0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 0.003 0.002 0.003 0.003 <0.003 <0.0003 <0.0002 <0.003 <0.003 <0.0002 <0.003 <0.0003 <0.0002 <0.003 <0.0003 <0.0003 <0.0002 <0.003 <0.0003 <0.0003 <0.0002 <0.003 <0.003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005		IMAC	5						
Chromium MAC 0.05 <0.001 0.003 0.003 0.002 0.003 <0.001 Cobalt 0.0034 0.0321 0.0315 0.0266 0.0375 0.0065 Copper AO 1 0.007 0.005 0.003 0.002 0.003 0.003 Iron AO 0.3 0.37 0.22 0.12 0.09 0.14 0.14 Lead MAC 0.01 <0.001									
Cobalt 0.0034 0.0321 0.0315 0.0266 0.0375 0.0065 Copper AO 1 0.007 0.005 0.003 0.002 0.003 0.003 Iron AO 0.3 0.37 0.22 0.12 0.09 0.14 0.14 Lead MAC 0.001 <0.001									
Copper AO 1 0.007 0.005 0.003 0.002 0.003 0.003 Iron AO 0.3 0.37 0.22 0.12 0.09 0.14 0.14 Lead MAC 0.01 <0.001			0.00						
Iron		AO	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.005 <0.005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Manganese AO 0.05 0.29 0.14 0.08 0.06 0.06 0.02 Molybdenum <0.005									
Molybdenum									
Nickel			0.00						
Silicon 6.9 6.8 8.9 7.7 6.1 6.7 Silver <0.0001									
Silver									
Strontium 0.05 0.069 0.099 0.053 0.048 0.057 Thallium <0.0001									
Thallium < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Titanium < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.005 0.005 0.005 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001									
Vanadium 0.004 0.005 0.005 0.005 0.005 0.005 0.001 0.004 0.001 20.01									
Zinc AO 5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature "C 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5									
Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature °C 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5									
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature C PH Selenium Tin									
Phosphorus Dissolved Reactive P Field Parameters B.2 7.3 7.7 7.9 7.2 8.3 pH B.1 7.1 7.3 7.5 7.2 7.5									
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Image: Control of the control of t	. ,								
Selenium MAC 0.01 Image: Control of the control of t	-	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5									
Dissolved Reactive P Field Parameters Temperature °C 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5		,	7.01						
Temperature °C 8.2 7.3 7.7 7.9 7.2 8.3 pH 8.1 7.1 7.3 7.5 7.2 7.5									
pH 8.1 7.1 7.3 7.5 7.2 7.5	Field Parameters								
pH 8.1 7.1 7.3 7.5 7.2 7.5	Temperature [°] C			8.2	7.3	7.7	7.9	7.2	8.3
	рН								
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 07-3S

			Oct-10	Jun-11	Oct-11	Jun-12	Oct-12	Jun-13
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	157	194	215	167	174	181
BOD		30 300						
COD								
Chloride	AO	250	2	2	2	1	1	<1
Conductivity us/cm	, 10	230	318	378	413	319	335	350
DOC	AO	5	010	0.0		010		
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			10.120	10.20		<0.001	<0.001	<0.001
Sulphate	AO	500				10	9	12
Total Dissolved Solids	AO	500	207	246	268	207	218	228
Total Kjeldahl Nitrogen	, 10	300	<0.10	<0.10	<0.10	0.18	<0.10	<0.10
Total phosphorous			10.120	10.120	10.20	0.10	10.20	10.20
Hardness as CaCO3		500	159	197	246	136	164	185
Calcium		300	44	54	69	38	46	51
Magnesium			12	15	18	10	12	14
Potassium			1	1	2	1	1	1
Sodium	AO	200	<2	3	3	<2	2	2
Aluminum	OG	0.1	0.07	0.04	0.02	0.12	0.07	0.02
Barium	MAC	1	0.05	0.06	0.09	0.05	0.06	0.05
Beryllium	IVIAC		<0.001	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	<0.01	<0.01	<0.003	<0.003	<0.01	<0.01
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.05	0.002	0.004	0.002	0.003	0.002	<0.001
Cobalt	IVIAC	0.03	0.0199	0.0077	0.0142	0.0068	0.002	0.0007
Copper	AO	1	0.002	0.002	0.001	0.003	0.001	<0.001
Iron	AO	0.3	0.002	0.002	0.07	0.003	0.05	<0.03
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.04	0.02	0.03	0.01	0.02	<0.01
Molybdenum	710	0.03	<0.005	0.0002	0.0002	< 0.0001	0.0001	10.01
Nickel			<0.005	< 0.05	< 0.01	< 0.001	< 0.01	<0.003
Silicon			7.2	6.84	7.33	6.11	7.37	7.64
Silver			0.0002	0.04	7.55	0.11	7.57	7.01
Strontium			0.049	0.056	0.053	0.055	0.059	0.054
Thallium			<0.0001				< 0.00005	<0.006
Titanium			<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Vanadium			0.004	0.0045	0.0052	0.0041	0.0042	0.003
Zinc	AO	5	<0.01	< 0.005	< 0.005	< 0.005	0.007	0.007
Arsenic	IMAC	0.025	10101	10.003	10.003	10.003	0.007	0.007
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	17.17.10	0.001		< 0.01	< 0.01	< 0.01	< 0.01	
Phosphorus				10.01	10.01	10.01	10.01	
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin		0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C				7.2	7.9	7.8	7.4	7.5
рН				7.6	7.8	6.9	7.7	7.2
Conductivity us/cm				312	332	348	320	280
		-1	1					

All concentrations in mg/L unless otherwise noted

Sample Location 07-3S

BOD COD Chloride COD Chloride Conductivity us/cm Conductiv				Nov-13	Apr-14	Oct-14	Jun-15	Oct-15	May-16
Alkalinity (C ₂ CO3) OG 30-500 187 173 180 165 183 151 BO CO COD COD COD COD COD COD COD COD COD	PARAMETER	Limit	ODWO/S						
BOD COD Chloride AO 250	Alkalinity (C _a CO3)		·	187	173	180	165	183	151
COD	BOD		30 300						
Chloride									
Conductivity us/cm		AΩ	250	1	0.8	0.9	0.9	0.8	1 21
DOC		, 10	230						
N-NO2 (Nitrite) MAC 10 <0.10 <0.10 <0.10 <0.1 <0.1 <0.1 <0.		AΩ	5		0.0	0.1	323	3	333
N-NO3 (Nitrate) MAC 10				<0.10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05
Phenols AO 500 10 10 234 187 230 202 224 156 151 154									
Sulphate	Phenols				0.1	0.2	10.2	10.1	70.00
Total Kjeldahl Nitrogen AO 500 234 187 230 202 224 156 Total Kjeldahl Nitrogen <0.10		AO	500						
Total phosphorous Hardness acaCO3					187	230	202	224	156
Total phosphorous		, 10	300						
Hardness as CaCO3				10.10	0.13	0.17	0.2	10.03	0.11
Calcium 55 54.3 49.8 48.8 54.2 42.5 Magnesium 14 14.6 14.1 13.6 16.9 10.8 Potassium 1 1.5 1.4			500	195	196	182	178	205	151
Magnesium			300						
Potassium									
Sodium									
Aluminum		AΩ	200						
Barium									
Beryllium			_						
Boron		1417 (C	-						
Cadmium MAC 0.005 <0.0001 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00002 <0.0000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 <0.00002 <0.00002 <0.00002 <0.00002 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001		IMAC	5						
Chromium MAC 0.05 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <									
Cobalt 0.0021 0.0018 0.0002 < 0.0001 < 0.001 Copper AO 1 0.002 0.0024 < 0.002									
Copper AO 1 0.002 0.0024 < 0.002 < 0.002 < 0.002 < 0.002 < 0.003 Iron AO 0.3 < 0.03		1711/10	0.03						
Iron		AΩ	1						
Lead									
Manganese AO 0.05 <0.01 0.005 0.006 < 0.001 0.001 0.003 Molybdenum <0.005									
Molybdenum									
Nickel County		, 10	0.03						0.000
Silicon 7.2 6.84 7.33 6.11 7.37 7.64 Silver 0.0002 0.0002 0.056 0.053 0.055 0.059 0.054 Strontium 0.049 0.056 0.053 0.055 0.0099 0.054 Thallium <0.0001									<0.003
Silver 0.0002 0.056 0.053 0.055 0.059 0.054 Thallium <0.0001									
Strontium 0.049 0.056 0.053 0.055 0.059 0.054 Thallium <0.0001					0.01	7.55	0.11	7.07	7.01
Thallium < 0.0001 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0001 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.00007 < 0.0007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <					0.056	0.053	0.055	0.059	0.054
Titanium <0.01 <0.005 <0.005 <0.005 <0.002 Vanadium 0.004 0.0045 0.0052 0.0041 0.0042 0.003 Zinc AO 5 <0.01									
Vanadium 0.004 0.0045 0.0052 0.0041 0.0042 0.003 Zinc AO 5 <0.01									
Zinc AO 5 <0.01 < 0.005 < 0.005 0.007 0.007 Arsenic IMAC 0.025 IMAC									
Arsenic IMAC 0.025 —		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) < 0.01 < 0.01 < 0.01 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature C 7.2 7.9 7.8 7.4 7.5 pH	Arsenic				2.000	2,000	2.000	2130.	
Mercury MAC 0.001	Fluoride								
N-NH3 (Ammonia) Phosphorus PH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C PH TO THE TOTAL T									
Phosphorus Dissolved Reactive P Phosphorus <	N-NH3 (Ammonia)				< 0.01	< 0.01	< 0.01	< 0.01	
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Oissolved Reactive P Field Parameters Temperature "C 7.2 7.9 7.8 7.4 7.5 pH 7.6 7.8 6.9 7.7 7.2	Phosphorus				2:32			5:52	
Selenium MAC 0.01 Image: Control of the control of t	pH (no units)	OG	6.5-8.5						
Tin Dissolved Reactive Р Field Parameters 7.2 7.9 7.8 7.4 7.5 рН 7.6 7.8 6.9 7.7 7.2	Selenium								
Dissolved Reactive P Field Parameters Temperature °C 7.2 7.9 7.8 7.4 7.5 pH 7.6 7.8 6.9 7.7 7.2									
Temperature °C 7.2 7.9 7.8 7.4 7.5 pH 7.6 7.8 6.9 7.7 7.2									
pH 7.6 7.8 6.9 7.7 7.2	Field Parameters				İ				
pH 7.6 7.8 6.9 7.7 7.2					7.2	7.9	7.8	7.4	7.5
·	pH								
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 07-3S

			Nov-16	Apr-17	Oct-17	May-18	Oct-18	May-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	166	164	194	180	191	155
BOD		30 300	100	10.	23.	100	131	133
COD								
Chloride	AO	250	0.76	2	0.9	1		<1
Conductivity us/cm	, . o		316	320	375	360	349	250
DOC	AO	5	010	320	373		0.0	<0.5
N-NO2 (Nitrite)	MAC	1	<0.05	0.1	< 0.05	< 0.10	< 0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.05	0.2	< 0.05	< 0.10	< 0.10	<0.10
Phenols				0.2			0.20	
Sulphate	AO	500						
Total Dissolved Solids	AO	500	202	175	196	234	227	162
Total Kjeldahl Nitrogen	7.0	300	<0.10	0.44	0.3	1.3	< 0.8	<0.75
Total phosphorous			10.120	0	0.5	1.0	10.0	10175
Hardness as CaCO3		500	152	178	192	204	163	178
Calcium		300	42.6	48.9	51.8	57	44	50
Magnesium			11.2	13.5	15.1	15	13	13
Potassium			1.36	1.3	1.3	2	1	1
Sodium	AO	200	2.08	2	2.8	2	2	2
Aluminum	OG	0.1	0.005	0.04	0.02	< 0.01	< 0.01	<0.01
Barium	MAC	1	0.053	0.053	0.06	< 0.06	0.06	0.05
Beryllium	IVIAC		<0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005
Boron	IMAC	5	<0.010	< 0.005	< 0.0001	< 0.0003	< 0.0003	<0.01
Cadmium	MAC	0.005	<0.010		< 0.00014	< 0.0001	< 0.001	<0.001
Chromium	MAC	0.005	<0.001	< 0.000	< 0.002	0.002	0.0001	0.003
Cobalt	IVIAC	0.05	<0.003	< 0.002	< 0.002	0.002	< 0.0002	<0.0002
Copper	AO	1	<0.003	< 0.002	< 0.0001	0.001	< 0.0002	0.011
Iron	AO	0.3	<0.003	0.037	< 0.005	< 0.03	< 0.03	<0.03
Lead	MAC	0.01	<0.010	< 0.00002	< 0.0002	< 0.001	< 0.001	<0.001
Manganese	AO	0.01	<0.002	0.002	0.001	< 0.001	< 0.001	<0.01
Molybdenum	70	0.05	\0.00Z	< 0.002	< 0.001	<0.005	<0.005	<0.005
Nickel			<0.003	0.0012	0.0001	0.006	<0.005	<0.005
Silicon			6.90	6.75	7.87	7.6	7.3	6.9
Silver			0.50	0.75	7.07	<0.0001	0.0003	0.5
Strontium			0.047	0.046	0.051	0.063	0.066	0.045
Thallium			<0.006	< 0.00005	< 0.00005	<0.0001	<0.0001	<0.0001
Titanium			<0.002	< 0.005	< 0.005	0.001	<0.001	<0.01
Vanadium			0.002	0.003	0.0037	0.004	0.005	0.004
Zinc	AO	5	<0.005	< 0.0041	< 0.005	<0.01	<0.01	0.01
Arsenic	IMAC	0.025	\J.UUJ	` 0.003	` 0.003	-U.UI	-0.UI	3.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature "C			7.6	7.3	7.3	7.1	7	7.1
рН			7.7	7.3	7.8	7.3	7.7	7.6
Conductivity us/cm			317	322	302	364	249	185
23/1440617167 43/6111		1	21/	JZZ	302	JU 1	∠ +3	100

All concentrations in mg/L unless otherwise noted

Sample Location 07-3S

Oct-19 May-20 Oct-20

PARAMETER	Limit	ODWO/S					
Alkalinity (C _a CO3)	OG	30-500	187	161	166		
BOD		00000					
COD							
Chloride	AO	250	2	<1	1		
Conductivity us/cm			352	306	319		
DOC	AO	5	1.0	1.2	010		
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10		
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10		
Phenols			10.20	10120	10.20		
Sulphate	AO	500					
Total Dissolved Solids	AO	500	229	199	207		
Total Kjeldahl Nitrogen			<1.5	0.199	<0.100		
Total phosphorous			12.0	0.133	10.200		+
Hardness as CaCO3		500	188	164	178		
Calcium		300	52	46	48		
Magnesium			14	12	14		+
Potassium			1	1	1		+
Sodium	AO	200	2	2	2		+
Aluminum	OG	0.1	0.10	0.01	0.01		
Barium	MAC	1	0.07	0.05	0.06		
Beryllium	WIAC	-	<0.0005	<0.0005	<0.0005		
Boron	IMAC	5	<0.01	<0.01	<0.003		
Cadmium	MAC	0.005	<0.001	<0.001	<0.001		
Chromium	MAC	0.05	0.002	0.001	0.002		
Cobalt	WIAC	0.03	0.0002	<0.002	<0.002		
Copper	AO	1	0.006	<0.001	0.005		
Iron	AO	0.3	0.2	<0.03	0.003		
Lead	MAC	0.01	<0.001	<0.001	<0.001		
Manganese	AO	0.05	<0.01	<0.01	<0.01		
Molybdenum	AO	0.03	<0.005	<0.005	<0.005		
Nickel			<0.005	<0.005	<0.005		
Silicon			7.5	6.8	7.6		
Silver			7.10				
Strontium			0.057	0.048	0.040		
Thallium			<0.0001	<0.0001	<0.0001		
Titanium			<0.01	<0.01	<0.01		
Vanadium			0.004	0.004	0.004		+
Zinc	AO	5	<0.01	<0.01	<0.01		
Arsenic	IMAC	0.025	10.01	10.01	10.02		
Fluoride	MAC	1.5				+	-
Mercury	MAC	0.001					
N-NH3 (Ammonia)	IIIAC	0.001				+	-
Phosphorus						+	-
pH (no units)	OG	6.5-8.5				+	-
Selenium	MAC	0.01				+	-
Tin	IVIAC	0.01				+	-
Dissolved Reactive P							_
Field Parameters						+	+
Temperature °C			7	6.6	6.4	+	
рН			7.8	7.5	7.2		+
Conductivity us/cm			349	300	326		+
All concentrations in ma/L u			349	300	320		

All concentrations in mg/L unless otherwise noted

Sample Location 07-FS

Aluminum OG 0.1 8.26 0.31 0.25 0.24 0.11 0.11 Barium MAC 1 0.68 0.06 0.07 0.06 0.07 0.06 Beryllium <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.000				Oct-07	May-08	Oct-08	May-09	Sep-09	May-10
Alkalinity (C,CO3)	ΡΔΡΔΜΕΤΕΡ	Limit	ODWO/S						
BOD			-	168	168	186	192	215	168
COD		00	30-300						108
Chloride Conductivity us/cm OCC AO AO S S S S S S S S S S S S S								_	
Second conductivity us/cm		ΔΩ	250						2
DOC AO 5 7.3 4.3 2.4 2.7 2.2		7.0	230						
N-NO2 (Nitrite) MAC 10		ΔΩ	5						337
N-NO3 (Nitrate) MAC 10									<0.10
Phenols									
Sulphate	` ,	1717 (C	10						10.10
Total Dissolved Solids AO 500 228 222 247 242 272 219 Total Kjeldahl Nitrogen		ΑO	500						
Total kjeldahl Nitrogen 0.74 0.16 0.19 0.15 <0.10 0.12 Total phosphorous 0.07 <0.05									219
Total phosphorous		7.0	300						
Hardness as CaCO3									0.12
Age			500						166
Magnesium 13 14 15 17 16 13 Potassium 4 3 3 3 3 2 Sodium AO 200 5 -2 -2 4 3 -2 Aluminum OG 0.1 8.26 0.31 0.25 0.24 0.11 0.11 Barium MAC 1 0.68 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.001 -0.001			300						
Potassium									
Sodium									
Aluminum	Sodium	AO	200						
Barium	Aluminum								
Beryllium									
Boron			_						
Cadmium MAC 0.005 0.0007 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	Boron	IMAC	5						
Chromium MAC 0.05 0.043 0.005 0.004 0.004 0.003 <0.001 Cobalt 0.0595 0.0375 0.0242 0.0308 0.0271 0.0071 Copper AO 1 1.72 0.016 0.007 0.011 0.004 0.006 Iron AO 0.3 \$1.2 0.64 0.28 0.48 0.18 0.37 Lead MAC 0.01 0.006 <0.001									
Cobalt 0.0595 0.0375 0.0242 0.0308 0.0271 0.0071 Copper AO 1 1.72 0.016 0.007 0.011 0.004 0.006 Iron AO 0.3 51.2 0.64 0.28 0.48 0.18 0.37 Lead MAC 0.01 0.006 <0.001	Chromium								
Copper AO 1 1.72 0.016 0.007 0.011 0.004 0.006 Iron AO 0.3 51.2 0.64 0.28 0.48 0.18 0.37 Lead MAC 0.01 0.006 <0.001									
Iron	Copper	AO	1						
Lead	Iron		0.3						
Manganese AO 0.05 1.79 0.13 0.06 0.06 0.04 0.02 Molybdenum <0.005	Lead	MAC	0.01	0.006	< 0.001	<0.001	<0.001	< 0.001	<0.001
Nickel Solution Silicon Sili	Manganese	AO	0.05		0.13	0.06	0.06	0.04	
Silicon 7.5 7.2 7.2 8.4 6.3 7.2 Silver 0.0005 0.001 0.0002 0.0008 0.0007 0.001 Strontium 0.052 0.046 0.067 0.058 0.046 0.044 Thallium <0.0001	Molybdenum			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon 7.5 7.2 7.2 8.4 6.3 7.2 Silver 0.0005 0.001 0.0002 0.0008 0.0007 0.001 Strontium 0.052 0.046 0.067 0.058 0.046 0.044 Thallium <0.0001	Nickel			< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Strontium 0.052 0.046 0.067 0.058 0.046 0.044 Thallium <0.0001	Silicon			7.5	7.2	7.2	8.4	6.3	7.2
Thallium	Silver			0.0005	0.001	0.0002	0.0008	0.0007	0.001
Titanium	Strontium			0.052	0.046	0.067	0.058	0.046	0.044
Vanadium 0.004 0.004 0.004 0.005 0.004 0.004 Zinc AO 5 <0.01	Thallium			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Zinc AO 5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	Titanium			< 0.01	0.01	<0.01	0.02	<0.01	0.01
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm	Vanadium			0.004	0.004	0.004	0.005	0.004	0.004
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm	Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature "C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm		IMAC	0.025						
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium MAC Tin Dissolved Reactive P Field Parameters Temperature "C pH 7.7 7.1 7.5 7.6 7 7.9 PH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm		MAC							
Phosphorus Dissolved Reactive P Field Parameters 7.7 7.1 7.5 7.6 7 7.9 PH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229		MAC	0.001						
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229	,								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Selenium Temperature "C Temperature "C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229	•								
Tin Dissolved Reactive P Field Parameters Temperature °C pH 7.7 7.1 7.5 7.6 7 7.9 PH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229									
Dissolved Reactive P Field Parameters Field Parameters 7.7 7.1 7.5 7.6 7 7.9 PH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229		MAC	0.01						
Field Parameters 7.7 7.1 7.5 7.6 7 7.9 Temperature "C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229									
Temperature °C 7.7 7.1 7.5 7.6 7 7.9 pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229									
pH 7.7 7.3 7.5 7.4 6.9 7 Conductivity us/cm 248 246 394 307 310 229									
Conductivity us/cm 248 246 394 307 310 229	•								
	• •			248	246	394	307	310	229

All concentrations in mg/L unless otherwise noted

Sample Location 07-FS

			Oct-10	Jun-11	Oct-11	Jun-12	Oct-12	Jun-13
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	175	160	186	186	169	151
BOD	- 00	30 300	173	100	100	100	103	131
COD								
Chloride	AO	250	2	1	1	1	2	<1
Conductivity us/cm	7.0	250	347	308	360	350	323	293
DOC	AO	5	3-17	300	300	330	323	233
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols	1417.00	10	10.10	10.10	10.10	<0.001	<0.001	<0.01
Sulphate	AO	500				11	9	8
Total Dissolved Solids	AO	500	226	200	234	228	210	190
Total Kjeldahl Nitrogen	70	300	<0.10	0.16	<0.10	<0.10	<0.10	<0.10
Total phosphorous			₹0.10	0.10	\0.10	\0.10	\0.10	\0.10
Hardness as CaCO3		500	173	162	221	138	181	150
Calcium		300	48	45	62	37	51	42
Magnesium			13	12	16	11	13	11
Potassium			2	2	3	2	2	2
Sodium	AO	200	<2	2	2	2	<2	<2
Aluminum	OG	0.1	0.08	0.27	0.09	0.31	0.11	0.22
Barium	MAC	1	0.06	0.27	0.09	0.07	0.11	0.22
Beryllium	IVIAC	Т	<0.001	<0.005	<0.0005	<0.005	<0.005	<0.005
Boron	INAAC	5						
Cadmium	IMAC		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt	MAC	0.05	0.002	0.006	0.003	0.005	0.002	0.002
	4.0	1	0.0144	0.0087	0.0148	0.0106	0.0081	0.0102
Copper	AO	1	0.004	0.011	0.003	0.009	0.004	0.01
Iron	AO	0.3	0.15	0.56	0.17	0.46	0.12	0.46
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.03	0.02	0.03	0.03	0.01	0.02
Molybdenum			<0.005	0.0001	0.0003	0.0002	< 0.0001	2 222
Nickel			<0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.003
Silicon			7.3	7.23	7.14	6.07	7.15	7.26
Silver			0.0005					
Strontium			0.048	0.05	0.05	0.057	0.051	0.057
Thallium			<0.0001			< 0.00005		
Titanium			<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Vanadium		_	0.003	0.004	0.0046	0.0047	0.0037	0.003
Zinc	AO	5	<0.01	< 0.005	< 0.005	< 0.005	0.007	0.006
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)				< 0.01	< 0.01	< 0.01	< 0.01	
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			6.6	7.2	7.7	7.3	7.7	7.3
рН			7.9	7.8	7	7.4	7.5	7.3
Conductivity us/cm			350	282	316	362	299	327

All concentrations in mg/L unless otherwise noted

Sample Location 07-FS

			Nov-13	Apr-14	Oct-14	Jun-15	Oct-15	May-16
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	183	156	170	174	163	184
BOD								
COD								
Chloride	AO	250	1	0.7	0.9	0.9	0.7	1.15
Conductivity us/cm			356	316	323	332	310	363
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	<0.10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05
N-NO3 (Nitrate)	MAC	10	<0.10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05
Phenols			< 0.001					
Sulphate	AO	500	8					
Total Dissolved Solids	AO	500	231	168	217	209	202	182
Total Kjeldahl Nitrogen			<0.10	0.16	0.11	0.4	0.83	0.12
Total phosphorous								
Hardness as CaCO3		500	195	177	172	186	181	176
Calcium			55	49.5	47.2	51.4	48.3	48.1
Magnesium			14	13	13	14	14.7	13.5
Potassium			2	2.4	2.2	2.3	2.2	2.34
Sodium	AO	200	<2	2.2	2.1	2.4	2	3.07
Aluminum	OG	0.1	0.07	0.15	0.09	0.17	0.02	0.013
Barium	MAC	1	0.07	0.06	0.056	0.061	0.062	0.057
Beryllium		_	<0.0005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001
Boron	IMAC	5	<0.01	< 0.005	0.005	< 0.005	< 0.005	<0.010
Cadmium	MAC	0.005	<0.0001	0.00003	< 0.00002	< 0.00002	< 0.00002	<0.001
Chromium	MAC	0.05	0.002	0.002	< 0.002	0.002	< 0.002	<0.003
Cobalt		0.00	0.0026	0.0011	0.0033	0.0013	< 0.0001	<0.001
Copper	AO	1	0.004	0.0056	0.002	0.003	< 0.002	<0.003
Iron	AO	0.3	0.14	0.144	0.126	0.161	0.027	<0.010
Lead	MAC	0.01	<0.001	0.00013	0.00006	0.00007	< 0.00002	<0.002
Manganese	AO	0.05	<0.01	0.005	0.01	0.002	< 0.001	<0.002
Molybdenum		0.00	<0.005	0.0001	0.0003	0.0002	< 0.0001	101002
Nickel			<0.005	< 0.01	< 0.01	< 0.01	< 0.01	<0.003
Silicon			7.3	7.23	7.14	6.07	7.15	7.26
Silver			0.0005	7.20	7.2.	0.07	7.20	7.20
Strontium			0.048	0.05	0.05	0.057	0.051	0.057
Thallium			<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.006
Titanium			<0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Vanadium			0.003	0.004	0.0046	0.0047	0.0037	0.003
Zinc	AO	5	<0.01	< 0.005	< 0.005	< 0.005	0.007	0.006
Arsenic	IMAC	0.025				2.200		
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)				< 0.01	< 0.01	< 0.01	< 0.01	
Phosphorus				5.52				
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin	,	5.52						
Dissolved Reactive P								
Field Parameters								
Temperature [°] C			6.6	7.2	7.7	7.3	7.7	7.3
рН			7.9	7.8	7	7.4	7.5	7.3
Conductivity us/cm			350	282	316	362	299	327

All concentrations in mg/L unless otherwise noted

Sample Location 07-FS

			Nov-16	Apr-17	Oct-17	May-18	Oct-18	May-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	198	189	210	236	209	182
BOD								
COD								
Chloride	AO	250	0.89	2	0.8	2	2	<1
Conductivity us/cm			378	317	402	441	406	275
DOC	AO	5		02.				
N-NO2 (Nitrite)	MAC	1	<0.05	0.2	< 0.05	< 0.10	< 0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.05	0.2	< 0.05	< 0.10	< 0.10	<0.10
Phenols				0.0	0.00			
Sulphate	AO	500						
Total Dissolved Solids	AO	500	228	190	218	287	264	179
Total Kjeldahl Nitrogen			<0.10	0.3	0.5	1.6	0.8	<3.0
Total phosphorous			0		0.0			
Hardness as CaCO3		500	201	178	229	251	194	192
Calcium			56.2	49.4	62.4	71	53	54
Magnesium			14.7	13.3	17.8	18	15	14
Potassium			2.48	2.1	2.1	3	2	2
Sodium	AO	200	2.35	1.9	2.8	2	3	2
Aluminum	OG	0.1	0.013	0.04	0.04	< 0.01	< 0.01	<0.01
Barium	MAC	1	0.058	0.059	0.069	0.08	0.08	0.06
Beryllium			< 0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005
Boron	IMAC	5	<0.010	< 0.005	< 0.005	< 0.01	< 0.01	<0.01
Cadmium	MAC	0.005	<0.001		< 0.000014		< 0.0001	<0.0001
Chromium	MAC	0.05	< 0.003	< 0.002	< 0.002	0.002	0.002	0.002
Cobalt			< 0.001	< 0.0001	< 0.0001	< 0.0002	< 0.0002	<0.0002
Copper	AO	1	< 0.003	0.002	< 0.002	< 0.001	0.002	<0.001
Iron	AO	0.3	< 0.010	0.013	0.016	< 0.03	< 0.03	< 0.03
Lead	MAC	0.01	<0.002	< 0.00002	< 0.00002	< 0.001	< 0.001	< 0.001
Manganese	AO	0.05	<0.002	0.001	< 0.001	< 0.01	< 0.01	< 0.01
Molybdenum				< 0.0001	< 0.0001	0.006	<0.005	<0.005
Nickel			< 0.003	0.0012	0.0014	<0.005	<0.005	<0.005
Silicon			7.44	7.41	7.76	3.8	5.7	7.1
Silver						< 0.0001	< 0.0001	
Strontium			0.051	0.044	0.061	0.263	0.303	0.046
Thallium			<0.006	< 0.00005	< 0.00005	<0.0001	<0.0001	<0.0001
Titanium			< 0.002	< 0.005	< 0.005	< 0.01	< 0.01	<0.01
Vanadium			0.003	0.0038	0.0028	< 0.001	<0.001	0.003
Zinc	AO	5	<0.005	< 0.005	< 0.005	< 0.01	< 0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature [°] C			6.4	7.3	7.0	7.1	7	6.8
pH			7.2	6.9	7.8	7.3	7.5	7.6
Conductivity us/cm			385	318	351	364	301	197

All concentrations in mg/L unless otherwise noted

Sample Location 07-FS

Oct-19 May-20 Oct-20

Alkalinity (C ₈ CO3) OG 30-500 226 195 205 BBD CO COD Chloride AO 250 2 <1 5 Conductivity us/cm DCC AO 5 AVEC ACT ACT ACT ACT ACT ACT ACT ACT ACT AC	PARAMETER	Limit	ODWO/S					
BOD COD				226	195	205		
COD			30 300	220	133	203	_	
Conductivity us/cm								
DOC	Chloride	AO	250	2	<1	5		
DOC	Conductivity us/cm			418	356	383		
N-NO2 (Nitrite) MAC		AO	5					
N-NO3 (Nitrate) MAC 10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <	N-NO2 (Nitrite)			<0.10	<0.10	< 0.10		
Phenois Sulphate			10					
Sulphate AO 500 272 231 249 Total Dissolved Solids AO 500 272 231 249 Total Jejdahl Nitrogen 4.1.5 0.532 <0.100								
Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Kjeldahl Nitrogen Total Sphorous Hardness as CaCO3 Calcium Bardness as CaCO3 Calcium AO	Sulphate	AO	500					
Total phosphorous Total phosph				272	231	249	1	
Total phosphorous Hardness as CaCO3							-	-
Hardness as CaCO3 S00 225 202 213 S00 S0				12.0	0.332	10.200	+	+
Calcium 62 56 59 Magnesium 17 15 16 Potassium 2 2 2 Sodium AO 200 3 2 3 Aluminum OG 0.1 <0.01			500	225	202	213	+	+
Magnesium 17 15 16 Potassium 2 2 2 2 Sodium AO 200 3 2 3 Aluminum OG 0.1 <0.01			300				_	
Potassium								
Sodium								
Aluminum		۸0	200				+	_
Barium							+	
Beryllium							+	+
Boron		IVIAC	1				-	-
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 Chromium MAC 0.05 0.002 0.001 0.002 Cobalt <0.0002		INAAC	-					
Chromium MAC 0.05 0.002 0.001 0.002 Cobalt Copper AO 1 0.003 0.002 <0.0002								
Cobalt < <0.0002 <0.0002 <0.0002 Copper AO 1 0.003 0.002 0.002 Copper AO 1 0.003 0.003 0.002 0.002 <								
Copper AO 1 0.003 0.002 0.002 Incompany		MAC	0.05				_	
Iron			4					
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0							_	
Manganese AO 0.05 <0.01 <0.01 <0.005 Molybdenum <0.005							_	
Molybdenum <0.005							_	
Nickel <0.005		AO	0.05				_	
Silicon 7.1 7.20 7.90 Silver 0.068 0.06 0.05 Strontium 0.068 0.06 0.05							_	
Silver 0.068 0.06 0.05 Strontium 0.068 0.06 0.05 Thallium <0.0001							_	
Strontium 0.068 0.06 0.05 ■ Thallium < 0.0001				7.1	7.20	7.90		
Thallium < <0.0001				0.000	0.06	0.05		
Titanium <0.01								
Vanadium 0.003 0.003 0.003 0.003 Zinc AO 5 <0.01								
Zinc AO 5 <0.01 <0.01 <0.01 Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin								
Arsenic IMAC 0.025 ————————————————————————————————————								
Fluoride MAC 1.5				<0.01	<0.01	<0.01		
Mercury MAC 0.001 Image: Control of the control of t								
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature "C pH To Tin								
Phosphorus OG 6.5-8.5 Selenium MAC 0.01 Selenium MAC 0.01 Selenium		MAC	0.001					
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Selenium MAC 0.01 Selenium								
Selenium MAC 0.01								
Tin Dissolved Reactive P Section 1 Section 2 Section 3								
Dissolved Reactive P 6.8 6.4 6.4 PH 7.6 7.3 7		MAC	0.01					
Field Parameters 6.8 6.4 6.4 PH 7.6 7.3 7								
Temperature °C 6.8 6.4 6.4 pH 7.6 7.3 7								
pH 7.6 7.3 7								
	-							
Conductivity us/cm	•							
All concentrations in mg/L unless otherwise noted	Conductivity us/cm			417	358	395		

All concentrations in mg/L unless otherwise noted

Sample Location 07-FD

PARAMETER Limit ODWO/S				Nov-08	May-09	Sep-09	May-10	Oct-10	Jun-11
BOD	PARAMETER	Limit	ODWO/S						
COD	Alkalinity (C _a CO3)	OG	30-500	64	157	286	252	254	181
Chloride	BOD								
Chloride	COD					41			
Section Sect	Chloride	AO	250				10	11	8
DOC	Conductivity us/cm								
N-NO2 (Nitrite) MAC 10		AO	5						
N-NO3 (Nitrate)	N-NO2 (Nitrite)			< 0.10	<0.10		<0.10	<0.10	<0.10
Phenois	N-NO3 (Nitrate)								
Sulphate	Phenols			0.017	0.003	< 0.001			
Total Dissolved Solids	Sulphate	AO	500						
Total phosphorous							333	329	234
Total phosphorous	Total Kjeldahl Nitrogen								
Hardness as CaCO3 Calcium 30 32 54 45 51 31 Magnesium 7 8 14 13 13 8 Potassium AO 200 16 48 37 41 20 28 Aluminum OG 0.1 0.12 0.05 0.08 0.02 0.09 0.04 Barium MAC 1 0.1 0.12 0.05 0.08 0.02 0.09 0.04 Barium MAC 1 0.1 0.12 0.15 0.01 0.001 0.001 0.001 0.001 0.0									
Calcium 30 32 54 45 51 31 Magnesium 7 8 14 13 13 8 Potassium 6 8 10 9 8 8 Sodium AO 200 16 48 37 41 20 28 Aluminum OG 0.1 0.12 0.05 0.08 0.02 0.09 0.04 Barium MAC 1 0.1 0.12 0.15 0.11 0.12 0.07 Beryllium <0.001			500				166	181	110
Magnesium	Calcium								
Potassium									
Sodium									
Aluminum	Sodium	AO	200						
Barium	Aluminum								
Beryllium	Barium								
Boron	Beryllium		_						
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0		IMAC	5						
Chromium MAC 0.05 <0.001 <0.001 0.002 <0.001 <0.001 0.003 Cobalt 0.0502 0.0101 0.0331 0.003 0.0026 0.0082 Copper AO 1 <0.001									
Cobalt AO 1 0.0502 0.0101 0.0331 0.003 0.0026 0.0082 Copper AO 1 <0.001									
Copper			0.00						
Iron		AO	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.000 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0									
Manganese AO 0.05 3.06 3.67 2.44 0.55 0.66 0.26 Molybdenum < 0.005									
Molybdenum									
Nickel Silicon Silic			0.00						
Silicon 3.1 5 4.6 2.4 4 2.1 Silver <0.0001									
Silver <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									
Strontium 0.119 0.193 0.19 0.192 0.121 0.11 Thallium <0.0001									
Thallium <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001									
Titanium	Thallium								
Vanadium <0.001									
Zinc									
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6		AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature "C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6									
Mercury MAC 0.001 N-NH3 (Ammonia) Phosphorus Ph (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature "C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6									
N-NH3 (Ammonia) Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6									
Phosphorus Dissolved Reactive P Field Parameters 7 7 TopH 7.8 7.7 7.1 Respective P 8 7 7 Pield Parameters 7 7 7 PH 7.8 7.7 7.1 8.6									
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Oissolved Reactive P Field Parameters Temperature "C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6	,								
Selenium MAC 0.01 Image: Control of the control of t	-	OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 7 Temperature °C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6									
Dissolved Reactive P Field Parameters Temperature °C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6		,	7.01						
Temperature °C 7.6 8 7 7 pH 7.8 7.7 7.1 8.6									
pH 7.8 7.7 7.1 8.6									
pH 7.8 7.7 7.1 8.6	Temperature °C			7.6	8		7		7
							7.1		8.6
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 07-FD

PARAMETER				Oct-11	Jun-12	Jun-12	Oct-12	Jun-13	Nov-13
Alkalinity (C ₂ CO3) OG 30-500 151 161 168 168 111 116	PARAMETER	Limit	opwo/s			QA/QC			
BOD Chloride				151	161		168	111	116
Chloride	BOD		30 300	131	101	100	100		110
Chloride									
Conductivity us/cm		AO	250	6	7	7	7	5	5
DOC N-NO2 (Nitrite) MAC 1		,			-	-	-		
N-NO2 (Nitrite) MAC 1 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0		AO	5						
N-NO3 (Nitrate) MAC 10				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols Sulphate									
Sulphate									
Total Kjeldahl Nitrogen 1.26	Sulphate	AO	500						
Total phosphorous				190					
Total phosphorous Hardness as CaCO3 S00 77 91 103 124 77 80 Calcium 21 25 28 35 21 22 22 Magnesium 6 7 8 9 6 6 6 Potassium 7 7 8 9 7 8 9 7 8 Sodium AO 200 23 17 13 16 11 17 17 Aluminum OG 0.1 0.04 0.02 0.005 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.05		-							
Hardness as CaCO3									
Calcium 21 25 28 35 21 22 Magnesium 6 7 8 9 7 8 Sodium AO 200 23 17 13 16 11 17 Aluminum OG 0.1 0.04 0.02 0.02 0.02 0.02 0.02 Barium MAC 1 0.07 0.09 0.08 0.07 0.04 0.04 Beryllium <0.0005			500	77	91	103	124	77	80
Magnesium	Calcium								
Potassium	Magnesium								
Sodium									
Aluminum		AO	200						
Barium									
Beryllium									
Boron		1717 10							
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0		IMAC	5						
Chromium MAC 0.05 <0.001 0.002 0.002 <0.001 <0.001 <0.001 Cobalt 0.0152 0.0009 0.0092 0.0019 0.0116 0.0024 Copper AO 1 <0.001									
Cobalt 0.0152 0.0009 0.0092 0.0019 0.0116 0.0024 Copper AO 1 <0.001									
Copper			0.00						
Iron		AΩ	1						
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025 <0.0025									
Manganese AO 0.05 0.25 0.51 0.5 0.35 0.27 0.13 Molybdenum 0.002 0.0021 0.0045 0.0014 0.0026 Nickel < 0.01									
Molybdenum	Manganese								
Nickel County									
Silicon Strontium Strontium Silicon									< 0.003
Silver Strontium 0.154 0.157 0.085 0.125 0.119 0.160 Thallium < 0.00005	Silicon								
Thallium < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0002 < 0.0002 < 0.0007 0.0003 < 0.0002 < 0.0002 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	Silver								-
Thallium < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0003 < 0.0002 < 0.0002 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	Strontium			0.154	0.157	0.085	0.125	0.119	0.160
Titanium < 0.005 < 0.005 < 0.005 < 0.005 < 0.002 Vanadium 0.0009 0.0007 0.0012 0.0007 0.0003 < 0.002	Thallium								
Vanadium 0.0009 0.0007 0.0012 0.0007 0.0003 <0.002 Zinc AO 5 < 0.005									
Zinc									
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 1.44 1.42 1.26 1.39 1.36 Phosphorus P	Zinc	AO	5						
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 (Ammonia) 1.44 1.42 1.26 1.39 1.36 Phosphorus Phosph									
Mercury MAC 0.001 1.44 1.42 1.26 1.39 1.36 Phosphorus pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Image: Control of the control of									
N-NH3 (Ammonia) Phosphorus pH (no units) Selenium Tin Dissolved Reactive P Field Parameters Temperature "C pH 8.2 1.44 1.42 1.26 1.39 1.39 1.36 1.39 1.39 1.36 1.39 1.39 1.39 1.36 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39									
Phosphorus DH (no units) OG 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 6.5-8.5 7.2	N-NH3 (Ammonia)			1.44	1.42	1.26	1.39	1.36	
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.4 7.8 8.2 7.7 7.9 pH 8.2 8.1 7.9 7.8 7.6								-	
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters 7.4 7.8 8.2 7.7 7.9 pH 8.2 8.1 7.9 7.8 7.6		OG	6.5-8.5						
Tin Dissolved Reactive P Field Parameters 7.4 7.8 8.2 7.7 7.9 pH 8.2 8.1 7.9 7.8 7.6									
Field Parameters 7.4 7.8 8.2 7.7 7.9 pH 8.2 8.1 7.9 7.8 7.6									
Temperature °C 7.4 7.8 8.2 7.7 7.9 pH 8.2 8.1 7.9 7.8 7.6	Dissolved Reactive P								
pH 8.2 8.1 7.9 7.8 7.6	Field Parameters								
pH 8.2 8.1 7.9 7.8 7.6	Temperature [°] C			7.4		7.8	8.2	7.7	7.9
	рН								
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Sample Location 07-FD

DADAMETED	Linait	ODWO/s	Apr-14	Apr-14 BH 07-6	Oct-14	Jun-15	Oct-15	May-16
PARAMETER Alkalinity (C _a CO3)	Limit OG	ODWO/S 30-500	115	QA/QC 117	111	108	104	142
BOD	OG	30-300	113	11/	111	100	104	142
COD								
Chloride	AO	250	4.9	4.9	5	4.9	4.6	5.21
Conductivity us/cm	AO	230	247	250	219	219	215	289
DOC	AO	5	247	230	213	219	213	209
N-NO2 (Nitrite)	MAC	1	< 0.10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05
N-NO3 (Nitrate)	MAC	10	< 0.10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05
Phenols	IVIAC	10	< 0.10	< 0.10	₹ 0.10	₹ 0.1	< 0.1	₹0.05
Sulphate	AO	500						
Total Dissolved Solids	AO	500	132	133	147	134	134	122
Total Kjeldahl Nitrogen	AU	300	1.97	2.06	1.59	2.1	1.64	2.01
Total phosphorous			1.57	2.00	1.59	2.1	1.04	2.01
Hardness as CaCO3		500	94	95	54	78	77	111
Calcium		300	25.6	25.8	14.3	21.1	19.8	29.2
Magnesium			7.39	7.44	4.47			9.13
Potassium						6.22	6.62 6.7	
Sodium	40	200	8.3 13.2	8.3 12.8	5.8	7 8.2		7.76
Aluminum	AO OG	200		0.03	22.4		12.9	8.14
Barium		0.1	0.03	0.03	0.05	0.02	< 0.01	<0.004
Beryllium	MAC	1	0.044		0.017	0.045	0.042	0.056
-	10.40.0		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001
Boron	IMAC	5	0.047	0.047	0.047	0.038	0.056	0.044
Chanacian	MAC	0.005	0.00002	0.00002	< 0.00002	< 0.00002	< 0.00002	<0.001
Chromium	MAC	0.05	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.003
Cobalt			0.0021	0.0002	0.0044	0.0012	< 0.0001	<0.001
Copper	AO	1	0.0004	< 0.0001	0.002	< 0.002	< 0.002	<0.003
Iron	AO	0.3	0.849	0.917	0.096	1.22	0.579	1.25
Lead	MAC	0.01	0.00003	0.00002	0.00011	< 0.00002	< 0.00002	<0.002
Manganese	AO	0.05	0.174	0.184	0.079	0.216	0.166	0.221
Molybdenum				0.002	0.0015	< 0.005	< 0.005	
Nickel			<0.003	0.001	0.0008	< 0.005	< 0.005	<0.003
Silicon			2.64	2.42	2.65	2.4	2.4	2.34
Silver								
Strontium			0.113	0.124	0.104	0.12	0.141	0.160
Thallium			<0.006	< 0.00005	< 0.00005	< 0.0001	< 0.0001	<0.006
Titanium			<0.002	< 0.005	< 0.005	< 0.01	< 0.01	<0.002
Vanadium			<0.002	0.0006	0.0003	< 0.001	< 0.001	<0.002
Zinc	AO	5	<0.005	< 0.005	< 0.005	< 0.01	< 0.01	0.009
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3 (Ammonia)								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature °C			6.7	7.5	7.8	8.2	7.7	7.9
рН			7.6	7.4	8.1	7.9	7.8	7.6
Conductivity us/cm			230	232	224	242	200	264

All concentrations in mg/L unless otherwise noted

Sample Location 07-FD

			Nov-16	Apr-17	Oct-17	May-18	Oct-18	May-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	116	111	99	102	120	118
BOD								
COD								
Chloride	AO	250	3.49	4.5	3.5	4	5	4
Conductivity us/cm			233	225	201	216	245	205
DOC	AO	5						
N-NO2 (Nitrite)	MAC	1	< 0.05	0.1	< 0.05	< 0.10	< 0.10	<0.10
N-NO3 (Nitrate)	MAC	10	<0.05	< 0.1	< 0.05	< 0.10	< 0.10	<0.10
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	124	121	106	140	159	133
Total Kjeldahl Nitrogen			1.75	2.06	1.7	3.1	2.3	3.2
Total phosphorous			217.0		,	0.2		0.1
Hardness as CaCO3		500	86.6	86	74	84	81	95
Calcium			23.4	22.9	19.5	22	21	25
Magnesium			6.84	6.93	6.15	7	7	8
Potassium			6.64	7	6.4	6	6	6
Sodium	AO	200	6.40	10.9	10	8	9	11
Aluminum	OG	0.1	0.013	0.02	0.02	< 0.01	< 0.01	<0.01
Barium	MAC	1	0.034	0.036	0.041	0.04	0.04	0.04
Beryllium	IVIAC		<0.001	< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005
Boron	IMAC	5	0.040	0.041	0.042	0.03	0.04	0.04
Cadmium	MAC	0.005	<0.001	< 0.000020		< 0.0001	< 0.0001	<0.0001
Chromium	MAC	0.005	<0.001	< 0.002	< 0.00014	< 0.0001	< 0.0001	0.001
Cobalt	IVIAC	0.03	<0.003	< 0.002	< 0.002	< 0.0001	< 0.001	<0.001
Copper	AO	1	<0.001	< 0.0001	0.0001	< 0.0002	< 0.0002	<0.001
Iron	AO	0.3	0.470	0.64	0.539	0.48	0.59	0.39
Lead	MAC	0.01	<0.002	< 0.00002	< 0.00002	< 0.001	< 0.001	<0.001
Manganese	AO	0.01	0.136	0.00002	0.13	0.12	0.16	0.16
Molybdenum	AU	0.03	0.130	0.13	0.0015	< 0.005	< 0.005	<0.005
Nickel			<0.003	0.002	0.0013	< 0.005	< 0.005	<0.005
Silicon			2.64	2.42	2.65	2.4	20.4	2.1
Silver			2.04	2.42	2.03	2.4	20.4	2.1
Strontium			0.112	0.124	0.104	0.12	0.141	0.127
Thallium			0.113 <0.006	0.124 < 0.00005	0.104 < 0.00005	< 0.0001	0.141 < 0.0001	<0.0001
Titanium			<0.008	< 0.0005	< 0.0005	< 0.0001	< 0.001	<0.001
Vanadium			<0.002	0.0006	0.0003	< 0.01	< 0.01	<0.01
Zinc	40							<0.001
Arsenic	AO	5	<0.005	< 0.005	< 0.005	< 0.01	< 0.01	\U.U1
Fluoride	IMAC MAC	0.025 1.5						
Mercury								
N-NH3 (Ammonia)	MAC	0.001						
Phosphorus								
pH (no units)	00	6505						
Selenium	OG	6.5-8.5						
Tin	MAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C			C 7	7.5	7.6	7.2	7.0	7.3
•			6.7 7.6	7.5	7.6	7.3	7.2	7.2
pH Conductivity us/sm			230	7.4	8.1	7.7	7.6	7.8
Conductivity us/cm		1	230	232	151	183	186	166

All concentrations in mg/L unless otherwise noted

Sample Location 07-FD

Oct-19	May-20	Oct-20

PARAMETER	Limit	ODWO/S					
Alkalinity (C _a CO3)	OG	30-500	104	110	95		
BOD		30 300					
COD							
Chloride	AO	250	5	5	4		
Conductivity us/cm			207	214	190		
DOC	AO	5					
N-NO2 (Nitrite)	MAC	1	<0.10	<0.10	<0.10		
N-NO3 (Nitrate)	MAC	10	<0.10	<0.10	<0.10		
Phenols			10.20	10.20	10.120		
Sulphate	AO	500					
Total Dissolved Solids	AO	500	135	139	124		
Total Kjeldahl Nitrogen			1.86	2.01	1.76		
Total phosphorous			2.00	2.01	2.70		
Hardness as CaCO3		500	58	76	67		
Calcium		300	15	19	17		
Magnesium			5	7	6		
Potassium			5	6	6		
Sodium	AO	200	17	12	10		
Aluminum	OG	0.1	<0.01	<0.01	0.01		
Barium	MAC	1	0.03	0.04	0.03		
Beryllium	IVIAC	_	<0.0005	<0.0005	<0.0005		
Boron	IMAC	5	0.005	0.0003	0.0003		
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001		
Chromium	MAC	0.003	<0.0001	<0.0001	<0.0001		
Cobalt	IVIAC	0.03	<0.001	<0.001	<0.001		
Copper	AO	1	0.0002	0.0002	0.0002		
Iron	AO	0.3	0.002	0.001	0.004		
Lead	MAC	0.01	<0.001	<0.001	<0.001		
Manganese	AO	0.01	0.1	0.14	0.17		
Molybdenum	AU	0.05	<0.005	<0.005	<0.005		
Nickel			<0.005	<0.005	<0.005		
Silicon			2.1	2.2	2.10		
Silver			2.1	2.2	2.10		
Strontium			0.09	0.12	0.09		
Thallium			<0.0001	<0.0001	<0.0001		
Titanium							
			<0.01 <0.001	<0.01	<0.01		
Vanadium	•	_		<0.001	<0.001		
Zinc	AO	5	<0.01	<0.01	<0.01		
Arsenic	IMAC	0.025					
Fluoride	MAC	1.5					
Mercury	MAC	0.001					
N-NH3 (Ammonia)							
Phosphorus		0.5.5.					
pH (no units)	OG	6.5-8.5					
Selenium	MAC	0.01					
Tin							
Dissolved Reactive P							
Field Parameters							
Temperature °C			7.2	7.0	6.6		
pH			8	7.6	7.2		
Conductivity us/cm			209	214	200		

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

			Nov-08	May-09	Sep-09	May-10	Oct-10	Jun-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	142	107	105	92	93	92
BOD			6	1	2			
COD			8	8	<5			
Chloride	AO	250	16	19	17	16	21	20
Conductivity us/cm			334	293	278	258	260	258
DOC	AO	5	2.1	2	2.2			
N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols			<0.001	<0.001	<0.001			
Sulphate	AO	500	9	11	9			
Total Dissolved Solids	AO	500	217	190	181	168	169	168
Total Kjeldahl Nitrogen			1.92	1.24	0.97	1.21	0.82	0.9
Total phosphorous			0.07	0.04	1.3		0.02	0.0
Hardness as CaCO3	OG	500	133	114	102	88	93	95
Calcium		300	40	34	31	27	29	28
Magnesium			8	7	6	5	5	6
Potassium			6	5	5	4	4	4
Sodium	AO	200	8	7	8	7	7	8
Aluminum	OG	0.1	<0.01	0.01	<0.01	0.02	<0.01	0.04
Barium	MAC	1	0.12	0.07	0.07	0.06	0.06	0.05
Beryllium	IVIAC	<u>+</u>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
Boron	IMAC	5	0.04	0.02	0.001	0.02	0.02	<0.003
Cadmium	MAC	0.005	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.001
Chromium	MAC	0.005	<0.001	<0.001	<0.0001	<0.0001	<0.0001	0.001
Cobalt	IVIAC	0.03	0.0305	0.0122	0.0359	0.0004	0.001	0.0001
Copper	AO	1	<0.001	<0.0122	<0.001	<0.001	<0.019	< 0.0003
Iron	AO	0.3	2.83	2.23	1.27	1.02	0.8	0.79
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	2.03	1.73	1.78	1.45	1.46	1.26
Molybdenum	AU	0.03	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005
Nickel			0.005					
Silicon			11.2	<0.005 8.8	<0.005 9.1	<0.005 7.4	<0.005 8.4	<0.005 7.7
Silver			<0.0001		<0.0001	<0.0001		
Strontium			0.127	<0.0001			<0.0001	<0.0001
Thallium			<0.0001	0.111	0.115	0.11	0.108	0.111
			<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium Vanadium			0.002	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	4.0		<0.002	<0.001	0.002	0.001	<0.001	<0.001
	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic Fluoride	IMAC	0.025						
	MAC	1.5						
Mercury N-NH3	MAC	0.001						
Phosphorus		+						
_	00	6505						
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin Dissolved Reactive P								
Field Parameters								
Temperature ^o C			0	0.4	7 7	0.5	7	7.0
pH		+	9	9.1	7.7	8.5	7	7.6
Conductivity us/cm			6.64	7.5	7.7	7.8	8.2	7.6
Conductivity us/cm			848	309	250	259	198	206

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

			Jun-11	Oct-11	Jun-12	Oct-12	Jun-13	Jun-13 Dup
PARAMETER	Limit	ODWO/S	QA/QC					08-2
Alkalinity (C _a CO3)	OG	30-500	93	99	87	91	99	100
BOD								
COD								
Chloride	AO	250	20	18	19	18	18	19
Conductivity us/cm			251	260	234	252	265	264
DOC	AO	5						
N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols					< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	AO	500			7	8	7	7
Total Dissolved Solids	AO	500	163	169	152	164	172	172
Total Kjeldahl Nitrogen			1	1.1	0.71	0.58	0.69	0.66
Total phosphorous								
Hardness as CaCO3	OG	500	88	97	76	90	100	100
Calcium			27	29	22	28	30	30
Magnesium			5	6	5	5	6	6
Potassium			4	4	3	4	3	3
Sodium	AO	200	8	9	7	8	9	9
Aluminum	OG	0.1	0.03	0.09	0.07	0.19	0.15	0.19
Barium	MAC	1	0.05	0.05	0.05	0.05	0.05	0.05
Beryllium		_	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	<0.01	0.01	0.01	0.01	0.02	0.01
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	0.001	<0.001	0.001	<0.001	<0.001	<0.001
Cobalt	1417 (C	0.03	0.0003	0.0008	0.0101	0.0009	0.0007	0.0003
Copper	AO	1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	AO	0.3	0.75	0.91	0.57	0.62	0.83	0.85
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	1.19	1.18	1.01	0.98	1.11	1.1
Molybdenum	7.10	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			7.4	8	8.3	7	8.1	9
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.11	0.11	0.099	0.108	0.135	0.135
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium			<0.001	<0.001	<0.001	<0.001	<0.001	<0.01
Vanadium			<0.001	<0.001	<0.001	<0.001	<0.001	<0.01
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	₹0.01	10.01	₹0.01	\U.U1	\U.U1	\0.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.3-8.3						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature ^o C				70	77	7	8.6	
pH				7.8 7.2	7.7 7.5	6.9	212	
Conductivity us/cm								
All concentrations in ma/L				260	210	247	7.3	

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

DADAMETED	15	00000/5	Nov-13	Apr-14	Oct-14	Oct-14 BH 08-2	Jun-15	Oct-15
PARAMETER	Limit	ODWO/S				QA/QC		
Alkalinity (C _a CO3)	OG	30-500	93	85	84	84	90	93
BOD								
COD	• • •	250	24	10.1	10.0	10.1	47.4	16.0
Chloride	AO	250	21	18.1	18.3	18.1	17.1	16.8
Conductivity us/cm		_	264	248	231	232	240	248
DOC	AO	5						
N-NO2	MAC	1	<0.10	< 0.1	< 0.10	< 0.10	< 0.1	< 0.1
N-NO3	MAC	10	<0.10	< 0.10	< 0.10	< 0.10	< 0.1	< 0.1
Phenols			<0.001					
Sulphate	AO	500	7					
Total Dissolved Solids	AO	500	172	126	122	122	149	154
Total Kjeldahl Nitrogen			0.59	0.91	0.77	0.76	1	< 0.05
Total phosphorous								
Hardness as CaCO3	OG	500	95	97	103	101	97	96
Calcium			28	29	29.1	29.1	28.5	26.8
Magnesium			6	5.96	5.72	5.75	6.19	6.97
Potassium			3	3.6	3.6	3.6	3.4	3
Sodium	AO	200	12	8.8	6.5	6.5	9.8	11.5
Aluminum	OG	0.1	0.05	0.04	0.02	0.02	0.08	< 0.01
Barium	MAC	1	0.04	0.043	0.05	0.05	0.042	0.038
Beryllium			<0.0005	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Boron	IMAC	5	0.01	0.011	0.014	0.014	0.009	0.014
Cadmium	MAC	0.005	<0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Chromium	MAC	0.05	<0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cobalt			0.0003	0.0022	< 0.0001	0.0002	0.0002	< 0.0001
Copper	AO	1	<0.001	< 0.0001	< 0.002	< 0.002	< 0.002	< 0.002
Iron	AO	0.3	0.65	0.7	0.784	0.79	0.619	0.77
Lead	MAC	0.01	<0.001	0.00009	0.00013	< 0.00002	0.00004	< 0.00002
Manganese	AO	0.05	0.78	1.01	1.12	1.13	0.961	0.971
Molybdenum			<0.005	0.0008	0.0005	0.0006	0.0008	0.0012
Nickel			<0.005	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Silicon			8.1	7.76	7.76	7.82	6.61	7.58
Silver			<0.0001					
Strontium			0.109	0.135	0.134	0.134	0.145	0.138
Thallium			<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium			< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium			<0.001	0.0007	0.0006	0.0008	0.0009	0.0004
Zinc	AO	5	<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3				0.61	0.72	0.73	0.55	0.46
Phosphorus	-							
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.1	7.5	7.7		7.9	8.1
рН			7.9	7.7	7.7		7.2	7.6
Conductivity us/cm			264	222	240		264	227

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

		0.5.1.0.10	May-16	Nov-16	Apr-17	Apr-17 BH 08-2	Oct-17	Oct-17 BH 08-2
PARAMETER	Limit	ODWO/S				QA/QC	T	QA/QC
Alkalinity (C _a CO3)	OG	30-500	130	102	98	90	103	105
BOD								
COD								
Chloride	AO	250	19.0	18.5	14.9	14.7	14.2	13.9
Conductivity us/cm			316	258	252	240	261	268
DOC	AO	5						
N-NO2	MAC	1	<0.05	<0.05	< 0.1	< 0.1	< 0.05	< 0.05
N-NO3	MAC	10	<0.05	<0.05	< 0.1	< 0.1	< 0.05	< 0.05
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	160	146	127	124	133	133
Total Kjeldahl Nitrogen			0.90	0.71	1.03	0.94	0.8	0.8
Total phosphorous								
Hardness as CaCO3	OG	500	118	90.2	97	99	108	107
Calcium			34.3	26.6	28.9	29.7	32.2	31.7
Magnesium			7.95	5.77	6.08	6.09	6.8	6.84
Potassium			2.53	1.95	3.5	3.5	3.7	3.6
Sodium	AO	200	13.2	11.0	7.4	7.5	6.7	6.8
Aluminum	OG	0.1	<0.004	0.007	0.03	0.03	0.03	0.04
Barium	MAC	1	0.053	0.045	0.047	0.048	0.059	0.058
Beryllium			<0.001	< 0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Boron	IMAC	5	0.018	0.015	0.012	0.01	0.016	0.016
Cadmium	MAC	0.005	<0.001	< 0.001	< 0.000020	< 0.000020	< 0.000014	< 0.000014
Chromium	MAC	0.05	< 0.003	< 0.003	< 0.002	< 0.002	< 0.002	< 0.002
Cobalt			<0.001	< 0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Copper	AO	1	<0.003	< 0.003	< 0.002	< 0.002	< 0.002	0.002
Iron	AO	0.3	1.15	0.816	1.04	1.07	1.62	1.59
Lead	MAC	0.01	< 0.002	< 0.002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Manganese	AO	0.05	1.05	0.912	0.942	0.966	1.19	1.17
Molybdenum					0.0007	0.0007	0.0005	0.0005
Nickel			< 0.003	< 0.003	0.0007	0.0007	0.0007	0.0007
Silicon			8.40	7.50	8.03	8.05	8.85	8.86
Silver								
Strontium			0.163	0.117	0.128	0.129	0.14	0.14
Thallium			<0.006	<0.006	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium			<0.002	<0.002	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium			<0.002	<0.002	0.0006	0.0006	0.0003	0.0004
Zinc	AO	5	0.007	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature [∪] C			7.9	7.5	7.2		7.6	
pH			7.4	7.7	7.2		7.7	
Conductivity us/cm			286	250	257		231	

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

			May-18	May-18 BH08-3	Oct-18	Oct-18 BH08-3	May-19	May-19 BH08-2
PARAMETER	Limit	ODWO/S	1	QA/QC	Tr.	QA/QC	1	QA/QC
Alkalinity (C _a CO3)	OG	30-500	85	88	108	98	97	97
BOD								
COD								
Chloride	AO	250	18	18	17	17	18	18
Conductivity us/cm			242	244	256	258	220	220
DOC	AO	5						
N-NO2	MAC	1	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10
N-NO3	MAC	10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	157	159	166	168	143	143
Total Kjeldahl Nitrogen			1.8	2.3	1.3	1.1	<1.5	<1.5
Total phosphorous								
Hardness as CaCO3	OG	500	100	95	87	85	111	107
Calcium			30	< 28	25	24	33	33
Magnesium			6	6	6	6	7	6
Potassium			3	2	2	2	2	2
Sodium	AO	200	9	13	11	12	11	11
Aluminum	OG	0.1	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Barium	MAC	1	0.05	7 0.0 2	0.05	0.05	0.05	0.05
Beryllium		_	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.01	< 0.01	0.01	0.01	<0.01	<0.01
Cadmium	MAC	0.005	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Cobalt	141716	0.03	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002
Copper	AO	1	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.001	<0.001
Iron	AO	0.3	1.17	1.14	1.33	1.33	1.35	1.32
Lead	MAC	0.01	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Manganese	AO	0.01	0.92	0.94	0.93	0.93	0.95	0.96
Molybdenum	AO .	0.03	< 0.004	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Nickel			< 0.004	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Silicon			< 7.9	7.9	8.2	8.2	7.7	7.7
Silver			< 7.5	7.5	0.2	0.2	,.,	7.7
Strontium			0.123	0.134	0.139	0.138	0.142	0.141
Thallium			< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Titanium			< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Vanadium			< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Zinc	40	F			< 0.001		<0.001	<0.001
Arsenic	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
Fluoride	IMAC	0.025						
	MAC	1.5						
Mercury N-NH3	MAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters								
Temperature ^o C			7.4		7.4		7.4	
pH			7.2		7.6		7.6	
Conductivity us/cm			210		196		171	

All concentrations in mg/L unless otherwise noted

Sample Location 08-1D

			Oct-19	Oct-19 BH08-2	May-20	May-20 Dup #3	Oct-20	Oct-20 Dup #2
PARAMETER	Limit	ODWO/S		QA/QC	T	QA/QC		QA/QC
Alkalinity (C _a CO3)	OG	30-500	102	103	110	110	99	98
BOD								
COD								
Chloride	AO	250	<1	18	16	16	18	18
Conductivity us/cm			196	263	264	266	256	256
DOC	AO	5						
N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500	127	171	172	173	166	166
Total Kjeldahl Nitrogen			<0.15	0.64	0.748	0.64	0.523	4.14
Total phosphorous								
Hardness as CaCO3	OG	500	94	100	114	119	109	109
Calcium			26	30	34	36	32	32
Magnesium			7	6	7	7	7	7
Potassium			1	2	3	3	3	3
Sodium	AO	200	4	12	10	11	10	10
Aluminum	OG	0.1	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01
Barium	MAC	1	0.03	0.05	0.06	0.06	0.05	0.05
Beryllium			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IMAC	5	<0.01	0.02	0.02	0.02	0.01	0.04
Cadmium	MAC	0.005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Copper	AO	1	0.003	<0.001	<0.001	<0.001	<0.001	0.002
Iron	AO	0.3	0.04	1.31	1.75	1.72	1.43	1.46
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.05	0.02	1.02	1.09	1.08	0.88	0.87
Molybdenum	7.0	0.03	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			5	7.6	8.1	8.0	8.3	8.1
Silver					0.1	0.0	0.0	0.1
Strontium			0.056	0.146	0.168	0.17	0.12	0.12
Thallium			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium		+	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium			0.001	<0.001	<0.001	<0.001	<0.01	<0.01
Zinc	AO	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	IMAC	0.025	.0.01	.0.01	10.01	10.01	-0.01	10.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC							
Tin	IVIAC	0.01						
Dissolved Reactive P		+						
Field Parameters								
Temperature ^o C		+	7 -		7.2		7	
pH		1	7.5		7.2		-	
Conductivity us/cm			7.8		7.4		6.8	
All concentrations in mg/L		1	263		270		270	

All concentrations in mg/L unless otherwise noted

Sample Location 08-1S

			Nov-08	May-09	Sep-09	May-10	Oct-10	Jun-11
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	96	80	82	77	77	89
BOD			2	2	2			
COD			18	13	<5			
Chloride	AO	250	3	2	2	2	2	<1
Conductivity us/cm	7.0	230	263	178	174	166	165	181
DOC	AO	5	1.4	1.7	2.1	100	103	101
N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	0.11	<0.10
Phenols	1417 (C	10	<0.001	<0.001	<0.001	10.10	0.11	10.10
Sulphate	AO	500	33	11	9			
Total Dissolved Solids	AO	500	171	116	113	108	107	118
Total Kjeldahl Nitrogen	7.0	300	0.14	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			0.7	0.56	0.56	10.10	10.10	10.10
Hardness as CaCO3	OG	500	70	75	77	75	130	86
Calcium	- 00	300	18	20	21	20	34	23
Magnesium			6	6	6	6	11	7
Potassium			<1	<1	<1	<1	1	1
Sodium	AO	200	30	9	5	<2	8	2
Aluminum	OG	0.1	0.37	0.01	0.07	0.03	0.06	0.06
Barium	MAC	1	<0.01	0.01	0.01	0.02	0.01	0.00
Beryllium	IVIAC	<u>+</u>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
Boron	IMAC	5	0.01	<0.001	<0.01	<0.001	<0.001	<0.003
Cadmium	MAC	0.005	<0.0001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Cobalt	IVIAC	0.05	0.0382	<0.001	0.0075	0.0145	0.0121	0.001
Copper	AO	1	<0.001	0.0002	<0.0073	<0.0143	<0.0121	<0.003
Iron	AO	0.3	0.2	0.52	0.48	0.13	0.38	0.23
Lead	MAC	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	AO	0.01	0.13	0.16	0.13	0.06	0.001	0.05
Molybdenum	AU	0.05	0.006	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel			0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon			6.8	4.7	5.1	4.7	4.8	5.2
Silver			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium			0.0001	0.084	0.059	0.043	0.051	0.051
Thallium			<0.0001	<0.004	<0.0001	<0.0001	<0.001	<0.001
Titanium			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium			0.002	<0.01	<0.01	0.001	<0.01	0.002
Zinc	AO	5	<0.01	0.001	<0.001	<0.01	<0.001	<0.002
Arsenic	IMAC	0.025	\0.01	0.02	\0.01	\0.01	\0.01	\0.01
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001						
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.5-8.5						
Tin	IVIAC	0.01						
Dissolved Reactive P		+						
Field Parameters								
Temperature °C		+	9.3	8.7	8	8.3	7.6	7.5
рН		+	7.08	8.1	7.8	8.4	8.6	7.5
Conductivity us/cm		+						
Conductivity us/CIII			174	181	152	162	124	142

All concentrations in mg/L unless otherwise noted

Sample Location 08-1S

			Oct-11	Jun-12	Oct-12	Jun-13	Nov-13	Nov-13
PARAMETER	Limit	ODWO/S						QA/QC
Alkalinity (C _a CO3)	OG	30-500	98	94	97	97	98	98
BOD		30 300		<u> </u>	0.7			
COD								
Chloride	AO	250	<1	<1	<1	<1	1	1
Conductivity us/cm	7.10	230	188	178	194	193	201	199
DOC	AO	5	100	17.0	13.	133	201	133
N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Phenols		10	10.20	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	AO	500		6	8	5	5	5
Total Dissolved Solids	AO	500	122	116	126	125	131	129
Total Kjeldahl Nitrogen	7.0	300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total phosphorous			10.10	10.10	10.10	10.10	10.10	10.10
Hardness as CaCO3	OG	500	89	72	85	94	99	99
Calcium	- 00	300	24	19	24	26	28	28
Magnesium			7	6	6	7	7	7
Potassium			1	<1	<1	1	1	1
Sodium	AO	200	3	4	7	2	3	3
Aluminum	OG	0.1	0.08	0.08	0.15	0.05	0.02	<0.01
Barium	MAC	1	0.03	0.08	0.001	0.03	0.02	0.02
Beryllium	IVIAC	Т Т	<0.0005	<0.005	<0.001	<0.005	<0.005	<0.005
Boron	IMAC	5	<0.0003	<0.003	<0.0003	0.01	<0.003	<0.003
Cadmium	MAC	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	MAC	0.005	<0.001	0.0001	<0.001	<0.001	<0.001	<0.001
Cobalt	IVIAC	0.03	0.0129	0.0001	0.0102	0.001	0.0003	<0.001
Copper	AO	1	<0.0129	<0.0101	<0.0102	<0.001	<0.0003	<0.001
Iron	AO	0.3	0.18	0.21	0.24	0.19	0.16	0.12
Lead		0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	MAC		0.08	0.05	0.001	0.001	0.001	0.001
Molybdenum	AO	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel								
Silicon			<0.005 5.1	<0.005 5.8	<0.005 4.6	<0.005 5.2	<0.005 5.2	<0.005 5.2
Silver			<0.0001	<0.0001	<0.0001	<0.001	<0.0001	<0.0001
Strontium								
Thallium			0.052	0.049 <0.0001	0.06 <0.0001	0.057 <0.0001	0.053 <0.0001	0.052
			<0.0001	<0.001				<0.0001
Titanium Vanadium			<0.01		<0.01	<0.01	<0.01	<0.01
Zinc	40	5	0.001	0.002	<0.001	0.002	<0.001	<0.001
Arsenic	AO		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoride	IMAC	0.025						
	MAC	1.5						
Mercury N-NH3	MAC	0.001						
Phosphorus								
-	00	6505						
pH (no units) Selenium	OG	6.5-8.5						
Tin	MAC	0.01						
Dissolved Reactive P								
Field Parameters			7.0	7.7	_	0.5	6.0	
Temperature ^o C			7.6	7.7	7	8.6	6.8	
pH Conductivity vs /sm			7.7	8.1	7.1	7.8	8.7	
Conductivity us/cm			184	159	187	156	198	

All concentrations in mg/L unless otherwise noted

Sample Location 08-1S

PARAMETER				Apr-14	Oct-14	Jun-15	Oct-15	May-16	Nov-16
BOD Chloride AO 250 0.8 0.8 0.7 0.7 0.82 0.60 Chloride Conductivity us/cm DOC AO 5	PARAMETER	Limit	ODWO/S						
BOD Chloride AO 250 0.8 0.8 0.7 0.7 0.82 0.60 Chloride Conductivity us/cm DOC AO 5	Alkalinity (C _a CO3)	OG		94	93	89	91	102	109
Chloride									
DOC	COD								
Conductivity us/cm AO	Chloride	AO	250	0.8	0.8	0.7	0.7	0.82	0.60
DOC	Conductivity us/cm	-							
N-NO2	DOC	AO	5						
NANO3	N-NO2			< 0.1	< 0.10	< 0.1	< 0.1	< 0.05	< 0.05
Phenols Sulphate	N-NO3		10						
Total Dissolved Solids AO 500 103 100 112 111 92 124 1014 1016 102 1016 102 1016 1	Phenols								
Total Dissolved Solids AO 500 103 100 112 111 92 124 1014 1016 102 1016 102 1016 1	Sulphate	AO	500						
Total phosphorous Total phosphorous Total phosphorous Hardness as CaCO3 OG 500 101 109 95 101 93.3 91.4	Total Dissolved Solids		500	103	100	112	111	92	124
Total phosphorous Hardness as CaCO3	Total Kjeldahl Nitrogen			0.53	0.06			0.14	<0.10
Calcium	Total phosphorous								
Calcium	Hardness as CaCO3	OG	500	101	109	95	101	93.3	91.4
Magnesium	Calcium								
Potassium	Magnesium								
Sodium									
Aluminum	Sodium	AO	200						
Barium	Aluminum			0.03			< 0.01		
Beryllium	Barium								
Boron	Beryllium								
Cadmium MAC 0.005 0.00003 < 0.00002 < 0.00002 < 0.0001 < 0.001 Chromium MAC 0.05 < 0.002		IMAC	5						
Chromium	Cadmium								
Cobalt 0.0021 0.0035 0.0004 < 0.001 < 0.001 < 0.001 Copper AO 1 0.0002 < 0.002	Chromium								
Copper	Cobalt								
Iron	Copper	AO	1						
Lead MAC 0.01 0.00006 0.00008 < 0.00002 < 0.00002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0004 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0004 < 0.0004 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005			0.3						
Manganese AO 0.05 0.055 0.05 0.022 0.018 0.034 0.020 Molybdenum 0.0002 0.0004 0.0002 0.0001 Nickel < 0.01	Lead								
Molybdenum 0.0002 0.0004 0.0002 0.0001	Manganese								
Nickel	Molybdenum			0.0002	0.0004	0.0002			
Silicon 5.11 4.82 4.18 5.39 5.26 5.01 Silver 0.066 0.06 0.057 0.056 0.054 0.047 Strontium 0.00005 < 0.00005	Nickel			< 0.01	< 0.01			< 0.003	< 0.003
Silver 0.066 0.06 0.057 0.056 0.054 0.047 Thallium < 0.00005	Silicon								
Thallium < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.002 < 0.002 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Silver								
Thallium < 0.00005 < 0.00005 < 0.00005 < 0.00005 < 0.0005 < 0.0000 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <t< td=""><td>Strontium</td><td></td><td></td><td>0.066</td><td>0.06</td><td>0.057</td><td>0.056</td><td>0.054</td><td>0.047</td></t<>	Strontium			0.066	0.06	0.057	0.056	0.054	0.047
Vanadium 0.0012 0.0014 0.0017 0.0015 <0.002 <0.002 Zinc AO 5 < 0.005	Thallium				< 0.00005				
Zinc AO 5 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Titanium			< 0.005	< 0.005	< 0.005	< 0.005	<0.002	<0.002
Arsenic IMAC 0.025 Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 < 0.01	Vanadium			0.0012	0.0014	0.0017	0.0015	<0.002	< 0.002
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3	Zinc	AO	5	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Mercury MAC 0.001 0.01	Arsenic	IMAC	0.025						
N-NH3	Fluoride	MAC	1.5						
Phosphorus DH (no units) OG (a.5-8.5) OG (a.5-8.5) </td <td>Mercury</td> <td>MAC</td> <td>0.001</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Mercury	MAC	0.001						
pH (no units) OG 6.5-8.5 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7	N-NH3			< 0.01	< 0.01	< 0.01	< 0.01		
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7	Phosphorus								
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature °C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7		OG	6.5-8.5						
Dissolved Reactive P Field Parameters Temperature °C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7	Selenium	MAC	0.01						
Field Parameters Temperature °C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7									
Temperature °C 7.4 7.5 7.9 8.1 7.8 7.4 pH 7.7 8 7.5 7.9 7.7 7.7	Dissolved Reactive P								
pH 7.7 8 7.5 7.9 7.7 7.7									
	Temperature ^o C			7.4	7.5	7.9	8.1	7.8	7.4
Conductivity us/cm 176 182 201 170 190 198				7.7	8	7.5	7.9	7.7	7.7
	Conductivity us/cm			176	182	201	170	190	198

All concentrations in mg/L unless otherwise noted

Sample Location 08-1S

			Apr-17	Oct-17	May-18	Oct-18	May-19	Oct-19
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	94	89	88	97	103	102
BOD								
COD								
Chloride	AO	250	< 0.5	0.6	< 1	1	<1	<1
Conductivity us/cm			189	184	< 182	195	165	196
DOC	AO	5						
N-NO2	MAC	1	0.1	< 0.05	< 0.10	< 0.10	<0.10	<0.10
N-NO3	MAC	10	0.2	< 0.05	< 0.10	< 0.10	<0.10	<0.10
Phenols				0.00				
Sulphate	AO	500						
Total Dissolved Solids	AO	500	102	95	118	127	107	127
Total Kjeldahl Nitrogen			0.22	< 0.1	1.5	< 0.8	<0.75	<0.15
Total phosphorous								
Hardness as CaCO3	OG	500	99	95	94	< 86	113	94
Calcium			27.1	25.6	26		32	26
Magnesium			7.57	7.61	7	7	8	7
Potassium			1.2	1.2	1	1	1	1
Sodium	AO	200	3	2.4	2	2	2	4
Aluminum	OG	0.1	0.03	0.03	< 0.01	< 0.01	< 0.01	< 0.01
Barium	MAC	1	0.021	0.022	0.02	0.03	0.02	0.03
Beryllium			< 0.0001	< 0.0001	< 0.0005	< 0.0005	<0.0005	<0.0005
Boron	IMAC	5	< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	<0.01
Cadmium	MAC	0.005	< 0.000020	< 0.000014	< 0.0001	< 0.0001	<0.0001	<0.0001
Chromium	MAC	0.05	< 0.002	< 0.002	< 0.001	< 0.001	0.002	<0.001
Cobalt			< 0.0001	< 0.0001	< 0.0002	< 0.0002	<0.0002	<0.0002
Copper	AO	1	0.002	< 0.002	< 0.001	< 0.001	0.011	0.003
Iron	AO	0.3	0.074	0.068	0.11	< 0.1	0.07	0.04
Lead	MAC	0.01	< 0.00002	< 0.00002	< 0.001	< 0.001	< 0.001	< 0.001
Manganese	AO	0.05	0.026	0.02	0.04	0.04	0.02	0.02
Molybdenum			0.0004	0.0001	< 0.005	< 0.005	<0.005	<0.005
Nickel			0.0006	0.0005	< 0.005	< 0.005	<0.005	<0.005
Silicon			5.15	5.55	< 5.5	5.5	5.9	5
Silver								
Strontium			0.053	0.047	0.049	0.055	0.054	0.056
Thallium			< 0.00005	< 0.00005	< 0.0001	< 0.0001	<0.0001	<0.0001
Titanium			< 0.005	< 0.005	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium			0.0013	0.0013	0.001	< 0.001	0.001	0.001
Zinc	AO	5	< 0.005	< 0.005	< 0.01	< 0.01	0.01	<0.01
Arsenic	IMAC	0.025						
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3								
Phosphorus								
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.01						
Tin								
Dissolved Reactive P								
Field Parameters			_					
Temperature ^o C			7.1	7.4	7.5	7.4	7.3	7.3
pH			7.5	8.5	7	7.7	7.6	8.1
Conductivity us/cm		1	196	166	157	151	140	144

All concentrations in mg/L unless otherwise noted

Sample Location 08-1S

May-20 Oct-20

PARAMETER	Limit	ODWO/S					
Alkalinity (C _a CO3)	OG	30-500	99	95			
BOD		33 333					
COD							
Chloride	AO	250	<1	1			
Conductivity us/cm	AO	230	190	183			
DOC	AO	5	150	103			
N-NO2	MAC	1	<0.10	<0.10			
N-NO3	MAC	10	<0.10	<0.10			
Phenols	IVIAC	10	<0.10	<0.10			
Sulphate	AO	500					
Total Dissolved Solids	AO	500	124	119			
Total Kjeldahl Nitrogen	AU	500	0.270				
			0.270	<0.100			
Total phosphorous Hardness as CaCO3		500	400				
Calcium	OG	500	103	91			
			28	25			
Magnesium			8	7			
Potassium			1	1			
Sodium	AO	200	3	5			
Aluminum	OG	0.1	<0.01	<0.01			
Barium	MAC	1	0.02	0.02			
Beryllium			<0.0005	<0.0005			
Boron	IMAC	5	<0.01	< 0.01			
Cadmium	MAC	0.005	<0.0001	<0.0001			
Chromium	MAC	0.05	<0.001	< 0.001			
Cobalt			<0.0002	< 0.0002			
Copper	AO	1	< 0.001	0.001			
Iron	AO	0.3	0.08	0.08			
Lead	MAC	0.01	<0.001	<0.001			
Manganese	AO	0.05	0.02	0.02			
Molybdenum			<0.005	<0.005			
Nickel			<0.005	<0.005			
Silicon			5.4	5.4			
Silver							
Strontium			0.053	0.042			
Thallium			<0.0001	< 0.0001			
Titanium			< 0.01	< 0.01			
Vanadium			0.001	< 0.001			
Zinc	AO	5	< 0.01	<0.01			
Arsenic	IMAC	0.025					
Fluoride	MAC	1.5					
Mercury	MAC	0.001					
N-NH3							
Phosphorus							
pH (no units)	OG	6.5-8.5					
Selenium	MAC	0.01					
Tin	IVIAC	0.01					
Dissolved Reactive P						-	
Field Parameters							
Temperature ^o C			7.1	7		-	
pH			7.1	7.9			
Conductivity us/cm			195	195			
All concentrations in ma/L u			100	133	<u> </u>		1

All concentrations in mg/L unless otherwise noted

VOCs Trip Blank

Oct-14 Jun-15 Oct-15 May-18

PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500						
COD								
Chloride	AO	250						
Conductivity us/cm								
DOC	AO	5						
N-NO2	MAC	1						
N-NO3	MAC	10						
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500						
Total Kjeldahl Nitrogen								
Total phosphorous								
Hardness as CaCO3	OG	500						
Calcium								
Magnesium								
Potassium								
Sodium	AO	200						
Aluminum	OG	0.1						
Barium	MAC	1						
Beryllium								
Boron	IMAC	5						
Cadmium	MAC	0.005						
Chromium	MAC	0.05						
Cobalt								
Copper	AO	1						
Iron	AO	0.3						
Lead	MAC	0.01						
Manganese	AO	0.05						
Nickel								
Silver								
Strontium								
Zinc	AO	5						
Arsenic	IMAC	0.025						
Mercury	MAC	0.001						
N-NH3								
pH (no units)	OG	6.5-8.5						
VOCs								
Benzene ug/L			< 0.5	<0.5	< 0.5	< 0.5	< 0.5	
Dichlorobenzene,1,4- ug/L			< 0.2	<0.2	< 0.2	< 0.4	< 0.4	
Dichloromethane ug/L			< 0.3	<0.3	< 0.3	< 4.0	< 4.0	
Toluene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Dichloroethane-d4,1,2-(SS)			97.4	101	102	100	101	
Toluene-d8 (SS)			118	98	100	91	93	
Bromofluorobenzene,4(SS)			101	97	98	115	121	
Field Parameters								
Temperature ^o C								
рН								
Conductivity us/cm								
All concentrations in mg/L unle	cc othorwi	ico notod						

All concentrations in mg/L unless otherwise noted

Field Blank

PARAMETER Limit DOWO/S				Oct-11	Jun-12	Jun-12	Oct-12	Jun-13 BH 08-3	Nov-13
BOD COD Chloride AO 250 <1 <1 <1 <1 <1 <1 <1 <	PARAMETER	Limit	ODWO/S	_	_	T			
Chloride		OG	30-500	<5	<5	<5	<5	<5	<5
Conductivity us/cm	COD								
DOC	Chloride	AO	250	<1	<1	<1	<1	<1	<1
N-NO2	Conductivity us/cm			<5	<5	<5	<5	<5	<5
N-NO3	DOC	AO	5						
Phenols Sulphate	N-NO2	MAC	1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sulphate	N-NO3	MAC	10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Total Dissolved Solids AO 500 <1 <1 <1 <1 <1 <1 <1	Phenols				<0.001	<0.001	< 0.001	<0.001	<0.001
Total Kjeldahl Nitrogen Total phosphorous Total	Sulphate	AO	500		<1	<1	<3	<3	<3
Total phosphorous Hardness as CaCO3 OG 500 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Total Dissolved Solids	AO	500	<1	<1	<1	<1	<1	<1
Total phosphorous	Total Kjeldahl Nitrogen			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Calcium	Total phosphorous								
Magnesium	Hardness as CaCO3	OG	500	<1	<1	<1	<1	<1	<1
Potassium	Calcium			<1	<1	<1	<1	<1	<1
Sodium	Magnesium			<1	<1	<1	<1	<1	<1
Aluminum	Potassium			<1	<1	<1	<1	<1	<1
Barium	Sodium	AO	200	<2	<2	<2	<2	<2	<2
Barium	Aluminum	OG	0.1	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Boron	Barium	MAC	1	< 0.01	< 0.01	<0.01		<0.01	<0.01
Boron	Beryllium			< 0.0005	<0.0005		<0.0005		
Cadmium MAC 0.005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005		IMAC	5	< 0.01	<0.01				
Chromium MAC 0.05 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	Cadmium			<0.0001	<0.0001				
Cobalt <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001	Chromium			< 0.001	<0.001				
Copper	Cobalt			< 0.0002	< 0.0002				
Iron	Copper	AO	1	< 0.001	< 0.001				
Lead MAC 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.01 <0.01 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001			0.3	< 0.03	< 0.03				
Manganese AO 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	Lead	MAC		< 0.001	< 0.001				
Molybdenum	Manganese			< 0.01	< 0.01				
Nickel				< 0.005	<0.005				
Silicon Co.1 Co.0	Nickel			< 0.005	<0.005	<0.005			
Strontium <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Silicon			<0.1	<0.1		<0.1		
Strontium <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	Silver			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Titanium	Strontium			< 0.001	< 0.001	<0001	<0001	<0001	
Vanadium <0.001	Thallium			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Zinc	Titanium			< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Zinc AO 5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	Vanadium			< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Fluoride MAC 1.5 Mercury MAC 0.001 N-NH3 Phosphorus pH (no units) OG 6.5-8.5 5.49 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Field Parameters Temperature "C pH	Zinc	AO	5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Mercury MAC 0.001 N-NH3 Phosphorus pH (no units) OG 6.5-8.5 5.49 5.49 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH	Arsenic	IMAC	0.025						
N-NH3 Phosphorus pH (no units) Selenium MAC Dissolved Reactive P Field Parameters Temperature "C pH	Fluoride	MAC	1.5						
Phosphorus DH (no units) DH (no unit	Mercury	MAC	0.001						
pH (no units) OG 6.5-8.5 5.49 5.49 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH	N-NH3								
pH (no units) OG 6.5-8.5 5.49 5.49 Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH									
Selenium MAC 0.01 Tin Dissolved Reactive P Field Parameters Temperature "C pH	pH (no units)	OG	6.5-8.5	5.49	5.49				
Tin Dissolved Reactive P Field Parameters Temperature "C pH	Selenium	MAC							
Field Parameters Temperature "C pH									
Temperature ^o C pH	Dissolved Reactive P								
pH									
	Temperature ^o C								
Conductivity us/cm	рН								
	Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

Field Blank

			Apr-14	Oct-14 BH 91-6	Jun-15 BH 95-8	Oct-15 BH 08-2	May-16 BH 07-4	Nov-16 BH 95-9
PARAMETER	Limit	ODWO/S		рц Эт-о	рп ээ-о	DΠ Uδ-Z	ВП ∪7-4	вп 95-9
Alkalinity (C _a CO3)	OG	30-500	< 5	< 5	< 5	< 5	<5	<5
BOD	- 00	30-300	13	13	\ \ \	\ 3		\3
COD								
Chloride	AO	250	< 0.5	< 0.5	< 0.5	< 0.5	<0.10	<0.10
Conductivity us/cm	AU	230	2	2	2	<1	<2	<2
DOC	AO	5				\ 1	\Z	\Z
N-NO2	MAC	1	< 0.10	< 0.10	< 0.1	< 0.1	<0.05	<0.05
N-NO3	MAC	10	< 0.10	< 0.10	< 0.1	< 0.1	<0.05	<0.05
Phenols	IVIAC	10	10.10	10.10	₹ 0.1	\ U.1	\0.03	\0.03
Sulphate	AO	500						
Total Dissolved Solids	AO	500	1.4	0.613	1	< 1	<20	<20
Total Kjeldahl Nitrogen	AO	300	< 0.05	< 0.05	< 0.1	< 0.05	<0.10	<0.10
Total phosphorous			10.03	10.03	₹ 0.1	₹ 0.03	\0.10	\0.10
Hardness as CaCO3	OG	500	< 1	10	< 1	< 1	<0.5	<0.5
Calcium	- 00	300	< 0.02	0.02	< 0.02	< 0.02	0.08	<0.05
Magnesium			< 0.01	< 0.01	< 0.02	< 0.02	<0.05	<0.05
Potassium			< 0.1	< 0.1	< 0.1	< 0.01	<0.05	<0.05
Sodium	AO	200	< 0.2	< 0.2	< 0.1	< 0.1	<0.05	<0.05
Aluminum	OG	0.1	< 0.01	< 0.01	< 0.01	< 0.2	<0.004	<0.004
Barium	MAC	1	< 0.001	< 0.001	< 0.01	< 0.001	<0.004	<0.004
Beryllium	IVIAC		< 0.001	< 0.001	< 0.001	< 0.001	<0.002	<0.002
Boron	IMAC	5	< 0.005	< 0.005	< 0.005	< 0.005	<0.001	<0.001
Cadmium	MAC	0.005	< 0.00002	< 0.00002	< 0.0002	< 0.0002	<0.010	<0.010
Chromium	MAC	0.003	< 0.002	, 0.002	< 0.0002	< 0.0002	<0.001	<0.001
Cobalt	IVIAC	0.03	< 0.002	< 0.0001	< 0.002	< 0.002	<0.003	<0.003
Copper	AO	1	< 0.0001	< 0.002	< 0.0001	< 0.0001	<0.001	<0.001
Iron	AO	0.3	< 0.005	< 0.002	< 0.002	< 0.002	<0.003	<0.003
Lead	MAC	0.01	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.010	<0.010
Manganese	AO	0.01	< 0.000	0.002	< 0.00002	< 0.00002	<0.002	<0.002
Molybdenum	AU	0.03	< 0.001	< 0.002	< 0.001	< 0.001	\0.002	<0.00Z
Nickel			< 0.001	< 0.001	< 0.001	< 0.001	<0.003	<0.003
Silicon			< 0.01	< 0.01	< 0.01	< 0.01	<0.005	<0.005
Silver			₹ 0.01	₹ 0.01	< 0.01	< 0.01	<0.03	\0.03
Strontium			< 0.001	< 0.001	< 0.001	< 0.001	<0.005	<0.005
Thallium				< 0.0005			<0.003	<0.003
Titanium			< 0.005	< 0.005	< 0.005	< 0.005	<0.000	<0.000
Vanadium			0.0002	< 0.0001	< 0.0001	< 0.0001	<0.002	<0.002
Zinc	AO	5	< 0.005	< 0.005	< 0.005	< 0.005	<0.002	<0.002
Arsenic	IMAC	0.025	\ 0.003	< 0.003	< 0.003	< 0.005	<0.003	<0.003
Fluoride	MAC	1.5						
Mercury	MAC	0.001						
N-NH3	IVIAC	0.001	< 0.01	< 0.01	< 0.01	< 0.01		
Phosphorus			\ U.U1	< U.UI	\ U.U1	∇.01		
pH (no units)	OG	6.5-8.5						
Selenium	MAC	0.5-8.5						
Tin	IVIAC	0.01						
Dissolved Reactive P								
Field Parameters								
Temperature °C								
pH								
Conductivity us/cm								
All concentrations in mg/L u	unlana athamu	ing metad		<u> </u>	<u> </u>			<u> </u>

All concentrations in mg/L unless otherwise noted

Field Blank

Apr-17 Oct-17 BH 08-3 BH 08-3

PARAMETER	Limit	ODWO/S	BI1 08-3	BI1 00 3			
Alkalinity (C _a CO3)	OG	30-500	< 5	< 5			
BOD	- 00	30 300	\ \ \	\ \ \			
COD							
Chloride	AO	250	< 0.5	< 0.5			
Conductivity us/cm	AU	230					
DOC	40	_	1	1			
N-NO2	AO	5	.0.1	. 0.05		1	
	MAC	1	< 0.1	< 0.05			
N-NO3	MAC	10	< 0.1	< 0.05			
Phenols							
Sulphate	AO	500					
Total Dissolved Solids	AO	500	0.236	< 1			
Total Kjeldahl Nitrogen			0.16	< 0.1			
Total phosphorous							
Hardness as CaCO3	OG	500	< 1	< 1			
Calcium			< 0.02	0.02			
Magnesium			< 0.01	< 0.02			
Potassium			< 0.1	< 0.1			
Sodium	AO	200	< 0.2	< 0.2			
Aluminum	OG	0.1	< 0.01	< 0.01			
Barium	MAC	1	< 0.001	< 0.001			
Beryllium			< 0.0001	< 0.0001			
Boron	IMAC	5	< 0.005	< 0.005			
Cadmium	MAC	0.005		< 0.000014			
Chromium	MAC	0.05	< 0.002	< 0.002			
Cobalt	1717 10	0.03	< 0.0001	< 0.0001			
Copper	AO	1	< 0.002	< 0.002			
Iron	AO	0.3	< 0.002	< 0.005			
Lead	MAC	0.01	< 0.0003	< 0.0002			
Manganese	AO	0.01	< 0.00002	< 0.00002			
Molybdenum	AU	0.05	< 0.001	< 0.001			
Nickel			< 0.0001	0.0001			
Silicon							
Silver			< 0.01	< 0.01			
Strontium			. 0.004	. 0.001			
Thallium			< 0.001	< 0.001			
			< 0.00005	< 0.00005			
Titanium			< 0.005	< 0.005			
Vanadium			< 0.0001	< 0.0001			
Zinc	AO	5	< 0.005	< 0.005			
Arsenic	IMAC	0.025					
Fluoride	MAC	1.5					
Mercury	MAC	0.001					
N-NH3							
Phosphorus							
pH (no units)	OG	6.5-8.5					
Selenium	MAC	0.01					
Tin							
Dissolved Reactive P							
Field Parameters							
Temperature °C							
pH							
Conductivity us/cm							
All concentrations in mg/L u	inlace othorwic	no notod	-1	I .	1	- Î	1

All concentrations in mg/L unless otherwise noted

		BH95-4D	BH95-4D DUP 1		BH91-5D	BH91-5D DUP 2		BH95-5	BH95-5 BH 95-8		BH91-5D	BH91-5D BH 07-4	
Parameter	ODWS/OG	May-16	May-16	RPD	May-16	May-16	RPD	Nov-16	Nov-16	RPD	Nov-16	Nov-16	RPD
Alkalinity (C _a CO3)	30-500	32.00	30.00	6.45%	45.00	43.00	4.55%	47	46	2.15%	42	42	0.00%
BOD													
COD													
Chloride	250	81.6	82.3	0.85%	66.0	65.9	0.15%	0.26	0.25	3.92%	64.7	63.5	1.87%
Conductivity uS/cm		331.00	331.00	0.00%	304.00	304.00	0.00%	93	91	2.17%	307	309	0.65%
DOC	5												
N-NO2 (Nitrite)	1	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC
N-NO3 (Nitrate)	10	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	0.06	NC	<0.05	<0.05	NC
Phenols													
Sulphate	500												
Total Dissolved Solids	500	162.00	174.00	7.14%	136.00	138.00	1.46%	68	68	0.00%	176	172	2.30%
Total Kjeldahl Nitrogen		0.28	0.25	11.32%	0.25	0.24	4.08%	<0.10	<0.10	NC	0.28	0.20	33.33%
Total phosphorous													
Hardness as CaCO3	500	60.9	60.1	1.32%	47.2	48.2	2.10%	41.5	40.9	1.46%	50.5	51.4	1.77%
Calcium		15.4	15.1	1.97%	12.2	12.5	2.43%	11.5	11.3	1.75%	13.4	13.6	1.48%
Magnesium		5.45	5.43	0.37%	4.07	4.12	1.22%	3.1	3.07	0.97%	4.13	4.24	2.63%
Potassium		2.52	2.56	1.57%	2.08	2.08	0.00%	0.51	0.51	0.00%	1.91	2.00	4.60%
Sodium	200	32.5	32.2	0.93%	35.2	34.4	2.30%	1.29	1.27	1.56%	31.9	31.8	0.31%
Aluminum	0.1	0.012	0.012	0.00%	0.007	0.006	15.38%	0.019	0.017	11.11%	0.006	0.008	28.57%
Barium	1	0.062	0.062	0.00%	0.052	0.054	3.77%	0.009	0.009	0.00%	0.059	0.052	12.61%
Beryllium		<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Boron	5	0.013	0.012	8.00%	0.011	<0.010	NC	< 0.010	< 0.010	NC	0.012	0.012	0.00%
Cadmium	0.005	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Chromium	0.05	<0.003	<0.003	NC	<0.003	<0.003	NC	<0.003	<0.003	NC	<0.003	<0.003	NC
Cobalt		<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Copper	1	< 0.003	<0.003	NC	< 0.003	0.003	NC	< 0.003	< 0.003	NC	< 0.003	<0.003	NC
Iron	0.3	13.5	13.7	1.47%	13.9	14.0	0.72%	<0.010	<0.010	NC	15.1	14.8	2.01%
Lead	0.01	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC	<0.002	<0.002	NC
Manganese	0.05	0.125	0.127	1.59%	0.113	0.113	0.00%	<0.002	<0.002	NC	0.121	0.119	1.67%
Molybdenum													
Nickel		< 0.003	<0.003	NC	< 0.003	<0.003	NC	< 0.003	< 0.003	NC	< 0.003	<0.003	NC
Silicon		8.02	8.32	3.67%	7.97	8.24	3.33%	5.93	5.78	2.56%	7.52	7.23	3.93%
Silver													
Strontium		0.076	0.075	1.32%	0.049	0.051	4.00%	0.012	0.012	0.00%	0.054	0.052	3.77%
Thallium		<0.006	<0.006	NC	<0.006	<0.006	NC	<0.006	<0.006	NC	<0.006	<0.006	NC
Titanium		<0.002	<0.002	NC	0.002	0.002	0.00%	<0.002	<0.002	NC	<0.002	<0.002	NC
Vanadium		0.002	0.002	0.00%	0.004	0.004	0.00%	0.003	0.002	40.00%	0.002	0.002	0.00%
Zinc	5	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC
Average RPD				2.67%			2.53%			4.83%			5.64%

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

		BH08-1D	BH08-1D 08-2		BH07-2D	BH07-2D 08-4		BH08-1D	BH08-1D 08-2		ВН95-5	BH95-5 BH08-2	
Parameter	ODWS/OG	Apr-17	Apr-17	RPD	Apr-17	Apr-17	RPD	Oct-17	Oct-17	RPD	May-18	May-18	RPD
Alkalinity (C _a CO3)	30-500	98	90	8.51%	378	395	4.40%	103	105	1.92%	47	58	20.95%
BOD													
COD													
Chloride	250	14.9	14.7	1.35%	43	43.3	0.70%	14.2	13.9	2.14%	< 1	< 1	NC
Conductivity uS/cm		252	240	4.88%	1000	1030	2.96%	261	268	2.65%	100	95	5.13%
DOC	5												
N-NO2 (Nitrite)	1	< 0.1	< 0.1	NC	< 0.1	< 0.1	NC	< 0.05	< 0.05	NC	< 0.10	< 0.10	NC
N-NO3 (Nitrate)	10	< 0.1	< 0.1	NC	< 0.1	0.3	NC	< 0.05	< 0.05	NC	< 0.10	0.1	NC
Phenols													
Sulphate	500												
Total Dissolved Solids	500	127	124	2.39%	631	641	1.57%	133	133	0.00%	65	62	4.72%
Total Kjeldahl Nitrogen		1.03	0.94	9.14%	1.75	1.55	12.12%	0.8	0.8	0.00%	< 0.8	0.9	NC
Total phosphorous													
Hardness as CaCO3	500	97	99	2.04%	488	477	2.28%	108	107	0.93%	49	42	15.38%
Calcium		28.9	29.7	2.73%	141	137	2.88%	32.2	31.7	1.56%	13	12	8.00%
Magnesium		6.08	6.09	0.16%	33	32.7	0.91%	6.8	6.84	0.59%	4	3	28.57%
Potassium		3.5	3.5	0.00%	6.9	6.8	1.46%	3.7	3.6	2.74%	< 1	< 1	NC
Sodium	200	7.4	7.5	1.34%	45.3	44.7	1.33%	6.7	6.8	1.48%	< 2	< 2	NC
Aluminum	0.1	0.03	0.03	0.00%	0.09	0.08	11.76%	0.03	0.04	28.57%	< 0.01	< 0.01	NC
Barium	1	0.047	0.048	2.11%	0.431	0.439	1.84%	0.059	0.058	1.71%	< 0.01	< 0.01	NC
Beryllium		< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0005	< 0.0005	NC
Boron	5	0.012	0.01	18.18%	0.971	0.962	0.93%	0.016	0.016	0.00%	< 0.01	< 0.01	NC
Cadmium	0.005	< 0.000020	< 0.000020	NC	< 0.000020	< 0.000020	NC	< 0.000014	< 0.000014	NC	< 0.0001	<0.0001	NC
Chromium	0.05	< 0.002	< 0.002	NC	< 0.002	0.000	NC	< 0.002	< 0.002	NC	0.001	0.001	0.00%
Cobalt	0.03	< 0.002	< 0.002	NC	0.0024	0.002	4.26%	< 0.002	< 0.002	NC	< 0.001	0.001	NC
Copper	1	< 0.0001	< 0.0001	NC	< 0.0024	< 0.0023	4.20% NC	< 0.0001	0.0001	NC	< 0.0002	< 0.001	NC
Iron	0.3	1.04	1.07	2.84%	16	15.6	2.53%	1.62	1.59	1.87%	< 0.001	< 0.001	NC
Lead	0.01	< 0.00002	< 0.00002	NC	< 0.00002	< 0.00002	NC	< 0.00002	< 0.00002	NC	< 0.001	< 0.001	NC
Manganese	0.01	0.942	0.966	2.52%	7.56	7.33	3.09%	1.19	1.17	1.69%	< 0.001	< 0.001	NC
Molybdenum	0.03	0.0007	0.900	0.00%	0.0004	0.0005	22.22%	0.0005	0.0005	0.00%	< 0.005	< 0.005	NC
Nickel		0.0007	0.0007	0.00%	0.0004	0.0003	1.74%	0.0003	0.0003	0.00%	< 0.005	< 0.005	NC
Silicon		8.03	8.05	0.00%	13.7	13.6	0.73%	8.85	8.86	0.00%	5.9	5.8	1.71%
Silver		6.03	6.03	0.23/0	13.7	13.0	0.73/0	0.03	0.00	0.11/0	3.3	3.0	1./1/0
		0.128	0.129	0.78%	0.519	0.515	0.77%	0.14	0.14	0.00%	0.013	0.014	7.41%
Strontium Thallium		< 0.00005	< 0.00005	0.78% NC	< 0.00005	< 0.00005	0.77% NC	< 0.00005	< 0.00005	0.00% NC	< 0.0013	< 0.0014	7.41% NC
Titanium		< 0.0005	< 0.0005	NC NC	< 0.0005	< 0.0005	NC NC	< 0.0005	< 0.0005	NC NC	< 0.0001	< 0.0001	
		0.0006	0.0006	0.00%	0.005	0.005	0.00%	0.0003	0.0004	28.57%	< 0.01	0.003	NC NC
Vanadium	5			0.00% NC						28.57% NC			NC NC
Zinc	5	< 0.005	< 0.005		< 0.005	< 0.005	NC	< 0.005	< 0.005	3.83%	< 0.01	< 0.03	
Average RPD				2.96%			3.83%			3.83%			10.21%

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

		BH08-1D	BH08-1D BH08-3		BH95-5	BH95-5 BH08-2		BH08-1D	BH08-1D BH08-3		BH95-5	BH95-5 BH95-7	
Parameter	ODWS/OG	May-18	May-18	RPD	Oct-18	Oct-18	RPD	Oct-18	Oct-18	RPD	May-19	May-19	RPD
Alkalinity (C _a CO3)	30-500	85	88	3.47%	47	52	10.10%	108	98	9.71%	50	52	3.92%
BOD													
COD													
Chloride	250	18	18	0.00%	2	< 1	NC	17	17	0.00%	<1	<1	NC
Conductivity uS/cm		242	244	0.82%	100	111	10.43%	256	258	0.78%	86	93	7.82%
DOC	5												
N-NO2 (Nitrite)	1	< 0.10	< 0.10	NC	< 0.10	< 0.0	NC	< 0.10	< 0.10	NC	<0.10	<0.10	NC
N-NO3 (Nitrate)	10	< 0.10	< 0.10	NC	0.12	0.1	18.18%	< 0.10	< 0.10	NC	0.10	<0.10	NC
Phenols													
Sulphate	500												
Total Dissolved Solids	500	157	159	1.27%	65	72	10.22%	166	168	1.20%	56	60	6.90%
Total Kjeldahl Nitrogen		1.8	2.3	24.39%	1.6	1	46.15%	1.3	1.1	16.67%	0.16	<0.75	NC
Total phosphorous													
Hardness as CaCO3	500	100	95	5.13%	40	46	13.95%	87	85	2.33%	56	56	0.00%
Calcium		30	< 28	NC	11	12	8.70%	25	24	4.08%	16	16	0.00%
Magnesium		6	6	0.00%	3	4	28.57%	6	6	0.00%	4	4	0.00%
Potassium		3	2	40.00%	< 1	< 1	NC	2	2	0.00%	<1	<1	NC
Sodium	200	9	13	36.36%	< 2	< 2	NC	11	12	8.70%	<2	<2	NC
Aluminum	0.1	< 0.01	< 0.01	NC	0.01	0.03	100.00%	< 0.01	< 0.01	NC	<0.01	<0.01	NC
Barium	1	0.05		NC	0.01	0.01	0.00%	0.05	0.05	0.00%	<0.01	<0.01	NC
Beryllium		< 0.0005	< 0.0005	NC	< 0.0005	< 0.0005	NC	< 0.0005	< 0.0005	NC	<0.0005	<0.0005	NC
Boron	5	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	0.01	0.01	0.00%	< 0.01	<0.01	NC
Cadmium	0.005	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	< 0.0001	< 0.0001	NC	<0.0001	<0.0001	NC
Chromium	0.05	< 0.001	< 0.001	NC	0.001	0.001	NC	< 0.001	< 0.001	NC	0.002	0.002	0.00%
Cobalt		< 0.0002	< 0.0002	NC	< 0.0002	< 0.0002	NC	< 0.0002	< 0.0002	NC	<0.0002	<0.0002	NC
Copper	1	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	<0.001	NC
Iron	0.3	1.17	1.14	2.60%	< 0.03	< 0.03	NC	1.33	1.33	0.00%	<0.03	<0.03	NC
Lead	0.01	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	< 0.001	< 0.001	NC	<0.001	<0.001	NC
Manganese	0.05	0.92	0.94	2.15%	< 0.01	< 0.01	NC	0.93	0.93	0.00%	<0.01	<0.01	NC
Molybdenum		< 0.004	< 0.005	NC	< 0.005	< 0.005	NC	< 0.005	< 0.005	NC	<0.005	<0.005	NC
Nickel		< 0.005	< 0.005	NC	< 0.005	< 0.005	NC	< 0.005	< 0.005	NC	<0.005	<0.005	NC
Silicon		< 7.9	7.9	NC	5.8	5.8	0.00%	8.2	8.2	0.00%	5.6	5.6	0.00%
Silver													NC
Strontium		0.123	0.134	8.56%	0.017	0.018	5.71%	0.139	0.138	0.72%	0.022	0.016	31.58%
Thallium		< 0.0001	< 0.0001	NC	< 0.01	< 0.0001	NC	< 0.0001	< 0.0001	NC	<0.0001	<0.0001	NC
Titanium		< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	<0.01	<0.01	NC
Vanadium		< 0.001	< 0.001	NC	0.003	0.003	0.00%	< 0.001	< 0.001	NC	0.003	0.003	0.00%
Zinc	5	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	< 0.01	< 0.01	NC	<0.01	<0.01	NC
Average RPD				10.40%			19.39%			2.76%			5.02%

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

		BH08-1D	BH08-2 BH08-2		BH95-5	BH95-5 BH95-7		BH08-1D	BH08-2 BH08-2		BH95-5	BH95-5 Dup #2	
Parameter	ODWS/OG	May-19	May-19	RPD	Oct-19	Oct-19	RPD	Oct-19	Oct-19	RPD	May-20	May-20	RPD
Alkalinity (C _a CO3)	30-500	97	97	0.00%	50	52	3.92%	102	103	0.98%	52	54	3.77%
BOD													
COD													
Chloride	250	18	18	0.00%	<1	<1	NC	<1	18	NC	<1	<1	NC
Conductivity uS/cm		220	220	0.00%	99	105	5.88%	196	263	29.19%	104	106	1.90%
DOC	5												
N-NO2 (Nitrite)	1	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC
N-NO3 (Nitrate)	10	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC
Phenols													
Sulphate	500												
Total Dissolved Solids	500	143	143	0.00%	64	68	6.06%	127	171	29.53%	68	69	1.46%
Total Kjeldahl Nitrogen		<1.5	<1.5	NC	<0.15	<0.15	NC	<0.15	0.64	NC	0.127	<0.100	NC
Total phosphorous													
Hardness as CaCO3	500	111	107	3.67%	51	54	5.71%	94	100	6.19%	54	56	3.64%
Calcium		33	33	0.00%	14	15	6.90%	26	30	14.29%	15	16	6.45%
Magnesium		7	6	15.38%	4	4	0.00%	7	6	15.38%	4	4	0.00%
Potassium		2	2	0.00%	<1	<1	NC	1	2	66.67%	<1	<1	NC
Sodium	200	11	11	0.00%	<2	<2	NC	4	12	100.00%	<2	<2	NC
Aluminum	0.1	<0.01	< 0.01	NC	0.01	0.01	0.00%	<0.01	<0.01	NC	0.01	0.01	0.00%
Barium	1	0.05	0.05	0.00%	0.02	0.01	66.67%	0.03	0.05	50.00%	<0.01	0.01	NC
Beryllium		<0.0005	<0.0005	NC	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC
Boron	5	<0.01	< 0.01	NC	< 0.01	< 0.01	NC	< 0.01	0.02	NC	<0.01	<0.01	NC
Cadmium	0.005	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Chromium	0.05	<0.001	<0.001	NC	0.001	0.001	0.00%	<0.001	<0.001	NC	0.001	0.001	NC
Cobalt		<0.0002	<0.0002	NC	<0.0002	<0.0002	NC	<0.0002	<0.0002	NC	<0.0002	<0.0002	NC
Copper	1	<0.001	<0.001	NC	0.003	<0.001	NC	0.003	<0.001	NC	<0.001	<0.001	NC
Iron	0.3	1.35	1.32	2.25%	<0.03	<0.03	NC	0.04	1.31	188.15%	<0.03	<0.03	NC
Lead	0.01	<0.001	<0.001	0.00%	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Manganese	0.05	0.95	0.96	1.05%	<0.01	< 0.01	NC	0.02	1.02	192.31%	<0.01	<0.01	NC
Molybdenum		<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC
Nickel		<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC
Silicon		7.7	7.7	0.00%	5.4	5.4	0.00%	5	7.6	41.27%	5.5	5.5	0.00%
Silver													
Strontium		0.142	0.141	0.71%	0.017	0.017	0.00%	0.056	0.146	89.11%	0.016	0.015	6.45%
Thallium		<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Titanium		<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC
Vanadium		<0.001	<0.001	NC	0.003	0.003	0.00%	0.001	<0.001	NC	0.003	0.003	0.00%
Zinc	5	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC
Average RPD				1.54%			7.93%			63.31%			2.37%

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

		BH08-1D	BH08-2 Dup #3		BH91-2	BH91-2 Dup #3		BH91-2	BH91-2 Dup #1		BH08-1D	BH08-1D Dup #2	
Parameter	ODWS/OG	May-20	May-20	RPD	May-20	May-20	RPD	Oct-20	Oct-20	RPD	Oct-20	Oct-20	RPD
Alkalinity (C _a CO3)	30-500	110	110	0.00%	110	110	0.00%	56	55	1.80%	99	98	1.02%
BOD													
COD													
Chloride	250	16	16	0.00%	16	16	0.00%	6	<1	NC	18	18	0.00%
Conductivity uS/cm		264	266	0.75%	264	266	0.75%	131	135	3.01%	256	256	0.00%
DOC	5												
N-NO2 (Nitrite)	1	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC
N-NO3 (Nitrate)	10	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC	<0.10	<0.10	NC
Phenols													
Sulphate	500												
Total Dissolved Solids	500	172	173	0.58%	172	173	0.58%	85	88	3.47%	166	166	0.00%
Total Kjeldahl Nitrogen		0.748	0.640	15.56%	0.748	0.640	15.56%	<0.100	0.107	NC	0.523	4.14	155.14%
Total phosphorous													
Hardness as CaCO3	500	114	119	4.29%	114	119	4.29%	59	59	0.00%	109	109	0.00%
Calcium		34	36	5.71%	34	36	5.71%	17	17	0.00%	32	32	0.00%
Magnesium		7	7	0.00%	7	7	0.00%	4	4	0.00%	7	7	0.00%
Potassium		3	3	0.00%	3	3	0.00%	3	3	0.00%	3	3	0.00%
Sodium	200	10	11	9.52%	10	11	9.52%	5	5	0.00%	10	10	0.00%
Aluminum	0.1	<0.01	< 0.01	NC	<0.01	<0.01	NC	< 0.01	<0.01	NC	<0.01	<0.01	NC
Barium	1	0.06	0.06	0.00%	0.06	0.06	0.00%	0.02	0.02	0.00%	0.05	0.05	0.00%
Beryllium		<0.0005	<0.0005	NC	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC
Boron	5	0.02	0.02	0.00%	0.02	0.02	0.00%	0.01	< 0.01	NC	0.01	0.04	120.00%
Cadmium	0.005	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Chromium	0.05	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Cobalt		<0.0002	<0.0002	NC	<0.0002	<0.0002	NC	<0.0002	<0.0002	NC	<0.0002	<0.0002	NC
Copper	1	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	0.001	NC	<0.001	0.002	NC
Iron	0.3	1.75	1.72	1.73%	1.75	1.72	1.73%	<0.03	<0.03	NC	1.43	1.46	2.08%
Lead	0.01	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Manganese	0.05	1.09	1.08	0.92%	1.09	1.08	0.92%	0.02	0.02	0.00%	0.88	0.87	1.14%
Molybdenum		<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC
Nickel		<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC	<0.005	<0.005	NC
Silicon		8.1	8	1.24%	8.1	8	1.24%	9.5	9.8	3.11%	8.3	8.1	2.44%
Silver													
Strontium		0.168	0.17	1.18%	0.168	0.17	1.18%	0.072	0.071	1.40%	0.117	0.118	0.85%
Thallium		<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Titanium		<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC
Vanadium		<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC	<0.001	<0.001	NC
Zinc	5	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC	<0.01	<0.01	NC
Average RPD				2.59%			2.59%			1.07%			17.67%

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

		BH91-5D	BH91-5D						
			Dup #3						
Parameter	ODWS/OG	Oct-20	Oct-20	RPD					
Alkalinity (C _a CO3)	30-500	43	44	2.30%					
BOD									
COD									
Chloride	250	71	71	0.00%					
Conductivity uS/cm		334	339	1.49%					
DOC	5								
N-NO2 (Nitrite)	1	<0.10	<0.10	NC					
N-NO3 (Nitrate)	10	<0.10	<0.10	NC					
Phenols									
Sulphate	500								
Total Dissolved Solids	500	217	220	1.37%					
Total Kjeldahl Nitrogen		0.160	0.233	37.15%					
Total phosphorous									
Hardness as CaCO3	500	72	72	0.00%					
Calcium		19	19	0.00%					
Magnesium		6	6	0.00%					
Potassium		2	2	0.00%					
Sodium	200	37	38	2.67%					
Aluminum	0.1	<0.01	<0.01	NC					
Barium	1	0.07	0.07	0.00%					
Beryllium		<0.0005	<0.0005	NC					
Boron	5	0.01	0.02	66.67%					
50.0									
Cadmium	0.005	<0.0001	<0.0001	NC					
Chromium	0.05	<0.001	<0.001	NC					
Cobalt		<0.0002	<0.0002	NC					
Copper	1	0.016	<0.001	NC					
Iron	0.3	15.4	15.8	2.56%					
Lead	0.01	<0.001	<0.001	NC					
Manganese	0.05	0.16	0.16	0.00%					
Molybdenum		<0.005	<0.005	NC					
Nickel		<0.005	<0.005	NC					
Silicon		8.1	8.2	1.23%					
Silver									
Strontium		0.062	0.064	3.17%					
Thallium		<0.0001	<0.0001	NC					
Titanium		<0.01	<0.01	NC					
Vanadium		0.002	0.002	NC					
Zinc	5	<0.01	<0.01	NC					
Average RPD				7.41%					

NC = Not Calculated

RDP greater than 25%

RDP greater than 50%

Sample Location 1227

			Apr-14	Oct-14	Jun-15	Oct-15	May-18	Oct-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	106	106	107	109	108	124
COD		30 300	< 5	< 5	< 5	< 5	< 5	< 5
Chloride	AO	250	1.5	1.5	1.4	1.5	1	2
Conductivity us/cm	7.0	230	232	222	230	229	236	239
DOC	AO	5	1.9	1.5	1.5	1.2	1.2	2
N-NO2	MAC	1	< 0.1	< 0.10	< 0.1	< 0.1	< 0.10	< 0.10
N-NO3	MAC	10	< 0.10	< 0.10	< 0.1	< 0.1	< 0.10	< 0.10
Phenols			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	AO	500	10	10	10	10	9	10
Total Dissolved Solids	AO	500	130	119	143	153	153	155
Total Kjeldahl Nitrogen	,	333	< 0.05	0.09	< 0.05	< 0.05	< 0.8	1.1
Total phosphorous			< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.005
Hardness as CaCO3	OG	500	10.01	10.01	57	61	0.01	0.003
Calcium		300	17.6	14.5	16.4	17.2	16	16
Magnesium			3.87	3.63	3.87	4.43	4	4
Potassium			0.7	0.6	0.6	0.6	< 1	< 1
Sodium	AO	200	33.6	25.8	31.5	30.8	33	31
Aluminum	OG	0.1	33.0	23.0	31.3	30.0	33	31
Barium	MAC	1	0.013	0.011	0.012	0.014	0.01	0.01
Beryllium	IVIAC		0.013	0.011	0.012	0.014	0.01	0.01
Boron	IMAC	5	0.073	0.058	0.064	0.085	0.06	0.07
Cadmium	MAC	0.005	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	< 0.0001
Chromium	MAC	0.05	< 0.0002	< 0.002	< 0.002	< 0.000	< 0.0001	< 0.001
Cobalt	IVIAC	0.05	\ 0.000Z	₹ 0.002	₹0.002	₹0.002	₹0.001	(0.001
Copper	AO	1	0.0055	0.0017	0.0054	< 0.002	0.004	0.001
Iron	AO	0.3	0.011	< 0.005	0.022	0.011	< 0.03	0.03
Lead	MAC	0.01	0.00012	0.00006	0.00005	0.00008	< 0.001	< 0.001
Manganese	AO	0.05	0.008	0.009	0.006	0.011	< 0.01	< 0.01
Nickel	710	0.03	0.000	0.003	0.000	0.011	10.01	10.01
Silver								
Strontium								
Zinc	AO	5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01
Arsenic	IMAC	0.025	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001
Mercury	MAC	0.001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	< 0.0001
N-NH3	111110	0.001	< 0.01	0.02	< 0.01	0.05	0.1	0.14
pH (no units)	OG	6.5-8.5	8.21	8.21	7.54	7.85	8.32	8.22
VOCs		0.5 0.5	0.21	0.21	7.54	7.03	0.32	0.22
Benzene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene,1,4- ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.4
Dichloromethane ug/L			< 0.3	< 0.3	< 0.3	< 0.3	< 4.0	< 4.0
Toluene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
Dichloroethane-d4,1,2-(SS)			99.5	95	101	99	99	96
Toluene-d8 (SS)			110	117	99	101	90	96
Bromofluorobenzene,4(SS)			81.9	102	89	98	115	84
Field Parameters			01.5	102	33	20	110	<u> </u>
Temperature °C			8.7	8.5	9.5	12.3	9.7	10.4
Н			8.8	7.4	7.5	8.2	8.1	7.8
Conductivity us/cm			209	218	251	206	197	180
Conductivity doj citi		1	203	210	231	200	131	100

All concentrations in mg/L unless otherwise noted

Sample Location 1244

			Apr-14	Oct-14	Jun-15	Oct-15	Oct-18	
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	51	42	53	39	51	
COD		30 300	6	< 5	< 5	< 5	< 5	
Chloride	AO	250	13.7	0.9	1.2	0.7	1	
Conductivity us/cm	710	230	182	104	127	99	120	
DOC	AO	5	3.8	1.5	1.2	0.5	1.4	
N-NO2	MAC	1	< 0.1	< 0.10	< 0.1	< 0.1	< 0.10	
N-NO3	MAC	10	1.1	0.1	0.1	0.1	< 0.10	
Phenols	1417.10	10	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Sulphate	AO	500	9	11	9	8	7	
Total Dissolved Solids	AO	500	94.4	56.9	77	59		
Total Kjeldahl Nitrogen	7.0	300	0.15	< 0.05	< 0.05	< 0.05	1.5	
Total phosphorous			0.03	0.01	0.02	0.01	0.015	
Hardness as CaCO3	OG	500	0.03	0.01	58	45	0.013	
Calcium	00	300	20.5	13.2	16.7	12.8	14	
Magnesium			4.56	2.94	3.87	3.17	3	
Potassium			1.2	0.9	1	1	<1	
Sodium	AO	200	10.5	2.6	3.9	3.3	3	
Aluminum	OG	0.1	10.5	2.0	3.9	3.3	3	
Barium	MAC	1	0.008	0.006	0.006	0.007	< 0.01	
Beryllium	IVIAC	1	0.008	0.006	0.006	0.007	< 0.01	
Boron	IMAC	5	0.005	< 0.005	< 0.005	0.006	< 0.01	
Cadmium	MAC	0.005	< 0.0002	< 0.0003	< 0.0003	< 0.0000	< 0.001	
Chromium	MAC	0.005	< 0.00002	< 0.00002	< 0.0002	< 0.00002	< 0.0001	
Cobalt	IVIAC	0.05	< 0.0002	< 0.002	< 0.002	< 0.002	< 0.001	
Copper	۸0	1	0.0218	0.0194	0.0291	0.029	0.031	
Iron	AO AO	0.3	0.0218	0.0194	0.0291	0.029	< 0.031	
Lead		0.3	0.033	0.078	0.0096	0.00076		
Manganese	MAC AO	0.01	0.00394		< 0.001	0.00076	< 0.001	
Nickel	AU	0.05	0.002	0.002	< 0.001	0.001	< 0.01	
Silver								
Strontium								
Zinc	۸0	5	0.007	< 0.005	0.005	0.005	< 0.01	
Arsenic	AO						< 0.01	
Mercury	IMAC	0.025	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.001	
N-NH3	MAC	0.001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	
pH (no units)	00	6505	< 0.01	< 0.01	< 0.01	< 0.01	0.07	
VOCs	OG	6.5-8.5	7.7	7.32	7.17	7.23	7.57	
Benzene ug/L			405	405	405	.0.5	.0.5	
Dichlorobenzene,1,4- ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Dichloromethane ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	
Toluene ug/L			< 0.3	< 0.3	< 0.3	< 0.3	< 4.0	
			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Dichloroethane-d4,1,2-(SS) Toluene-d8 (SS)			101	96.5	106	98	96	
Bromofluorobenzene,4(SS)			105	117	97	101	96	
			81.8	106	90	98	119	
Field Parameters			7.0	0.1	0.0	6	46.5	
Temperature ^o C			7.6	9.1	8.9	8	10.5	
pH			8.2	6.7	7.2	7.2	7.9	
Conductivity us/cm			166	101	141	91	97	

All concentrations in mg/L unless otherwise noted

Sample Location 1235

			Apr-14	Oct-14	Jun-15	Oct-15	May-18	Oct-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	42	47	51	46	112	51
COD		30 300	< 5	< 5	< 5	< 5	< 5	< 5
Chloride	AO	250	7.6	4.8	8.3	6.8	10	10
Conductivity us/cm	7.0	230	193	147	205	163	213	152
DOC	AO	5	1.1	1.1	1	0.6	0.9	1.3
N-NO2	MAC	1	0.1	< 0.10	< 0.1	< 0.1	< 0.10	< 0.10
N-NO3	MAC	10	8.2	2.5	6.8	3.9	10.2	1.52
Phenols			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	AO	500	6	9	9	8	6	11
Total Dissolved Solids	AO	500	115	79.7	127	109	138	99
Total Kjeldahl Nitrogen	,		< 0.05	0.19	< 0.05	< 0.05	< 0.8	1
Total phosphorous			< 0.01	0.02	< 0.01	< 0.01	< 0.01	0.002
Hardness as CaCO3	OG	500	10.01	0.02	48	37	10.01	0.002
Calcium		300	11.7	9.06	13.7	10.1	15	9
Magnesium			3.1	2.17	3.41	2.81	3	2
Potassium			1.2	1	1.2	1	1	1
Sodium	AO	200	23.3	14.9	23.7	21.1	21	16
Aluminum	OG	0.1	23.3	14.5	23.7	21.1		10
Barium	MAC	1	0.008	0.006	0.009	0.007	< 0.01	< 0.01
Beryllium	IVIAC		0.000	0.000	0.003	0.007	10.01	(0.01
Boron	IMAC	5	0.022	0.014	0.021	0.03	0.02	0.03
Cadmium	MAC	0.005	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	< 0.0001
Chromium	MAC	0.05	< 0.0002	< 0.002	< 0.002	< 0.000	< 0.0001	< 0.001
Cobalt	IVIAC	0.03	\ 0.000Z	₹0.002	₹0.002	₹0.002	₹0.001	(0.001
Copper	AO	1	0.0422	0.0404	0.141	0.062	0.061	0.089
Iron	AO	0.3	< 0.005	< 0.005	0.021	0.008	< 0.03	< 0.03
Lead	MAC	0.01	0.00045	0.00036	0.00052	0.00051	< 0.001	< 0.001
Manganese	AO	0.05	< 0.001	< 0.001	< 0.001	0.001	< 0.01	< 0.01
Nickel	710	0.03	10.001	10.001	10.001	0.001	10.01	10.01
Silver								
Strontium								
Zinc	AO	5	0.009	0.006	0.058	0.009	< 0.01	0.01
Arsenic	IMAC	0.025	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001
Mercury	MAC	0.001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	< 0.0001
N-NH3	1717 (0	0.001	< 0.01	< 0.01	< 0.01	< 0.01	0.11	0.08
pH (no units)	OG	6.5-8.5	7.41	7.08	6.92	7.02	7.4	7.34
VOCs		0.5 0.5	7.71	7.00	0.32	7.02	,	7.54
Benzene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene,1,4- ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.4
Dichloromethane ug/L			< 0.3	< 0.3	< 0.3	< 0.3	< 4.0	< 4.0
Toluene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichloroethane-d4,1,2-(SS)			100	99.5	101	100	99	98
Toluene-d8 (SS)			106	122	98	101	94	93
Bromofluorobenzene,4(SS)			83.3	104	89	98	112	85
Field Parameters			55.5	-01				
Temperature °C			5.7	9.2	8.5	10.3	7.4	13.5
Н			7.6	6.7	7.3	7.6	7.4	7.5
Conductivity us/cm			173	143	226	150	180	115
		1	1,5	- 10		100	100	

All concentrations in mg/L unless otherwise noted

Sample Location 1236

			Apr-14	Oct-14	Jun-15	Oct-15	May-18	Oct-18
PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500	29	28	26	26	36	33
COD		30 300	< 5	< 5	< 5	< 5	< 5	< 5
Chloride	AO	250	1.3	1.2	1.5	0.7	3	1
Conductivity us/cm	710	230	85	77	80	70	99	82
DOC	AO	5	1.5	0.9	1.1	0.6	1.2	1.3
N-NO2	MAC	1	< 0.10	< 0.10	< 0.1	< 0.1	< 0.10	< 0.10
N-NO3	MAC	10	0.8	0.3	0.8	0.1	0.84	< 0.10
Phenols	1417 (C	10	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	AO	500	6	7	7	7	4	6
Total Dissolved Solids	AO	500	44.9	39.1	48	42	64	53
Total Kjeldahl Nitrogen	٨٥	300	< 0.05	0.07	< 0.05	0.15	< 0.8	1
Total phosphorous			< 0.03	< 0.01	< 0.03	0.13	0.02	0.008
Hardness as CaCO3	OG	500	₹ 0.01	\ 0.01	31	28	0.02	0.008
Calcium	00	300	10.1	7.25	9.26	7.67	12	6
Magnesium			1.93	1.72	2.03	2.03	2	1
Potassium			1.93	0.8	0.8	0.8	1	
Sodium	AO	200	3.6	3.1	3.4	3.3	3	3
Aluminum	OG	0.1	3.0	3.1	3.4	3.3	3	3
Barium	MAC	1	0.005	0.003	0.004	0.004	< 0.01	< 0.01
Beryllium	IVIAC	1	0.003	0.003	0.004	0.004	< 0.01	< 0.01
Boron	IMAC	5	< 0.005	< 0.005	< 0.005	0.006		< 0.01
Cadmium	MAC	0.005	< 0.0002	< 0.0003	< 0.0003	< 0.0000	< 0.0001	< 0.001
Chromium	MAC	0.005	< 0.00002	< 0.0002	< 0.0002	< 0.00002	< 0.0001	< 0.0001
Cobalt	IVIAC	0.03	< 0.0002	< 0.002	< 0.002	< 0.002	< 0.001	< 0.001
Copper	40	1	0.0208	0.0355	0.0213	0.053	0.04	0.052
Iron	AO AO	0.3	< 0.0208	< 0.005	< 0.0213	< 0.005	< 0.04	< 0.032
Lead			0.00019		0.00012	0.00034		
Manganese	MAC	0.01 0.05	< 0.0019	0.00016	< 0.0012	< 0.001	< 0.001	< 0.001 < 0.01
Nickel	AO	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.01	< 0.01
Silver								
Strontium								
Zinc	40	5	< 0.005	< 0.00E	< 0.005	< 0.00E	< 0.01	< 0.01
Arsenic	AO			< 0.005		< 0.005	< 0.01	< 0.01
Mercury	IMAC	0.025	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001
N-NH3	MAC	0.001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.0001	< 0.0001
pH (no units)	00	6505	< 0.01	< 0.01	< 0.01	< 0.01	0.08	0.06
VOCs	OG	6.5-8.5	7.32	8.39	6.64	6.87	7.17	< 70
Benzene ug/L			405	405	405	.0.5	4.0.05	105
Dichlorobenzene,1,4- ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.05	< 0.5
			< 0.2	< 0.2	< 0.2	< 0.2	< 0.4	< 0.1
Dichloromethane ug/L			< 0.3	< 0.3	< 0.3	< 0.3	< 4.0	< 4
Toluene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dichloroethane-d4,1,2-(SS)			98.6	96.6	102	101	100	108
Toluene-d8 (SS)			105	119	98	101	86	95
Bromofluorobenzene,4(SS)			76.2	99.9	90	97	115	87
Field Parameters						0.5		
Temperature °C			6.2	9.3	8.8	8.8	8.5	9
pH			7.8	6.8	6.9	7.1	7.6	7.9
Conductivity us/cm			75	71	90	6.3	84	55

All concentrations in mg/L unless otherwise noted

VOCs Trip Blank

Oct-14 Jun-15 Oct-15 May-18

PARAMETER	Limit	ODWO/S						
Alkalinity (C _a CO3)	OG	30-500						
COD								
Chloride	AO	250						
Conductivity us/cm								
DOC	AO	5						
N-NO2	MAC	1						
N-NO3	MAC	10						
Phenols								
Sulphate	AO	500						
Total Dissolved Solids	AO	500						
Total Kjeldahl Nitrogen	710	300						
Total phosphorous								
Hardness as CaCO3	OG	500						
Calcium	00	300						
Magnesium								
Potassium								
Sodium	AO	200						
Aluminum	OG	0.1						
Barium	MAC	1						
Beryllium	IVIAC	1						
Boron	IMAC	5						
Cadmium								
Chromium	MAC	0.005						
Cobalt	MAC	0.05						
	10	4						
Copper	AO	1						
Iron	AO	0.3						
Lead	MAC	0.01						
Manganese	AO	0.05						
Nickel								
Silver								
Strontium								
Zinc	AO	5						
Arsenic	IMAC	0.025						
Mercury	MAC	0.001						
N-NH3								
pH (no units)	OG	6.5-8.5						
VOCs								
Benzene ug/L			< 0.5	<0.5	< 0.5	< 0.5	< 0.5	
Dichlorobenzene,1,4- ug/L			< 0.2	<0.2	< 0.2	< 0.4	< 0.4	
Dichloromethane ug/L			< 0.3	<0.3	< 0.3	< 4.0	< 4.0	
Toluene ug/L			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Vinyl Chloride ug/L			< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Dichloroethane-d4,1,2-(SS)			97.4	101	102	100	101	
Toluene-d8 (SS)			118	98	100	91	93	
Bromofluorobenzene,4(SS)			101	97	98	115	121	
Field Parameters								
Temperature ^o C								
pH								
Conductivity us/cm								

All concentrations in mg/L unless otherwise noted

MILLERS ROAD WDS GUIDELINE 85-1 88-1D 88-2S REPORT OF ORGANIC ANALYSIS ODWSOG Sep-91 Sep-91 Sep-91

PARAMETER	TYPE	LIMIT	UNITS				
1,1,1,2-tetrachloroethane	ug/L	LIIVIII	ONITS				
1,1,1-trichloroethane	ug/L			ND	1.4	1.4	
1,1,2,2-tetrachloroethane	ug/L			ND	ND	ND	
1,1,2-trichloroethane	ug/L ug/L			ND	ND ND	ND ND	
1,1-dichloroethane				ND	IND	ND	
	ug/L	NAAC	1.4	ND	ND	ND	
1,1-dichloroethylene	ug/L	MAC	14	ND	ND	ND	
1,2-dibromoethane	ug/L	1416	200	ND	ND	ND	
1,2-dichlorobenzene	ug/L	MAC	200				
1,2-dichloroethane	ug/L	IMAC	5				
1,2-dichloropropane	ug/L			ND	ND	ND	
1,3,5-trimethylbenzene	ug/L			ND	ND	ND	
1,3-dichlorobenzene	ug/L						
1,4-dichlorobenzene	ug/L	MAC	5				
1,2,4-Trichlorobenzene							
Benzene	ug/L	MAC	5	ND	ND	ND	
Bromodichloromethane	ug/L			ND	ND	ND	
Bromoform	ug/L			ND	ND	ND	
Bromomethane	ug/L			ND	ND	ND	
cis-1,2-Dichloroethylene	ug/L						
cis-1,3-Dichloropropylene	ug/L						
Carbon Tetrachloride	ug/L	MAC	5	ND	ND	ND	
Chloroethane	ug/L			ND	ND	ND	
Chloroform	ug/L			ND	ND	ND	
Chloromethane	ug/L			ND	ND	ND	
Dibromochloromethane	ug/L			ND	ND	ND	
Dichlorodifluromethane	<u> </u>						
Dichloromethane	ug/L	MAC	50				
Ethylbenzene	ug/L	AO	1.6	ND	ND	ND	
m/p-xylene	ug/L			ND	ND	ND	
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	ND	ND	ND	
o-xylene	ug/L			ND	ND	ND	
Styrene	ug/L			ND	ND	ND	
trans-1,2-Dichloroethylene	ug/L			ND	ND	ND	
trans-1,3-Dichloropropylene	ug/L			ND	ND	ND	
Tetrachloroethylene	ug/L	MAC	30	ND	ND	ND	
Toluene	ug/L	AO	24	ND	ND	ND	
Trichloroethylene	ug/L	MAC	5	ND	ND	ND	
Trichlorofluoromethane	ug/L	IVIAC	3	ND	ND	ND	
Vinyl Chloride	ug/L	MAC	2	ND	ND	ND	
		IVIAC	2	IND	ND	ND	
cis+trans1,3-dichloropropene Acetone	ug/L						
	ug/L			ND	ND	ND	
m/p,o Xylene	ug/L			ND	ND	ND	
Hexane	ug/L						
2-Hexanone	/1						
Methyl Ethyl Ketone	ug/L						
Methyl Isobutyl Ketone	ug/L						
Methyl-t-butyl Ether	ug/L						
m-Dichlorobenzene	ug/L			ND	ND	ND	
o-Dichlorobenzene	ug/L			ND	ND	ND	
p-Dichlorobenzene	ug/L			ND	ND	ND	
VOC SURROGATES		1	1				
. 55 5511110 57 11 E5							
1,2-dichloroethane-d4	%						
	% % %						

ODWSOG REPORT OF ORGANIC ANALYSIS Sep-91 Oct-00 Oct-06 Oct-06 May-07 TYPE LIMIT UNITS **PARAMETER** 1,1,1,2-tetrachloroethane ug/L <0.5 <0.5 <0.5 1,1,1-trichloroethane <50 <0.4 <0.4 <0.4 ug/L 1,1,2,2-tetrachloroethane <50 <0.6 <0.5 <0.5 <0.5 ug/L 1,1,2-trichloroethane ug/L <50 <0.6 <0.4 <0.4 <0.4 1,1-dichloroethane <50 <0.5 0.8 0.8 0.8 ug/L MAC <50 <0.6 <0.5 <0.5 <0.5 1,1-dichloroethylene ug/L 14 1,2-dibromoethane <50 <1.0 <1.0 <1.0 <1.0 ug/L 1,2-dichlorobenzene ug/L MAC 200 <0.4 0.5 0.7 1,2-dichloroethane ug/L IMAC 5 <100 <0.5 <0.5 <0.5 <0.5 1,2-dichloropropane ug/L <50 <0.7 <0.5 <0.5 <0.5 1,3,5-trimethylbenzene ug/L <50 5 < 0.3 < 0.3 < 0.3 1,3-dichlorobenzene ug/L < 0.4 < 0.4 <0.4 MAC 1,4-dichlorobenzene ug/L 5 2.1 3.0 3.2 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 <50 < 0.5 1.8 2.3 2.6 Bromodichloromethane ug/L <50 < 0.4 < 0.3 < 0.3 < 0.3 Bromoform <50 <0.8 <0.4 <0.4 <0.4 ug/L <200 <1.0 <0.5 <0.5 <0.5 Bromomethane ug/L 6.8 7.1 18.4 cis-1,2-Dichloroethylene ug/L <0.2 <0.2 cis-1,3-Dichloropropylene ug/L < 0.2 Carbon Tetrachloride MAC <100 < 0.5 <0.5 <0.5 <0.5 ug/L Chloroethane <200 <1.0 <1.0 2.7 5.4 ug/L Chloroform <50 < 0.6 <0.5 <0.5 ug/L < 0.5 Chloromethane ug/L <200 <3.0 <1.0 <1.0 <1.0 Dibromochloromethane <50 < 0.5 < 0.3 < 0.3 < 0.3 ug/L Dichlorodifluromethane Dichloromethane MAC 50 <4.0 <4.0 <4.0 ug/L 3.9 5.8 6.9 Ethylbenzene ug/L ΑO 1.6 <50 4 m/p-xylene ug/L <100 2 <1.0 <1.0 <1.0 Monochlorobenzene (chlorobenzene) ug/L MAC 80 <50 < 0.4 7.6 9.0 10.9 o-xylene ug/L <50 0.5 0.6 0.9 1.2 <50 < 0.4 < 0.5 < 0.5 < 0.5 Styrene ug/L trans-1,2-Dichloroethylene ug/L <50 1 4.6 5.1 6.6 trans-1,3-Dichloropropylene <50 <0.5 < 0.2 <0.2 <0.2 ug/L Tetrachloroethylene ug/L MAC 30 <50 <0.5 <0.3 <0.3 <0.3 410 <0.5 0.5 0.7 0.9 Toluene ΑO 24 ug/L Trichloroethylene MAC 5 <50 2.4 <0.3 <0.3 <0.3 ug/L Trichlorofluoromethane ug/L <50 <1.0 <0.5 <0.5 <0.5 MAC 2 <200 15.7 15.8 21.3 Vinyl Chloride ug/L <0.5 cis+trans1,3-dichloropropene <0.4 ug/L Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L <50 <0.4 <50 <0.4 o-Dichlorobenzene ug/L p-Dichlorobenzene <50 < 0.4 ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 107 97 4-bromofluorobenzene % 100 103 Toluene-d8 % 104 105

GUIDELINE

88-3D

Concentrations exceed MDL
Concentrations exceed ODWSOG

MILLERS ROAD WDS

GUIDELINE

88-3S

REPORT OF ORGANIC ANALYSIS

ODWSOG

Oct-00

2004

Oct-06

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L				<0.6	<0.5		
1,1,1-trichloroethane	ug/L				<0.2	<0.4		
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.1	<0.5		
1,1,2-trichloroethane	ug/L			<0.6	<0.1	<0.4		
1,1-dichloroethane	ug/L			<0.5	<0.1	<0.4		
1,1-dichloroethylene	ug/L	MAC	14	<0.6		<0.5		
1,2-dibromoethane	ug/L			<1.0	<0.1	<1.0		
1,2-dichlorobenzene	ug/L	MAC	200		<0.1	<0.4		
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.1	<0.5		
1,2-dichloropropane	ug/L			<0.7	<0.1	<0.5		
1,3,5-trimethylbenzene	ug/L			<0.5	-	<0.3		
1,3-dichlorobenzene	ug/L				<0.1	<0.4		
1,4-dichlorobenzene	ug/L	MAC	5		<0.2	<0.4		
1,2,4-Trichlorobenzene	- 0,				-			
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5		
Bromodichloromethane	ug/L			<0.4	<0.1	<0.3		
Bromoform	ug/L			<0.8	<0.1	<0.4		
Bromomethane	ug/L			<1.0	<2	<0.5		
cis-1,2-Dichloroethylene	ug/L			-1.0		<0.4		
cis-1,3-Dichloropropylene	ug/L					<0.4		
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.2	<0.5		
Chloroethane	ug/L	141710		<1.0	10.2	<1.0		
Chloroform	ug/L			<0.6	<0.3	<0.5		
Chloromethane	ug/L			<3.0	٧٥.5	<1.0		
Dibromochloromethane	ug/L			<0.5	<0.1	<0.3		
Dichlorodifluromethane	ug/L			\0. 3	₹0.1	\0.3		
Dichloromethane	ug/L	MAC	50		<0.5	<4.0		
		AO	1.6	<0.5	<0.3	<0.5		
Ethylbenzene	ug/L ug/L	AU	1.0	<1.0	<0.1	<1.0		
m/p-xylene		NAAC	90		<0.2			
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4		<0.2 <0.5		
o-xylene	ug/L			<0.5	<0.5			
Styrene	ug/L			<0.4	<0.7	<0.5		
trans-1,2-Dichloroethylene	ug/L			<1.0		<0.4		
trans-1,3-Dichloropropylene	ug/L		20	<0.5	-0.4	<0.2		
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.4	<0.3		
Toluene	ug/L	AO	24	<0.5	<0.2	<0.5		
Trichloroethylene	ug/L	MAC	5	<0.4	<0.1	<0.3		
Trichlorofluoromethane	ug/L		2	<1.0		<0.5		
Vinyl Chloride	ug/L	MAC	2	<0.5	<0.2	<0.2		
cis+trans1,3-dichloropropene	ug/L			<0.4				
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L			<0.4				
o-Dichlorobenzene	ug/L			<0.4				
p-Dichlorobenzene	ug/L			<0.4				
VOC SURROGATES								
1,2-dichloroethane-d4	%					112		
4-bromofluorobenzene	%					95		
Toluene-d8	%					102		
	1		1		1		1	1

GUIDELINE

91-1

REPORT OF ORGANIC ANALYSIS

ODWSOG Sep-91

PARAMETER	TYPE	LIMIT	UNITS			
1,1,1,2-tetrachloroethane	ug/L					
1,1,1-trichloroethane	ug/L			ND		
1,1,2,2-tetrachloroethane	ug/L			ND		
1,1,2-trichloroethane	ug/L			ND		
1,1-dichloroethane	ug/L					
1,1-dichloroethylene	ug/L	MAC	14	ND		
1,2-dibromoethane	ug/L			ND		
1,2-dichlorobenzene	ug/L	MAC	200			
1,2-dichloroethane	ug/L	IMAC	5			
1,2-dichloropropane	ug/L			ND		
1,3,5-trimethylbenzene	ug/L			ND		
1,3-dichlorobenzene	ug/L			110		
1,4-dichlorobenzene	ug/L	MAC	5			
1,2,4-Trichlorobenzene	ug/ L	IVIAC	,			
Benzene	ug/L	MAC	5	ND		
Bromodichloromethane	ug/L	IVIAC	,	ND		
Bromoform	ug/L			ND		
Bromomethane	ug/L ug/L			ND		
cis-1,2-Dichloroethylene	ug/L ug/L			IND		
cis-1,3-Dichloropropylene	ug/L ug/L			-		
Carbon Tetrachloride	ug/L ug/L	MAC	5	ND		
		IVIAC	3			
Chloroethane Chloroform	ug/L			ND		
	ug/L			ND		
Chloromethane	ug/L			ND		
Dibromochloromethane	ug/L			ND		
Dichlorodifluromethane						
Dichloromethane	ug/L	MAC	50			
Ethylbenzene	ug/L	AO	1.6	ND		
m/p-xylene	ug/L			ND		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	ND		
o-xylene	ug/L			ND		
Styrene	ug/L			ND		
trans-1,2-Dichloroethylene	ug/L			ND		
trans-1,3-Dichloropropylene	ug/L			ND		
Tetrachloroethylene	ug/L	MAC	30	ND		
Toluene	ug/L	AO	24	ND		
Trichloroethylene	ug/L	MAC	5	ND		
Trichlorofluoromethane	ug/L			ND		
Vinyl Chloride	ug/L	MAC	2	ND		
cis+trans1,3-dichloropropene	ug/L					
Acetone	ug/L					
m/p,o Xylene	ug/L			ND		
Hexane	ug/L					
2-Hexanone						
Methyl Ethyl Ketone	ug/L					
Methyl Isobutyl Ketone	ug/L					
Methyl-t-butyl Ether	ug/L					
m-Dichlorobenzene	ug/L			ND		
o-Dichlorobenzene	ug/L			ND		
p-Dichlorobenzene	ug/L			ND		
VOC SURROGATES						
1,2-dichloroethane-d4	%					
4-bromofluorobenzene	%					
Toluene-d8	%					

GUIDELINE

91-2

REPORT OF ORGANIC ANALYSIS

ODWSOG

Sep-91

Oct-00

1,1,1-trichloroethane 1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropthane 1,2-dichloropthane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2-trichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichloroptopane 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenz	5/L 5/L 5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	NI N	D <0.0 D <0.0 C <0.0	6 5 6		
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ug Cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	.4 NI NI 00	D <0.0 D <0.0 C <0.0	6 5 6		
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ug Bromomethane Ug Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	.4 NE NE	D <0 <0 D <0	6 5 6		
1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ug 1,2-Dichloroethylene cis-1,2-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane	5/L 5/L MA 6/L M	AC 20	.4 NI NI	<0 D <0	5 6		
1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropethane 1,2-dichloropethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L MA 5/L	AC 20	NI 00	D <0.	6		
1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ug Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	3/L M/ 3/L 3/L M/ 3/L IM/ 3/L 3/L 3/L 3/L 3/L	AC 20	NI 00				
1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	3/L MA 3/L IMA 3/L IMA 3/L 3/L	AC 20	NI 00				
1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane	g/L MA g/L IMA g/L g/L g/L		00				
1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromomethane ug bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane ug Chloromethane	g/L IM/ g/L g/L						
1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ugs-1,2-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane	g/L g/L g/L		5	<0.	5		
1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ugstrombertane Bromomethane Ugstrombertane Ugstr	g/L g/L		NI				
1,3-dichlorobenzene ug 1,4-dichlorobenzene ug 1,2,4-Trichlorobenzene Benzene ug Bromodichloromethane ug Bromomethane ug Bromomethane ug Cis-1,2-Dichloroethylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug	g/L		NI				
1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Dibromochloromethane				10			
1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Chloroform Ug Chloromethane		۱ ۵	5				
Benzene ug Bromodichloromethane ug Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug			,				
Bromodichloromethane ug Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug	g/L MA	١ ٠	5 NI	D <0.	E		
Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		10 .	NI NI				
Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		_	NI			+	
cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		_				+	
cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug			NI	D <1.0	U		
Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug						. +	
Chloroethane ug Chloromethane ug Dibromochloromethane ug		•			-		
Chloroform ug Chloromethane ug Dibromochloromethane ug		4C :	5 NI				
Chloromethane ug Dibromochloromethane ug			NI				
Dibromochloromethane ug			NI				
			NI				
	;/L		NI	D <0.	5		
Dichlorodifluromethane							
	g/L MA		50				
	g/L A	J 1	.6 NI				
	g/L		NI				
	g/L MA	4C 8	30 NI				
	g/L		NI				
	g/L		NI	D <0.4	4		
	g/L		NI	D <1.0	0		
trans-1,3-Dichloropropylene ug	g/L		NI	D <0	5		
Tetrachloroethylene ug	g/L MA	4C 3	80 NE	D <0	5		
	g/L A	J 2	24 NE	D <0	5		
Trichloroethylene ug	g/L MA	4C :	5 NI	D <0.4	4		
Trichlorofluoromethane ug	g/L		N	D <1.0	0		
Vinyl Chloride ug	g/L MA	AC 2	2 NI	D <0.	5		
cis+trans1,3-dichloropropene ug	g/L			<0.4	4		
Acetone ug	g/L						
m/p,o Xylene ug	g/L		NI	0			
	g/L						
2-Hexanone							
Methyl Ethyl Ketone ug	g/L						
	g/L						
	g/L						
	g/L		NI	D <0.4	4		
	g/L		NI				
	g/L		NI				
	-						
VOC SURROGATES			1	1	1		
1,2-dichloroethane-d4							
4-bromofluorobenzene	%						
Toluene-d8	% %						

GUIDELINE

91-3

REPORT OF ORGANIC ANALYSIS

ODWSOG

Sep-91

Oct-00

1,1,1-trichloroethane 1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropthane 1,2-dichloropthane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2-trichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichloroptopane 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenz	5/L 5/L 5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	NI N	D <0.0 D <0.0 C <0.0	6 5 6		
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,3-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ug Cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	.4 NI NI 00	D <0.0 D <0.0 C <0.0	6 5 6		
1,1,2,2-tetrachloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ug Bromomethane Ug Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L 5/L 5/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6/L 6	AC 20	.4 NE NE	D <0 <0 D <0	6 5 6		
1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ug 1,2-Dichloroethylene cis-1,2-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane	5/L 5/L MA 6/L M	AC 20	.4 NI NI	<0 D <0	5 6		
1,1-dichloroethane 1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropethane 1,2-dichloropethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	5/L 5/L MA 5/L	AC 20	NI 00	D <0.	6		
1,1-dichloroethylene 1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloropropane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ug Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	3/L M/ 3/L 3/L M/ 3/L IM/ 3/L 3/L 3/L 3/L 3/L	AC 20	NI 00				
1,2-dibromoethane 1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane	3/L MA 3/L IMA 3/L IMA 3/L 3/L	AC 20	NI 00				
1,2-dichlorobenzene 1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane	g/L MA g/L IMA g/L g/L g/L		00				
1,2-dichloroethane 1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromomethane ug bromomethane ug cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloromethane ug Chloromethane	g/L IM/ g/L g/L						
1,2-dichloropropane 1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Benzene Bromodichloromethane Bromoform Ug Bromomethane Ugs-1,2-Dichloropropylene Carbon Tetrachloride Chloroethane Ug Chloroform Ug Chloromethane	g/L g/L g/L		5	<0.	5		
1,3,5-trimethylbenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane Ugstrombertane Bromomethane Ugstrombertane Ugstr	g/L g/L		NI				
1,3-dichlorobenzene ug 1,4-dichlorobenzene ug 1,2,4-Trichlorobenzene Benzene ug Bromodichloromethane ug Bromomethane ug Bromomethane ug Cis-1,2-Dichloroethylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug	g/L		NI				
1,4-dichlorobenzene 1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Chloroform Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Chloromethane Ug Dibromochloromethane				10			
1,2,4-Trichlorobenzene Benzene Bromodichloromethane Bromoform Bromomethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Carbon Tetrachloride Chloroethane Chloroform Ug Chloromethane		۱ ۵	5				
Benzene ug Bromodichloromethane ug Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug			,				
Bromodichloromethane ug Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug	g/L MA	١ ٠	5 NI	D <0.	E		
Bromoform ug Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		10 .	NI NI				
Bromomethane ug cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		_	NI			+	
cis-1,2-Dichloroethylene ug cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug		_				+	
cis-1,3-Dichloropropylene ug Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug			NI	D <1.0	U		
Carbon Tetrachloride ug Chloroethane ug Chloroform ug Chloromethane ug Dibromochloromethane ug						. +	
Chloroethane ug Chloromethane ug Dibromochloromethane ug		•			-		
Chloroform ug Chloromethane ug Dibromochloromethane ug		4C :	5 NI				
Chloromethane ug Dibromochloromethane ug			NI				
Dibromochloromethane ug			NI				
			NI				
	;/L		NI	D <0.	5		
Dichlorodifluromethane							
	g/L MA		50				
	g/L A	J 1	.6 NI				
	g/L		NI				
	g/L MA	4C 8	30 NI				
	g/L		NI				
	g/L		NI	D <0.4	4		
	g/L		NI	D <1.0	0		
trans-1,3-Dichloropropylene ug	g/L		NI	D <0	5		
Tetrachloroethylene ug	g/L MA	4C 3	80 NE	D <0	5		
	g/L A	J 2	24 NE	D <0	5		
Trichloroethylene ug	g/L MA	4C :	5 NI	D <0.4	4		
Trichlorofluoromethane ug	g/L		N	D <1.0	0		
Vinyl Chloride ug	g/L MA	AC 2	2 NI	D <0.	5		
cis+trans1,3-dichloropropene ug	g/L			<0.4	4		
Acetone ug	g/L						
m/p,o Xylene ug	g/L		NI	0			
	g/L						
2-Hexanone							
Methyl Ethyl Ketone ug	g/L						
	g/L						
	g/L						
	g/L		NI	D <0.4	4		
	g/L		NI				
	g/L		NI				
	-						
VOC SURROGATES			1	1	1		
1,2-dichloroethane-d4							
4-bromofluorobenzene	%						
Toluene-d8	% %						

ODWSOG Oct-11 **REPORT OF ORGANIC ANALYSIS** Sep-91 Nov-07 Nov-08 May-09 TYPE LIMIT UNITS **PARAMETER** 1,1,1,2-tetrachloroethane ug/L < 0.5 <0.5 <0.5 <1 1,1,1-trichloroethane ND <0.4 <0.4 <0.8 ug/L < 0.4 1,1,2,2-tetrachloroethane ND <0.5 <0.5 <0.5 <1 ug/L 1,1,2-trichloroethane ug/L ND <0.4 <0.4 <0.4 <0.8 1,1-dichloroethane <0.4 <0.4 <0.4 <0.8 ug/L MAC 14 ND <0.5 <0.5 <0.5 <1 1,1-dichloroethylene ug/L 1,2-dibromoethane ND <1.0 <1.0 <1.0 <0.4 ug/L 1,2-dichlorobenzene ug/L MAC 200 < 0.4 <0.4 <0.4 <0.8 1,2-dichloroethane ug/L IMAC 5 <0.5 <0.5 <0.5 <0.4 1,2-dichloropropane ug/L ND <0.5 <0.5 <0.5 <1 1,3,5-trimethylbenzene ug/L ND < 0.3 < 0.3 < 0.3 <0.6 1,3-dichlorobenzene ug/L <0.4 <0.4 < 0.4 <0.8 MAC 5 <0.8 1,4-dichlorobenzene ug/L <0.4 < 0.4 < 0.4 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 ND < 0.5 < 0.5 < 0.5 <1 Bromodichloromethane ug/L ND < 0.3 < 0.3 < 0.3 <0.6 Bromoform ND <0.4 <0.4 <0.4 <0.8 ug/L ND <0.5 <0.5 <0.5 <1 Bromomethane ug/L <0.4 <0.4 <0.8 cis-1,2-Dichloroethylene ug/L < 0.4 <0.2 <0.4 cis-1,3-Dichloropropylene ug/L < 0.2 < 0.2 Carbon Tetrachloride MAC ND <0.5 <0.5 <0.5 <1 ug/L Chloroethane <1.0 <1.0 <1.0 < 0.4 ug/L Chloroform <0.5 <0.5 <0.5 <1 ug/L 1.8 Chloromethane ug/L ND <1.0 <1.0 <1.0 < 0.4 Dibromochloromethane ND < 0.3 < 0.3 < 0.3 < 0.6 ug/L Dichlorodifluromethane <1 Dichloromethane MAC 50 <4.0 <4.0 <4.0 <8.0 ug/L <0.5 Ethylbenzene ug/L ΑO 1.6 ND < 0.5 < 0.5 <1 m/p-xylene ug/L ND <1.0 <1.0 <1.0 <1 Monochlorobenzene (chlorobenzene) ug/L MAC 80 ND <0.2 <0.2 <0.2 <0.4 o-xylene ug/L ND < 0.5 < 0.5 < 0.5 <1 ND <0.5 <0.5 <0.5 <1 Styrene ug/L trans-1,2-Dichloroethylene ND <0.8 ug/L < 0.4 < 0.4 < 0.4 trans-1,3-Dichloropropylene ND < 0.2 < 0.2 <0.2 <0.4 ug/L Tetrachloroethylene ug/L MAC 30 ND <0.3 <0.3 <0.3 <0.6 4.2 <0.5 Toluene ΑO 24 <0.5 <0.5 <1 ug/L Trichloroethylene MAC 5 <0.3 <0.6 ND <0.3 <0.3 ug/L Trichlorofluoromethane ug/L ND <0.5 <0.5 <0.5 <1 MAC 2 <0.4 Vinyl Chloride ug/L ND <0.2 <0.2 <0.2 cis+trans1,3-dichloropropene ND ug/L Acetone ug/L <1.0 m/p,o Xylene ug/L ND Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L ND ND o-Dichlorobenzene ug/L p-Dichlorobenzene ND ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 103 109 109 95 4-bromofluorobenzene % 84 116 Toluene-d8 % 101 112 99

GUIDELINE

91-5D

Concentrations exceed MDL
Concentrations exceed ODWSOG

MILLERS ROAD WDS

REPORT OF ORGANIC ANALYSIS

GUIDELINE ODWSOG

91-5S

Nov-08

Nov-08 May-09

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L	LIIVIII		<0.5	<0.5	<0.5		
1,1,1-trichloroethane	ug/L			<0.4	<0.4	<0.4		
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5		
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4		
1,1-dichloroethane	ug/L			<0.4	<0.4	<0.4		
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5		
1,2-dibromoethane	ug/L	IVIAC	14	<1.0	<1.0	<1.0		
1,2-diblomoethane 1,2-dichlorobenzene	ug/L ug/L	MAC	200	<0.4	<0.4	<0.4	 	
1.2-dichlorobenzene		IMAC	+	<0.5	<0.4	<0.4	 	
,	ug/L	IIVIAC	5					
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5		
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3		
1,3-dichlorobenzene	ug/L		_	<0.4	<0.4	<0.4		
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	<0.4		
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5		
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3		
Bromoform	ug/L			<0.4	<0.4	<0.4		
Bromomethane	ug/L			<0.5	<0.5	<0.5		
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4		
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2		
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5		
Chloroethane	ug/L			<1.0	<1.0	<1.0		
Chloroform	ug/L			<0.5	<0.5	<0.5		
Chloromethane	ug/L			<1.0	<1.0	<1.0		
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3		
Dichlorodifluromethane	- 5.							
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0		
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5		
m/p-xylene	ug/L			<1.0	<1.0	<1.0		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	<0.2		
o-xylene	ug/L		- 55	<0.5	<0.5	<0.5		
Styrene	ug/L			<0.5	<0.5	<0.5		
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4		
trans-1,3-Dichloropropylene	ug/L			<0.4	<0.2	<0.2		
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3		
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5		
Trichloroethylene	ug/L ug/L	MAC	5	<0.3	<0.3	<0.3	 	
Trichlorofluoromethane		IVIAC	3		<0.5		 	
Vinyl Chloride	ug/L	NAAC	2	<0.5		<0.5		
	ug/L	MAC	2	<0.2	<0.2	<0.2		
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L						<u> </u>	
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%					119		
4-bromofluorobenzene	%					89		
Toluene-d8	%					109	<u> </u>	
I DIUCITE-UO	70					103		1

MILLERS ROAD WDS		GUIDELINE	į	95-3S				
REPORT OF ORGANIC ANALYSIS		opwsog		Oct-00	Oct-06	May-07	Oct-07	May-08
REPORT OF ORGANIC ANALYSIS		ODWOOO		OCI-00	OCI-00	iviay-01	OCI-07	iviay-00
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L				<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L				<0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.6	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			<0.5	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.6	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200		<0.4	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.7	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L				<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5		<0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L		,	<0.4	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.8	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			11.0	<0.4	<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L				<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L	IVIAC	,	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform				<0.6	<0.5	<0.5	<0.5	<0.5
Chloromethane	ug/L							
Dibromochloromethane	ug/L			<3.0 <0.5	<1.0 <0.3	<1.0 <0.3	<1.0 <0.3	<1.0 <0.3
	ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
Dichlorodifluromethane	/1	N44C	F0		-4.0	-4.0	-14.0	-4.0
Dichloromethane	ug/L	MAC	50	-0.5	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L	1446	00	<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	ug/L			<0.4	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			<1.0	<0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			<0.5	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	<0.4	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	<0.5	<0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			<0.4				
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L			<0.4				
o-Dichlorobenzene	ug/L			<0.4				
p-Dichlorobenzene	ug/L			<0.4				
VOC SURROGATES								
1,2-dichloroethane-d4	%				99			
4-bromofluorobenzene	%				102			
Toluene-d8	%				105			
	,,	1			-00	1	l .	1

MILLERS ROAD WDS		GUIDELINE	Ē	95-3S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Nov-08	May-09	Apr-14	Oct-14	Oct-17
					,	•		
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5	< 0.1	< 0.1	< 0.1
1,1,1-trichloroethane	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	< 0.4	< 0.4	< 0.4
1,1,2-trichloroethane	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
1,1-dichloroethane	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	< 0.1	< 0.1	< 0.1
1,2-dibromoethane	ug/L	1446	200	<1.0	<1.0	< 0.1	< 0.1	.0.4
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	< 0.1	< 0.1	< 0.1
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	< 0.1	< 0.1	< 0.1
1,2-dichloropropane	ug/L			<0.5	<0.5	< 0.1	< 0.1	< 0.1
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	401	.01	401
1,3-dichlorobenzene	ug/L	NAAC	-	<0.4	<0.4	< 0.1	< 0.1	< 0.1
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	< 0.2	< 0.2	< 0.2
1,2,4-Trichlorobenzene	/1	NAAC	-	40 F	40 F	40.5	٠.٥.٢	405
Bromodichloromethane	ug/L	MAC	5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
	ug/L			<0.3	<0.3	< 0.1	< 0.1	< 0.1
Bromoform	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
cis-1,2-Dichloroethylene	ug/L			<0.5 <0.4	<0.5 <0.4	< 0.3 < 0.1	< 0.3 < 0.1	< 0.3 < 0.1
•	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
cis-1,3-Dichloropropylene Carbon Tetrachloride	ug/L	MAC	5	<0.2	<0.2	< 0.1		< 0.1
Chloroethane	ug/L	IVIAC	3	<1.0	<1.0	< 0.2	< 0.2	< 0.2
Chloroform	ug/L			<0.5	<0.5	< 0.3	< 0.3	< 0.3
Chloromethane	ug/L			<1.0	<1.0	< 0.5	< 0.5	< 0.5
Dibromochloromethane	ug/L ug/L			<0.3	<0.3	< 0.1	< 0.1	< 0.1
Dichlorodifluromethane	ug/L			\0.3	\0.3	<1	<1	<1
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	< 0.3	< 0.3	< 0.3
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	< 0.5	< 0.5	< 0.5
m/p-xylene	ug/L	AO	1.0	<1.0	<1.0	< 0.4	< 0.4	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	< 0.2	< 0.2	< 0.2
o-xylene	ug/L	171710		<0.5	<0.5	< 0.1	< 0.1	< 0.1
Styrene	ug/L			<0.5	<0.5	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	< 0.1	< 0.1	< 0.1
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	< 0.1	< 0.1	< 0.1
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	< 0.2	< 0.2	< 0.2
Toluene	ug/L	AO	24	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	< 0.1	< 0.1	< 0.1
Trichlorofluoromethane	ug/L			<0.5	<0.5	< 0.1	< 0.1	< 0.1
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	< 0.2	< 0.2	< 0.2
cis+trans1,3-dichloropropene	ug/L			•		< 0.1	< 0.1	< 0.1
Acetone	ug/L					< 2	< 2	< 2
m/p,o Xylene	ug/L					< 0.4	< 0.4	< 0.4
Hexane	ug/L					< 1	< 1	<1
2-Hexanone	- 01 -					_	_	_
Methyl Ethyl Ketone	ug/L					< 1	< 1	< 1
Methyl Isobutyl Ketone	ug/L					< 1	< 1	< 1
Methyl-t-butyl Ether	ug/L					< 1	< 1	< 1
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							< 0.1
p-Dichlorobenzene	ug/L							
VOC SUPPOSATES	1							
VOC SURROGATES	2,				400	00.		400
1,2-dichloroethane-d4	%				106	98.4	96	102
4-bromofluorobenzene	%				91	83.7	107	116
Toluene-d8	%				118	100	114	95

MILLERS ROAD WDS		GUIDELINE	.	95-3S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		May-18	Oct-18	May-19	Oct-19	May-20
REPORT OF ORGANIC ANALYSIS		ODWOOG		May-10	OCI-10	May-19	OCI-19	May-20
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.5	< 0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			< 0.2	< 0.2	<0.2	<0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200	< 0.4	< 0.2	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	< 0.2	< 0.2	<0.2	<0.2	<0.2
1,2-dichloropropane	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			< 0.3	< 0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	< 0.4	< 0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	< 0.5	< 0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L		-	< 0.3	< 0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L			< 0.2	< 0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	< 0.2	<0.2	<0.2	<0.2
Chloroethane	ug/L	IVIAC	3	< 0.2	< 0.2	\0.2	VO.2	\U.Z
Chloroform	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
Chloromethane				< 0.2	< 0.2	<0.3	<0.3	<0.2
Dibromochloromethane	ug/L			< 0.2	< 0.2	<0.2	<0.2	<0.2
	ug/L					<0.5	<0.5	<0.5
Dichlorodifluromethane	/1	N44C	F0	< 0.5	< 0.5	-4.0	-14.0	-4.0
Dichloromethane	ug/L	MAC	50	< 4.0	< 4.0	<4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	< 0.5	< 0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L	1446	00	< 0.4	< 0.4	<0.4	<0.4	<0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	< 0.5	< 0.5	<0.5	<0.5	<0.5
o-xylene	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
Styrene	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			< 0.4	< 0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			< 0.2	< 0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.3	< 0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	< 0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.3	< 0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.5	< 0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	< 0.2	< 0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L			< 0.5	< 0.5			
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
	-							
VOC SURROGATES								
1,2-dichloroethane-d4	%			100	105			
4-bromofluorobenzene	%			110	121			
Toluene-d8	%			90	92			
	1	1	l			1	1	I .

GUIDELINE

95-3S

ODWSOG

Oct-20

PARAMETER	TYPE	LIMIT	UNITS			
1,1,1,2-tetrachloroethane	ug/L			<0.5		
1,1,1-trichloroethane	ug/L			<0.4		
1,1,2,2-tetrachloroethane	ug/L			<0.5		
1,1,2-trichloroethane	ug/L			<0.4		
1,1-dichloroethane	ug/L			<0.4		
1,1-dichloroethylene	ug/L	MAC	14	<0.5		
1,2-dibromoethane	ug/L			<0.2		
1,2-dichlorobenzene	ug/L	MAC	200	<0.4		
1,2-dichloroethane	ug/L	IMAC	5	<0.2		
1,2-dichloropropane	ug/L			<0.5		
1,3,5-trimethylbenzene	ug/L			<0.3		
1,3-dichlorobenzene	ug/L			<0.4		
1,4-dichlorobenzene	ug/L	MAC	5	<0.4		
1,2,4-Trichlorobenzene						
Benzene	ug/L	MAC	5	<0.5		
Bromodichloromethane	ug/L			<0.3		
Bromoform	ug/L			<0.4		
Bromomethane	ug/L			<0.5		
cis-1,2-Dichloroethylene	ug/L			<0.4		
cis-1,3-Dichloropropylene	ug/L			<0.2		
Carbon Tetrachloride	ug/L	MAC	5	<0.2		
Chloroethane	ug/L			-		
Chloroform	ug/L			<0.5		
Chloromethane	ug/L			<0.2		
Dibromochloromethane	ug/L			<0.3		
Dichlorodifluromethane	-8/-					
Dichloromethane	ug/L	MAC	50	<4.0		
Ethylbenzene	ug/L	AO	1.6	<0.5		
m/p-xylene	ug/L			<0.4		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.5		
o-xylene	ug/L			<0.4		
Styrene	ug/L			<0.5		
trans-1,2-Dichloroethylene	ug/L			<0.4		
trans-1,3-Dichloropropylene	ug/L			<0.2		
Tetrachloroethylene	ug/L	MAC	30	<0.3		
Toluene	ug/L	AO	24	<0.5		
Trichloroethylene	ug/L	MAC	5	<0.3		
Trichlorofluoromethane	ug/L			<0.5		
Vinyl Chloride	ug/L	MAC	2	<0.2		
cis+trans1,3-dichloropropene	ug/L					
Acetone	ug/L					
m/p,o Xylene	ug/L					
Hexane	ug/L					
2-Hexanone	<u> </u>					
Methyl Ethyl Ketone	ug/L					
Methyl Isobutyl Ketone	ug/L					
Methyl-t-butyl Ether	ug/L					
m-Dichlorobenzene	ug/L					
o-Dichlorobenzene	ug/L					
p-Dichlorobenzene	ug/L					
	<u> </u>					
VOC SURROGATES						
1,2-dichloroethane-d4	%					
4-bromofluorobenzene	%					
Toluene-d8	%					
•						

MILLERS ROAD WDS		GUIDELINE	Ē	95-3D				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Nov-08	May-09	Sep-09	Oct-11	Apr-14
					·	·		·
PARAMETER	TYPE	LIMIT	UNITS	40 F	<0.5	40 F	40 F	401
1,1,1,2-tetrachloroethane	ug/L			<0.5		<0.5 <0.4	<0.5	< 0.1
1,1,1-trichloroethane 1,1,2,2-tetrachloroethane	ug/L			<0.4	<0.4		<0.4	< 0.1
1,1,2,2-tetracnioroethane	ug/L			<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	<0.5 <0.4	< 0.4
	ug/L			<0.4	<0.4	<0.4	<0.4	< 0.1 < 0.1
1,1-dichloroethylono	ug/L	MAC	1.4	<0.4	<0.4	<0.4	<0.4	< 0.1
1,1-dichloroethylene	ug/L	MAC	14			<1.0	<0.3	
1,2-dibromoethane 1.2-dichlorobenzene	ug/L ug/L	MAC	200	<1.0 <0.4	<1.0 <0.4	<0.4	<0.2	< 0.1 < 0.1
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.4	<0.4	<0.4	< 0.1
1,2-dichloropropane	ug/L	IIVIAC	J	<0.5	<0.5	<0.5	<0.5	< 0.1
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3	<0.3	V 0.1
1,3-dichlorobenzene	ug/L			<0.4	<0.4	<0.4	<0.4	< 0.1
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	<0.4	<0.4	< 0.1
1,2,4-Trichlorobenzene	ug/ L	IVIAC	,	₹0.4	10.4	\0.4	\0.4	₹0.2
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	< 0.5
Bromodichloromethane	ug/L	IVIAC	,	<0.3	<0.3	<0.3	<0.3	< 0.1
Bromoform	ug/L			<0.4	<0.3	<0.4	<0.4	< 0.1
Bromomethane	ug/L			<0.5	<0.5	<0.5	<0.5	< 0.1
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	<0.4	< 0.1
cis-1,3-Dichloropropylene	ug/L			<0.4	<0.4	<0.4	<0.4	< 0.1
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	< 0.1
Chloroethane	ug/L	IVIAC	3	<1.0	<1.0	<1.0	<0.2	10.2
Chloroform	ug/L			3.4	<0.5	<0.5	<0.5	< 0.3
Chloromethane	ug/L			<1.0	<1.0	<1.0	<0.2	(0.5
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	< 0.1
Dichlorodifluromethane	₩ W W W			,0.5	10.3	10.5	<0.5	<1
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0	<4.0	< 0.3
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	< 0.5
m/p-xylene	ug/L	7.0	1.0	<1.0	<1.0	<1.0	<0.5	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	<0.2	<0.2	< 0.2
o-xylene	ug/L	1717.10		<0.5	<0.5	<0.5	<0.5	< 0.1
Styrene	ug/L			<0.5	<0.5	<0.5	<0.5	< 0.5
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	<0.4	< 0.1
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.2	< 0.1
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	<0.3	< 0.2
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	<0.3	< 0.1
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5	<0.5	< 0.1
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	<0.2	<0.2	< 0.2
cis+trans1,3-dichloropropene	ug/L		_	•				< 0.1
Acetone	ug/L							< 2
m/p,o Xylene	ug/L						<1.0	< 0.4
Hexane	ug/L							< 1
2-Hexanone								
Methyl Ethyl Ketone	ug/L							< 1
Methyl Isobutyl Ketone	ug/L							< 1
Methyl-t-butyl Ether	ug/L							< 1
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%				111	94	109	96.5
4-bromofluorobenzene	%				91	91	109	79.5
Toluene-d8	%				115	108	109	99.9
roidelle-do	70				112	108	100	39.9

ODWSOG REPORT OF ORGANIC ANALYSIS Oct-14 Jun-15 May-16 Nov-16 Apr-17 TYPE LIMIT UNITS **PARAMETER** 1,1,1,2-tetrachloroethane < 0.1 < 0.1 < 0.10 < 0.10 < 0.1 ug/L < 0.1 <0.30 < 0.1 1,1,1-trichloroethane ug/L < 0.1 < 0.30 1,1,2,2-tetrachloroethane < 0.4 <0.4 < 0.10 < 0.10 < 0.4 ug/L 1,1,2-trichloroethane < 0.1 <0.1 <0.20 <0.20 < 0.1 ug/L 1,1-dichloroethane < 0.1 <0.1 < 0.30 <0.30 < 0.1 ug/L MAC < 0.1 <0.1 < 0.30 < 0.30 < 0.1 1,1-dichloroethylene ug/L 14 1,2-dibromoethane < 0.1 <0.1 < 0.10 < 0.10 ug/L 1,2-dichlorobenzene ug/L MAC 200 < 0.1 <0.1 < 0.10 <0.10 < 0.1 1,2-dichloroethane ug/L IMAC 5 < 0.1 <0.1 <0.20 <0.20 < 0.1 1,2-dichloropropane < 0.1 <0.1 <0.20 <0.20 < 0.1 ug/L 1,3,5-trimethylbenzene ug/L < 0.20 < 0.20 1,3-dichlorobenzene ug/L < 0.1 <0.1 < 0.10 < 0.10 < 0.1 MAC 1,4-dichlorobenzene ug/L 5 < 0.2 <0.2 < 0.10 < 0.10 < 0.2 1,2,4-Trichlorobenzene < 0.30 < 0.30 Benzene ug/L MAC 5 < 0.5 < 0.5 < 0.20 < 0.20 < 0.5 Bromodichloromethane ug/L < 0.1 < 0.1 < 0.20 < 0.20 < 0.1 < 0.1 <0.1 <0.10 < 0.1 Bromoform ug/L < 0.10 < 0.3 <0.3 <0.20 <0.20 < 0.3 Bromomethane ug/L < 0.1 < 0.20 < 0.20 < 0.1 cis-1,2-Dichloroethylene ug/L < 0.1 < 0.1 cis-1,3-Dichloropropylene ug/L < 0.1 < 0.1 < 0.20 < 0.20 Carbon Tetrachloride MAC < 0.2 <0.2 < 0.20 < 0.20 < 0.2 ug/L Chloroethane < 0.20 < 0.20 ug/L Chloroform < 0.3 < 0.20 < 0.20 < 0.3 ug/L < 0.3 Chloromethane ug/L < 0.1 < 0.40 < 0.40 Dibromochloromethane < 0.1 < 0.1 < 0.10 < 0.10 < 0.1 ug/L <0.20 Dichlorodifluromethane < 1 <1 < 0.20 < 1 MAC 50 < 0.3 <0.3 < 0.30 < 0.30 < 0.3 Dichloromethane ug/L < 0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 < 0.10 < 0.10 < 0.5 m/p-xylene ug/L < 0.4 < 0.4 < 0.20 < 0.20 < 0.4 Monochlorobenzene (chlorobenzene) ug/L MAC 80 < 0.2 <0.2 < 0.10 < 0.10 < 0.2 o-xylene ug/L < 0.1 < 0.1 < 0.10 < 0.10 < 0.1 < 0.5 <0.5 < 0.10 < 0.10 < 0.5 Styrene ug/L trans-1,2-Dichloroethylene ug/L < 0.1 < 0.1 < 0.20 < 0.20 < 0.1 trans-1,3-Dichloropropylene < 0.1 <0.1 < 0.30 < 0.30 < 0.1 ug/L Tetrachloroethylene MAC 30 < 0.2 <0.2 <0.20 <0.20 < 0.2 ug/L < 0.5 <0.20 <0.20 < 0.5 Toluene ΑO 24 <0.5 ug/L MAC 5 <0.20 Trichloroethylene < 0.1 <0.1 < 0.20 < 0.1 ug/L Trichlorofluoromethane ug/L < 0.1 <0.1 < 0.40 < 0.40 < 0.1 MAC 2 < 0.2 Vinyl Chloride ug/L < 0.2 <0.2 < 0.17 < 0.17 <0.1 <0.30 <0.30 < 0.1 cis+trans1,3-dichloropropene < 0.1 ug/L < 2 < 2 <2 <1.0 <1.0 Acetone ug/L < 0.4 <0.20 < 0.4 m/p,o Xylene ug/L < 0.4 < 0.20 <0.20 <0.20 < 1 Hexane ug/L < 1 <1 2-Hexanone <1.0 <1.0 Methyl Ethyl Ketone ug/L < 1 <1 <1.0 <1.0 < 1 <1.0 <1.0 Methyl Isobutyl Ketone ug/L < 1 <1 < 1 Methyl-t-butyl Ether < 0.20 < 0.20 < 1 ug/L < 1 <1 m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene < 0.1 ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 97 107 87 107 4-bromofluorobenzene % 107 99 99 82 98 Toluene-d8 % 114 86 129 107

GUIDELINE

95-3D

Concentrations exceed MDL
Concentrations exceed ODWSOG

MILLERS ROAD WDS

MILLERS ROAD WDS		GUIDELINE	i	95-3D				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-17	May-18	Oct-18	May-19	Oct-19
REPORT OF ORGANIC ANALISIS		02000		000 11	may 10	000.10	may 10	000.10
PARAMETER	TYPE	LIMIT	UNITS				T	Т
1,1,1,2-tetrachloroethane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.4	< 0.5	< 0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.1	< 0.5	0.5	<0.5	<0.5
1,2-dibromoethane	ug/L				< 0.2	< 0.2	<0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200	< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	< 0.1	< 0.2	< 0.2	<0.2	<0.2
1,2-dichloropropane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L				< 0.3	< 0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	< 0.2	< 0.4	< 0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
Bromodichloromethane	ug/L			< 0.1	< 0.3	< 0.3	<0.3	<0.3
Bromoform	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
Bromomethane	ug/L			< 0.3	< 0.5	< 0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L			< 0.1	< 0.2	< 0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	< 0.2	< 0.2	<0.2	<0.2
Chloroethane	ug/L				< 0.2	< 0.2		
Chloroform	ug/L			< 0.3	< 0.5	< 0.5	<0.5	<0.5
Chloromethane	ug/L				< 0.2	< 0.2	<0.2	<0.2
Dibromochloromethane	ug/L			< 0.1	< 0.3	< 0.3	<0.3	<0.3
Dichlorodifluromethane				< 1	< 0.5	< 0.5		
Dichloromethane	ug/L	MAC	50	< 0.3	< 4.0	< 4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	< 0.5	< 0.5	< 0.5	<0.5	<0.5
m/p-xylene	ug/L			< 0.4	< 0.4	< 0.4	<0.4	<0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	< 0.2	< 0.5	< 0.5	<0.5	<0.5
o-xylene	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
Styrene	ug/L			< 0.5	< 0.5	< 0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			< 0.1	< 0.2	< 0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.2	< 0.3	< 0.3	<0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	<0.5	< 0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.1	< 0.3	< 0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	< 0.2	< 0.2	< 0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			< 0.1				
Acetone	ug/L			< 2				
m/p,o Xylene	ug/L			< 0.4	< 0.5	< 0.5		
Hexane	ug/L			< 1				
2-Hexanone								
Methyl Ethyl Ketone	ug/L			< 1				
Methyl Isobutyl Ketone	ug/L			< 1				
Methyl-t-butyl Ether	ug/L			< 1				
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L			< 0.1				
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			104	98	101		
4-bromofluorobenzene	%			115	112	123		
Toluene-d8	%			96	89	93		

GUIDELINE

95-3D

REPORT OF ORGANIC ANALYSIS

ODWSOG

May-20 Oct-20

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5			
1,1,1-trichloroethane	ug/L			<0.4	<0.4			
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5			
1,1,2-trichloroethane	ug/L			<0.4	<0.4			
1,1-dichloroethane	ug/L			<0.4	<0.4			
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5			
1,2-dibromoethane	ug/L			<0.2	<0.2			
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4			
1,2-dichloroethane	ug/L	IMAC	5	<0.2	<0.2			
1,2-dichloropropane	ug/L			<0.5	<0.5			
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3			
1,3-dichlorobenzene	ug/L			<0.4	<0.4			
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4			
1,2,4-Trichlorobenzene	ug/ L	IVIAC	3	₹0.4	\0.4			
Benzene	ug/L	MAC	5	<0.5	<0.5			
Bromodichloromethane	ug/L ug/L	IVIAC	3	<0.3	<0.3			
Bromoform	ug/L ug/L			<0.3	<0.4			
Bromomethane	ug/L			<0.5	<0.5 <0.4			
cis-1,2-Dichloroethylene	ug/L			<0.4				
cis-1,3-Dichloropropylene	ug/L		-	<0.2	<0.2			
Carbon Tetrachloride	ug/L	MAC	5	<0.2	<0.2			
Chloroethane	ug/L							
Chloroform	ug/L			<0.5	<0.5			
Chloromethane	ug/L			<0.2	<0.2			
Dibromochloromethane	ug/L			<0.3	<0.3			
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50	<4.0	<4.0			
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5			
m/p-xylene	ug/L			<0.4	<0.4			
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.5	<0.5			
o-xylene	ug/L			<0.4	<0.4			
Styrene	ug/L			<0.5	<0.5			
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4			
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2			
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3			
Toluene	ug/L	AO	24	<0.5	<0.5			
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3			
Trichlorofluoromethane	ug/L			<0.5	<0.5			
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2			
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
	<u> </u>							
VOC SURROGATES								
1,2-dichloroethane-d4	%							
4-bromofluorobenzene	%							
Toluene-d8	%							
	1	1	1	1	1	1	1	I .

MILLERS ROAD WDS		GUIDELINE		95-4				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-00	Oct-00	Oct-06	May-07	Oct-07
REPORT OF ORGANIC ANALYSIS		0211000		001-00	001-00	001-00	May-07	001-07
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L					<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L					<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.6	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.6	<0.6	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			<0.5	<0.5	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.6	<0.6	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200			<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.7	<0.7	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.5	<0.5	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L					<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5			<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L			<0.4	<0.4	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.8	<0.8	<0.4	<0.4	<0.4
Bromomethane	ug/L			<1.0	<1.0	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L					<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L					<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L			<0.6	<0.6	<0.5	<0.5	<0.5
Chloromethane	ug/L			<3.0	<3.0	<1.0	<1.0	<1.0
Dibromochloromethane	ug/L			<0.5	<0.5	<0.3	<0.3	<0.3
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50			<4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4	<0.4	<0.2	<0.2	<0.2
o-xylene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	ug/L			<0.4	<0.4	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			<1.0	<1.0	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			<0.5	<0.5	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.5	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	<0.4	<0.4	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			<1.0	<1.0	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	<0.5	<0.5	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			<0.4	<0.4			
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L			<0.4	<0.4			
o-Dichlorobenzene	ug/L			<0.4	<0.4			
p-Dichlorobenzene	ug/L			<0.4	<0.4			
VOC SURROGATES								
1,2-dichloroethane-d4	%					95		
4-bromofluorobenzene	%					105		
Toluene-d8	%					110		

MILLERS ROAD WDS GUIDELINE

REPORT OF ORGANIC ANALYSIS ODWSOG May-08 Nov-08 May-09

95-4

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L	LIIVIII	ONITS	<0.5	<0.5	<0.5		
1.1.1-trichloroethane	ug/L			<0.4	<0.4	<0.4		
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.4	<0.5		
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4		
1,1-dichloroethane	ug/L ug/L			<0.4	<0.4	<0.4		
1,1-dichloroethylene		MAC	14	<0.5	<0.4	<0.5		
1,2-dibromoethane	ug/L	IVIAC	14	<1.0		<1.0		
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<1.0 <0.4	<0.4		
1,2-dichloroethane	ug/L		200					
	ug/L	IMAC	5	<0.5	<0.5	<0.5		
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5		
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3		
1,3-dichlorobenzene	ug/L		_	<0.4	<0.4	<0.4		
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	<0.4		
1,2,4-Trichlorobenzene						-		
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5		
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3		
Bromoform	ug/L			<0.4	<0.4	<0.4		
Bromomethane	ug/L			<0.5	<0.5	<0.5		
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4		
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2		
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5		
Chloroethane	ug/L			<1.0	<1.0	<1.0		
Chloroform	ug/L			<0.5	<0.5	<0.5		
Chloromethane	ug/L			<1.0	<1.0	<1.0		
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3		
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0		
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5		
m/p-xylene	ug/L			<1.0	<1.0	<1.0		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	<0.2		
o-xylene	ug/L			<0.5	<0.5	<0.5		
Styrene	ug/L			<0.5	<0.5	<0.5		
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4		
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2		
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3		
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5		
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3		
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5		
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	<0.2		
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone	· 0/ -							
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
p 5.5.11010Delizerie	46/ L							
VOC SURROGATES								
1,2-dichloroethane-d4	%					119		
4-bromofluorobenzene	%					92		
Toluene-d8	%					114		
		1	1		1	I .	ı I	

GUIDELINE MILLERS ROAD WDS 95-4D **ODWSOG REPORT OF ORGANIC ANALYSIS** Nov-08 May-09 Sep-09 Oct-11 PARAMETER TYPE LIMIT UNITS 1,1,1,2-tetrachloroethane ug/L < 0.5 < 0.5 < 0.5 <0.5 1,1,1-trichloroethane <0.4 <0.4 <0.4 <0.4 ug/L 1,1,2,2-tetrachloroethane <0.5 <0.5 <0.5 <0.5 ug/L 1,1,2-trichloroethane ug/L <0.4 <0.4 <0.4 <0.4 1,1-dichloroethane ug/L <0.4 <0.4 <0.4 <0.4 MAC <0.5 <0.5 <0.5 <0.5 1,1-dichloroethylene ug/L 14 1,2-dibromoethane <1.0 <1.0 <1.0 <0.2 ug/L 1,2-dichlorobenzene ug/L MAC 200 <0.4 < 0.4 <0.4 <0.4 1,2-dichloroethane ug/L IMAC 5 <0.5 <0.5 <0.5 <0.2 1,2-dichloropropane ug/L <0.5 <0.5 <0.5 <0.5 1,3,5-trimethylbenzene ug/L < 0.3 < 0.3 < 0.3 <0.3 1,3-dichlorobenzene ug/L <0.4 <0.4 <0.4 <0.4 MAC 1,4-dichlorobenzene ug/L 5 <0.4 <0.4 <0.4 <0.4 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 < 0.5 < 0.5 < 0.5 < 0.5 Bromodichloromethane ug/L < 0.3 < 0.3 < 0.3 <0.3 Bromoform <0.4 <0.4 <0.4 <0.4 ug/L <0.5 <0.5 <0.5 <0.5 Bromomethane ug/L <0.4 <0.4 <0.4 cis-1,2-Dichloroethylene ug/L < 0.4 <0.2 <0.2 <0.2 cis-1,3-Dichloropropylene ug/L < 0.2 Carbon Tetrachloride MAC <0.5 <0.5 <0.5 <0.5 ug/L Chloroethane ug/L <1.0 <1.0 <1.0 <0.2 <0.5 Chloroform 0.7 <0.5 ug/L 0.8 Chloromethane ug/L <1.0 <1.0 <1.0 < 0.2 Dibromochloromethane ug/L < 0.3 < 0.3 < 0.3 < 0.3 Dichlorodifluromethane < 0.5 Dichloromethane MAC 50 <4.0 <4.0 <4.0 <4.0 ug/L <0.5 <0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 <0.5 m/p-xylene ug/L <1.0 <1.0 <1.0 < 0.5 Monochlorobenzene (chlorobenzene) ug/L MAC 80 <0.2 <0.2 <0.2 <0.2 o-xylene ug/L < 0.5 < 0.5 < 0.5 < 0.5 Styrene <0.5 <0.5 <0.5 <0.5 ug/L trans-1,2-Dichloroethylene ug/L < 0.4 < 0.4 < 0.4 < 0.4 trans-1,3-Dichloropropylene <0.2 < 0.2 < 0.2 <0.2 ug/L Tetrachloroethylene ug/L MAC 30 <0.3 <0.3 <0.3 <0.3 ΑO <0.5 <0.5 Toluene 24 <0.5 <0.5 ug/L Trichloroethylene MAC 5 <0.3 <0.3 <0.3 <0.3 ug/L Trichlorofluoromethane ug/L <0.5 <0.5 <0.5 <0.5 MAC 2 <0.2 <0.2 Vinyl Chloride ug/L <0.2 <0.2 cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L <1.0 Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 106 98 110 90 114 4-bromofluorobenzene % 92 Toluene-d8 % 118 108 99

MILLERS ROAD WDS		GUIDELINE	i	95-5				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-00	Oct-06	May-07	May-07	May-08
REPORT OF ORGANIC ANALYSIS		05000		00:00	00.00	way or	way or	May 00
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L				<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L				<0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.6	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			<0.5	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.6	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200		<0.4	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.7	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L				<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5		<0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L			<0.4	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.8	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L				<0.4	<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L				<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L			<0.6	<0.5	<0.5	<0.5	<0.5
Chloromethane	ug/L			<3.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50		<4.0	<4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	ug/L			<0.4	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			<1.0	<0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			<0.5	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	<0.4	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	<0.5	<0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			<0.4				
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone	<u> </u>							
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L			<0.4				
o-Dichlorobenzene	ug/L			<0.4				
p-Dichlorobenzene	ug/L			<0.4				
	- 0/ -							
VOC SURROGATES								
1,2-dichloroethane-d4	%				96			
4-bromofluorobenzene	%				103			
Toluene-d8	%				105			
	1 ,	1 1				1	1	1

MILLERS ROAD WDS		GUIDELINE	<u>:</u>	95-6				
REPORT OF ORGANIC ANALYSIS		opwsog		Oct-00	2004	May-08	Oct-12	May-16
REPORT OF ORGANIC ANALYSIS		02000		000 00	2004	way oo	000 12	Way 10
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L				<0.6	<0.5	<0.5	<0.10
1,1,1-trichloroethane	ug/L				<0.2	<0.4	<0.4	<0.30
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.1	<0.5	<0.5	<0.10
1,1,2-trichloroethane	ug/L			<0.6	<0.1	<0.4	<0.4	<0.20
1,1-dichloroethane	ug/L			0.5	1.3	0.8	<0.4	<0.30
1,1-dichloroethylene	ug/L	MAC	14	<0.6		<0.5	<0.5	<0.30
1,2-dibromoethane	ug/L			<1.0	<0.1	<1.0	<0.2	<0.10
1,2-dichlorobenzene	ug/L	MAC	200		<0.1	<0.4	<0.4	0.10
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.1	<0.5	<0.2	<0.20
1,2-dichloropropane	ug/L			<0.7	<0.1	<0.5	<0.5	<0.20
1,3,5-trimethylbenzene	ug/L			<0.5		<0.3	<0.3	<0.20
1,3-dichlorobenzene	ug/L				0.3	<0.4	<0.4	<0.10
1,4-dichlorobenzene	ug/L	MAC	5		2.2	1.4	0.9	0.80
1,2,4-Trichlorobenzene								<0.30
Benzene	ug/L	MAC	5	<0.5	1.4	1.4	0.6	0.69
Bromodichloromethane	ug/L			<0.4	<0.1	<0.3	<0.3	<0.20
Bromoform	ug/L			<0.8	<0.1	<0.4	<0.4	<0.10
Bromomethane	ug/L			<1.0	<2	<0.5	<0.5	<0.20
cis-1,2-Dichloroethylene	ug/L					11.5	2.6	2.3
cis-1,3-Dichloropropylene	ug/L					<0.2	<0.2	<0.20
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.2	<0.5	<0.5	<0.20
Chloroethane	ug/L			8		5.6	<0.2	2.4
Chloroform	ug/L			<0.6	<0.3	<0.5	<0.5	<0.20
Chloromethane	ug/L			<3.0		<1.0	<0.2	<0.40
Dibromochloromethane	ug/L			<0.5	<1	<0.3	<0.3	<0.10
Dichlorodifluromethane							<0.5	<0.20
Dichloromethane	ug/L	MAC	50		0.7	<4.0	<4.0	<0.30
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.1	<0.5	<0.5	<0.10
m/p-xylene	ug/L			<1.0	1	<1.0	<0.5	<0.20
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4	3.1	4.0	3.9	3.8
o-xylene	ug/L			<0.5	0.5	<0.5	<0.5	<0.10
Styrene	ug/L			<0.4	<0.7	<0.5	<0.5	<0.10
trans-1,2-Dichloroethylene	ug/L			2		1.2	<0.4	<0.20
trans-1,3-Dichloropropylene	ug/L			<0.5		<0.2	<0.2	<0.30
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.4	<0.3	<0.3	<0.20
Toluene	ug/L	AO	24	<0.5	<0.2	<0.5	<0.5	<0.20
Trichloroethylene	ug/L	MAC	5	<0.4	<0.1	<0.3	<0.3	<0.20
Trichlorofluoromethane	ug/L			<1.0		<0.5	<0.5	<0.40
Vinyl Chloride	ug/L	MAC	2	<0.5	0.3	11.2	4.3	6.1
cis+trans1,3-dichloropropene	ug/L			<0.4				<0.30
Acetone	ug/L							<1.0
m/p,o Xylene	ug/L						<1	<0.20
Hexane	ug/L							<0.20
2-Hexanone								<1.0
Methyl Ethyl Ketone	ug/L							<1.0
Methyl Isobutyl Ketone	ug/L							<1.0
Methyl-t-butyl Ether	ug/L							<0.20
m-Dichlorobenzene	ug/L			<0.4				
o-Dichlorobenzene	ug/L			<0.4				
p-Dichlorobenzene	ug/L			<0.4				
VOC SURROGATES								
1,2-dichloroethane-d4	%						112	84
4-bromofluorobenzene	%						107	99
Toluene-d8	%						101	

MILLERS ROAD WDS		GUIDELINE		95-6				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Apr-17	Oct-17	May-18	Oct-18	May-19
REPORT OF ORGANIC ANALISIS		02000		, tp: 17	000 17	may 10	000.10	may 10
PARAMETER	TYPE	LIMIT	UNITS		T	T	T	T
1,1,1,2-tetrachloroethane	ug/L			< 0.1	< 0.1	< 0.5	< 0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.4	< 0.4	< 0.5	< 0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,1-dichloroethane	ug/L			< 0.1	0.3	< 0.4	< 0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.1	< 0.1	< 0.5	< 0.5	<0.5
1,2-dibromoethane	ug/L			< 0.1		< 0.2	< 0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200	< 0.1	0.4	< 0.4	< 0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	< 0.1	< 0.1	< 0.2	< 0.2	<0.2
1,2-dichloropropane	ug/L			< 0.1	< 0.1	< 0.5	< 0.5	<0.5
1,3,5-trimethylbenzene	ug/L					< 0.3	< 0.3	<0.3
1,3-dichlorobenzene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	< 0.2	2	0.7	0.7	1.3
1,2,4-Trichlorobenzene	-					7	_	
Benzene	ug/L	MAC	5	< 0.5	0.6	< 0.5	< 0.5	0.6
Bromodichloromethane	ug/L			< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Bromoform	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
Bromomethane	ug/L			< 0.3	< 0.3	< 0.5	< 0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			1.2	1.2	0.9	1.2	<0.4
cis-1,3-Dichloropropylene	ug/L			< 0.1	< 0.1	< 0.2	< 0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
Chloroethane	ug/L					< 0.2	< 0.2	
Chloroform	ug/L			< 0.3	< 0.3	< 0.5	< 0.5	<0.5
Chloromethane	ug/L					< 0.2	< 0.2	<0.2
Dibromochloromethane	ug/L			< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Dichlorodifluromethane				< 1	< 1	< 0.5	< 0.5	
Dichloromethane	ug/L	MAC	50	< 0.3	< 0.3	< 4.0	< 4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
m/p-xylene	ug/L			< 0.4	< 0.4	< 0.4	< 0.4	<0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	2.7	5.1	3.0	< 3.2	5.2
o-xylene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
Styrene	ug/L			< 0.5	< 0.5	< 0.5	< 0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			< 0.1	< 0.1	< 0.2	< 0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.2	< 0.2	< 0.3	< 0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.1	< 0.1	< 0.5	< 0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	< 0.2	2.9	2.3	2.1	4.1
cis+trans1,3-dichloropropene	ug/L			< 0.1	< 0.1			
Acetone	ug/L			2	< 2			
m/p,o Xylene	ug/L			< 0.4	< 0.4	< 0.5	< 0.5	
Hexane	ug/L			< 1	< 1			
2-Hexanone								
Methyl Ethyl Ketone	ug/L			< 1	< 1			
Methyl Isobutyl Ketone	ug/L			< 1	< 1			
Methyl-t-butyl Ether	ug/L			< 1	< 1			
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L				< 0.1			
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			106	102	99	104	
4-bromofluorobenzene	%			98	117	114	120	
Toluene-d8	%			106	92	89	96	

REPORT OF ORGANIC ANALYSIS

GUIDELINE

95-6

ODWSOG

Oct-19

May-20 Oct-20

PARAMETER	TYPE	LIMIT	UNITS				
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	
1,1,1-trichloroethane	ug/L			<0.4	<0.4	<0.4	
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	
1,1-dichloroethane	ug/L			<0.4	<0.4	<0.4	
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	
1,2-dibromoethane	ug/L			<0.2	<0.2	<0.2	
1,2-dichlorobenzene	ug/L	MAC	200	1.0	<0.4	<0.4	
1,2-dichloroethane	ug/L	IMAC	5	<0.2	<0.2	<0.2	
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5	
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3	
1,3-dichlorobenzene	ug/L			0.9	<0.4	<0.4	
1,4-dichlorobenzene	ug/L	MAC	5	0.9	0.9	0.9	
1,2,4-Trichlorobenzene	~B/ =			0.0	0.5	0.5	
Benzene	ug/L	MAC	5	0.6	<0.5	<0.5	
Bromodichloromethane	ug/L	141710	3	<0.3	<0.3	<0.3	
Bromoform	ug/L			<0.4	<0.4	<0.4	
Bromomethane	ug/L			<0.5	<0.5	<0.5	
cis-1,2-Dichloroethylene	ug/L ug/L			2.7	<0.4	2.1	
cis-1,3-Dichloropropylene	ug/L ug/L			<0.2	<0.4	<0.2	
Carbon Tetrachloride	ug/L	MAC	5	<0.2	<0.2	<0.2	
Chloroethane	ug/L ug/L	IVIAC	3	\0.2	<0.2	\U.Z	
Chloroform	ug/L ug/L			<0.5	<0.5	<0.5	
***************************************				<0.5	<0.5	<0.5	
Chloromethane	ug/L						
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	
Dichlorodifluromethane	/1		50	.4.0	.10	.10	
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0	
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	
m/p-xylene	ug/L			<0.4	<0.4	<0.4	
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	4	3.7	4.1	
o-xylene	ug/L			<0.4	<0.4	<0.4	
Styrene	ug/L			<0.5	<0.5	<0.5	
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5	
Vinyl Chloride	ug/L	MAC	2	7.4	2.9	5.4	
cis+trans1,3-dichloropropene	ug/L						
Acetone	ug/L						
m/p,o Xylene	ug/L						
Hexane	ug/L						
2-Hexanone							
Methyl Ethyl Ketone	ug/L						
Methyl Isobutyl Ketone	ug/L						
Methyl-t-butyl Ether	ug/L						
m-Dichlorobenzene	ug/L						
o-Dichlorobenzene	ug/L						
p-Dichlorobenzene	ug/L						
VOC SURROGATES							
1,2-dichloroethane-d4	%						
4-bromofluorobenzene	%			-			
Toluene-d8	%						

MILLERS ROAD WDS		GUIDELINE	<u>.</u>	96-1D				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-00	Nov-07	May-08	May-08	Nov-07
REPORT OF ORGANIC ANALYSIS		ODWOOO		OCI-00	1107-07	May-00	May-00	1404-07
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L				<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L				<0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.6	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.6	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			<0.5	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.6	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200		<0.4	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.7	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L				<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5		<0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L			<0.4	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.8	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			-1.0	<0.4	<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L				<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L	IVIAC	3	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L			<0.6	<0.5	<0.5	<0.5	<0.5
Chloromethane				<3.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	ug/L ug/L			<0.5	<0.3	<0.3	<0.3	<0.3
Dichlorodifluromethane	ug/L			\0.5	\0.5	\0.5	\0.5	\0.5
Dichloromethane	/1	MAC	F0		<1.0	-4.0	-4.0	<4.0
	ug/L	MAC	50	40 F	<4.0	<4.0	<4.0	
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L	N44C	00	<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.4	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	ug/L			<0.4	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			<1.0	<0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			<0.5	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.5	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	<0.4	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			<1.0	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	<0.5	<0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			<0.4				
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L			<0.4				
o-Dichlorobenzene	ug/L			<0.4				
p-Dichlorobenzene	ug/L			<0.4				
VOC SURROGATES								
1,2-dichloroethane-d4	%				103			94
4-bromofluorobenzene	%				99			96
Toluene-d8	%				103			105
L	1	1	ı				1	

ODWSOG REPORT OF ORGANIC ANALYSIS Apr-14 Oct-14 Jun-15 Oct-15 May-16 TYPE LIMIT **PARAMETER UNITS** (95-3D) 1,1,1,2-tetrachloroethane < 0.1 < 0.1 < 0.1 < 0.10 ug/L < 0.1 < 0.1 <0.1 < 0.30 1,1,1-trichloroethane ug/L < 0.1 < 0.1 1,1,2,2-tetrachloroethane < 0.4 < 0.4 <0.4 <0.4 < 0.10 ug/L 1,1,2-trichloroethane < 0.1 < 0.1 <0.1 <0.1 <0.20 ug/L <0.1 1,1-dichloroethane < 0.1 < 0.1 <0.1 < 0.30 ug/L MAC < 0.1 < 0.1 <0.1 <0.1 < 0.30 1,1-dichloroethylene ug/L 14 1,2-dibromoethane < 0.1 < 0.1 <0.1 <0.1 <0.10 ug/L 1,2-dichlorobenzene ug/L MAC 200 < 0.1 < 0.1 <0.1 <0.1 <0.10 1,2-dichloroethane ug/L IMAC 5 < 0.1 < 0.1 <0.1 <0.1 <0.20 <0.20 1,2-dichloropropane < 0.1 < 0.1 <0.1 <0.1 ug/L 1,3,5-trimethylbenzene ug/L <0.20 1,3-dichlorobenzene ug/L < 0.1 < 0.1 <0.1 <0.1 < 0.10 MAC <0.10 1,4-dichlorobenzene ug/L 5 < 0.2 < 0.2 <0.2 <0.2 1,2,4-Trichlorobenzene <0.30 Benzene ug/L MAC 5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.20 Bromodichloromethane ug/L < 0.1 < 0.1 < 0.1 <0.1 < 0.20 Bromoform < 0.1 < 0.1 <0.1 <0.10 ug/L <0.1 < 0.3 < 0.3 <0.3 <0.3 < 0.20 Bromomethane ug/L < 0.1 <0.1 < 0.20 cis-1,2-Dichloroethylene ug/L < 0.1 < 0.1 <0.1 < 0.20 cis-1,3-Dichloropropylene ug/L < 0.1 < 0.1 < 0.1 Carbon Tetrachloride MAC < 0.2 < 0.2 <0.2 <0.2 < 0.20 ug/L Chloroethane < 0.20 ug/L Chloroform < 0.3 < 0.3 < 0.20 ug/L < 0.3 < 0.3 Chloromethane ug/L < 0.1 < 0.1 < 0.40 Dibromochloromethane < 0.1 < 0.1 < 0.1 < 0.1 < 0.10 ug/L <0.20 Dichlorodifluromethane < 1 < 1 <1 <1 MAC 50 < 0.3 < 0.3 <0.3 < 0.30 Dichloromethane ug/L < 0.3 < 0.5 <0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 < 0.5 < 0.10 m/p-xylene ug/L < 0.4 < 0.4 < 0.4 < 0.4 < 0.20 Monochlorobenzene (chlorobenzene) ug/L MAC 80 < 0.2 < 0.2 <0.2 <0.2 < 0.10 o-xylene ug/L < 0.1 < 0.1 < 0.1 < 0.1 < 0.10 < 0.5 < 0.5 <0.5 <0.5 < 0.10 Styrene ug/L < 0.20 trans-1,2-Dichloroethylene ug/L < 0.1 < 0.1 < 0.1 < 0.1 trans-1,3-Dichloropropylene < 0.1 < 0.1 <0.1 <0.1 < 0.30 ug/L Tetrachloroethylene ug/L MAC 30 < 0.2 < 0.2 <0.2 <0.2 <0.20 < 0.5 <0.5 <0.20 Toluene ΑO 24 < 0.5 <0.5 ug/L MAC 5 <0.1 <0.20 Trichloroethylene < 0.1 < 0.1 <0.1 ug/L Trichlorofluoromethane ug/L < 0.1 < 0.1 <0.1 <0.1 < 0.40 MAC 2 < 0.17 Vinyl Chloride ug/L < 0.2 < 0.2 <0.2 <0.2 < 0.1 <0.1 <0.1 <0.30 cis+trans1,3-dichloropropene < 0.1 ug/L <1.0 < 2 < 2 <2 <2 Acetone ug/L < 0.4 < 0.4 <0.20 m/p,o Xylene ug/L < 0.4 < 0.4 <0.20 Hexane ug/L < 1 < 1 <1 <1 2-Hexanone <1.0 Methyl Ethyl Ketone ug/L < 1 < 1 <1 <1 <1.0 <1.0 Methyl Isobutyl Ketone ug/L < 1 < 1 <1 <1 Methyl-t-butyl Ether <1 < 0.20 ug/L < 1 < 1 <1 m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 98.0 98 107 107 83 4-bromofluorobenzene % 81.8 108 99 99 99 Toluene-d8 % 102 117 87 86

GUIDELINE

96-1D

Concentrations exceed MDL
Concentrations exceed ODWSOG

MILLERS ROAD WDS

MILLERS ROAD WDS		GUIDELINE	1	96-1D				
REPORT OF ORGANIC ANALYSIS		opwsog		Nov-16	Apr-17	Oct-17	May-18	Oct-18
NEI ON OI ONGANIC ANALISIS					, .			001.0
PARAMETER	TYPE	LIMIT	UNITS					T
1,1,1,2-tetrachloroethane	ug/L			<0.10	< 0.1	< 0.1	< 0.5	< 0.5
1,1,1-trichloroethane	ug/L			<0.30	< 0.1	< 0.1	< 0.4	< 0.4
1,1,2,2-tetrachloroethane	ug/L			<0.10	< 0.4	< 0.4	< 0.5	< 0.5
1,1,2-trichloroethane	ug/L			<0.20	< 0.1	< 0.1	< 0.4	< 0.4
1,1-dichloroethane	ug/L			<0.30	< 0.1	< 0.1	< 0.4	< 0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.30	< 0.1	< 0.1	<0.5	< 0.5
1,2-dibromoethane	ug/L			<0.10			< 0.2	< 0.2
1,2-dichlorobenzene	ug/L	MAC	200	<0.10	< 0.1	< 0.1	< 0.4	< 0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.20	< 0.1	< 0.1	< 0.2	
1,2-dichloropropane	ug/L			<0.20	< 0.1	< 0.1	< 0.5	< 0.5
1,3,5-trimethylbenzene	ug/L			<0.20			< 0.3	< 0.3
1,3-dichlorobenzene	ug/L			<0.10	< 0.1	< 0.1	< 0.4	< 0.4
1,4-dichlorobenzene	ug/L	MAC	5	<0.10	< 0.2	< 0.2	< 0.4	< 0.4
1,2,4-Trichlorobenzene				<0.30				
Benzene	ug/L	MAC	5	<0.20	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	ug/L			<0.20	< 0.1	< 0.1	< 0.3	< 0.3
Bromoform	ug/L			<0.10	< 0.1	< 0.1	< 0.4	< 0.4
Bromomethane	ug/L			<0.20	< 0.3	< 0.3	< 0.5	< 0.5
cis-1,2-Dichloroethylene	ug/L			<0.20	< 0.1	< 0.1	< 0.4	< 0.4
cis-1,3-Dichloropropylene	ug/L			<0.20	< 0.1	< 0.1	< 0.2	< 0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.20	< 0.2	< 0.2	< 0.2	< 0.2
Chloroethane	ug/L			<0.20			< 0.2	< 0.2
Chloroform	ug/L			<0.20	< 0.3	< 0.3	< 0.5	< 0.5
Chloromethane	ug/L			<0.40			< 0.2	< 0.2
Dibromochloromethane	ug/L			<0.10	< 0.1	< 0.1	< 0.3	< 0.3
Dichlorodifluromethane				<0.20	< 1	< 1	< 0.5	< 0.5
Dichloromethane	ug/L	MAC	50	<0.30	< 0.3	< 0.3	< 4.0	< 4.0
Ethylbenzene	ug/L	AO	1.6	<0.10	< 0.5	< 0.5	< 0.5	< 0.5
m/p-xylene	ug/L			<0.20	< 0.4	< 0.4	< 0.4	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.10	< 0.2	< 0.2	< 0.5	< 0.5
o-xylene	ug/L			<0.10	< 0.1	< 0.1	< 0.4	< 0.4
Styrene	ug/L			<0.10	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethylene	ug/L			<0.20	< 0.1	< 0.1	< 0.4	< 0.4
trans-1,3-Dichloropropylene	ug/L			<0.30	< 0.1	< 0.1	< 0.2	< 0.2
Tetrachloroethylene	ug/L	MAC	30	<0.20	< 0.2	< 0.2	< 0.3	< 0.3
Toluene	ug/L	AO	24	<0.20	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.20	< 0.1	< 0.1	< 0.3	< 0.3
Trichlorofluoromethane	ug/L			<0.40	< 0.1	< 0.1	< 0.5	< 0.5
Vinyl Chloride	ug/L	MAC	2	<0.17	< 0.2	< 0.2	< 0.2	< 0.2
cis+trans1,3-dichloropropene	ug/L			<0.30	< 0.1	< 0.1		
Acetone	ug/L			<1.0	< 2	< 2		
m/p,o Xylene	ug/L			<0.20	< 0.4	< 0.4	< 0.5	< 0.5
Hexane	ug/L	<u> </u>		<0.20	< 1	< 1		
2-Hexanone				<1.0				
Methyl Ethyl Ketone	ug/L	<u> </u>		<1.0	< 1	< 1		
Methyl Isobutyl Ketone	ug/L			<1.0	< 1	< 1		
Methyl-t-butyl Ether	ug/L			<0.20	< 1	< 1		
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L					< 0.1		
p-Dichlorobenzene	ug/L				< 0.1			
VOC SURROGATES								
1,2-dichloroethane-d4	%				107	103	102	103
4-bromofluorobenzene	%			85	100	115	110	123
Toluene-d8	%			130	106	96	90	96

MILLERS ROAD WDS GUIDELINE 96-1D REPORT OF ORGANIC ANALYSIS ODWSOG May-19 Oct-19 May-20

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L	LIIVII I	UNITS	<0.5	<0.5	<0.5	<0.5	
1,1,1-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.4	<0.4	<0.5	
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	
1,1-dichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	<0.5	
1,2-dibromoethane	ug/L	IVIAC	14	<0.2	<0.3	<0.2	<0.2	
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	<0.2	<0.4	
1,2-dichlorobenzene	ug/L	IMAC	5	<0.4	<0.4	<0.4	<0.2	
1,2-dichloropropane	ug/L	IIVIAC	3	<0.5	<0.5	<0.5	<0.5	
1,3,5-trimethylbenzene				<0.3	<0.3	<0.3	<0.3	
1,3-dichlorobenzene	ug/L ug/L			<0.4	<0.3	<0.4	<0.4	
1,4-dichlorobenzene		NAAC	5	<0.4	<0.4	<0.4	<0.4	
,	ug/L	MAC	3	<0.4	<0.4	₹0.4	<0.4	
1,2,4-Trichlorobenzene		1446	-	٠٥. ٦	-0.5	.O.F	-0.5	
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	
Bromoform	ug/L			<0.4	<0.4	<0.4	<0.4	
Bromomethane	ug/L			<0.5	<0.5	<0.5	<0.5	
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	<0.4	
cis-1,3-Dichloropropylene	ug/L	D 4 4 C	-	<0.2	<0.2	<0.2	<0.2	
Carbon Tetrachloride	ug/L	MAC	5	<0.2	<0.2	<0.2	<0.2	
Chloroethane	ug/L							
Chloroform	ug/L			<0.5	<0.5	<0.5	<0.5	
Chloromethane	ug/L			<0.2	<0.2	<0.2	<0.2	
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0	<4.0	
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	
m/p-xylene	ug/L			<0.4	<0.4	<0.4	<0.4	
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.5	<0.5	<0.5	<0.5	
o-xylene	ug/L			<0.4	<0.4	<0.4	<0.4	
Styrene	ug/L			<0.5	<0.5	<0.5	<0.5	
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	<0.4	
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.2	
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	<0.3	
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	<0.3	
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5	<0.5	
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	<0.2	<0.2	
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%							
4-bromofluorobenzene	%							
Toluene-d8	%							
		1	1		1		1	1

Oct-20

MILLERS ROAD WDS		GUIDELINE	.	96-1S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		May-08	Apr-14	Oct-14	Oct-17	May-18
REPORT OF ORGANIC ANALISIS		02000		may oo	, 10, 11	000 11	000 17	may 10
PARAMETER	TYPE	LIMIT	UNITS		1	1	1	
1,1,1,2-tetrachloroethane	ug/L			<0.5	< 0.1	< 0.1	< 0.1	< 0.5
1,1,1-trichloroethane	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
1,1,2,2-tetrachloroethane	ug/L			<0.5	< 0.4	< 0.4	< 0.4	< 0.5
1,1,2-trichloroethane	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
1,1-dichloroethane	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.5	< 0.1	< 0.1	< 0.1	< 0.5
1,2-dibromoethane	ug/L			<1.0	< 0.1	< 0.1		< 0.2
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	< 0.1	< 0.1	< 0.1	< 0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	< 0.1	< 0.1	< 0.1	< 0.2
1,2-dichloropropane	ug/L			<0.5	< 0.1	< 0.1	< 0.1	< 0.5
1,3,5-trimethylbenzene	ug/L			<0.3				< 0.3
1,3-dichlorobenzene	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	< 0.2	< 0.2	< 0.2	< 0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	ug/L			<0.3	< 0.1	< 0.1	< 0.1	< 0.3
Bromoform	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
Bromomethane	ug/L			<0.5	< 0.3	< 0.3	< 0.3	< 0.5
cis-1,2-Dichloroethylene	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
cis-1,3-Dichloropropylene	ug/L			<0.2	< 0.1	< 0.1	< 0.1	< 0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	< 0.2	< 0.2	< 0.2	< 0.2
Chloroethane	ug/L			<1.0				< 0.2
Chloroform	ug/L			<0.5	< 0.3	< 0.3	< 0.3	< 0.5
Chloromethane	ug/L			<1.0				< 0.2
Dibromochloromethane	ug/L			<0.3	< 0.1	< 0.1	< 0.1	< 0.3
Dichlorodifluromethane					< 1	< 1	< 1	< 0.5
Dichloromethane	ug/L	MAC	50	<4.0	< 0.3	< 0.3	< 0.3	< 4.0
Ethylbenzene	ug/L	AO	1.6	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
m/p-xylene	ug/L			<1.0	< 0.4	< 0.4	< 0.4	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	< 0.2	< 0.2	< 0.2	< 0.5
o-xylene	ug/L			<0.5	< 0.1	< 0.1	< 0.1	< 0.4
Styrene	ug/L			<0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethylene	ug/L			<0.4	< 0.1	< 0.1	< 0.1	< 0.4
trans-1,3-Dichloropropylene	ug/L			<0.2	< 0.1	< 0.1	< 0.1	< 0.2
Tetrachloroethylene	ug/L	MAC	30	<0.3	< 0.2	< 0.2	< 0.2	< 0.3
Toluene	ug/L	AO	24	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.3	< 0.1	< 0.1	< 0.1	< 0.3
Trichlorofluoromethane	ug/L			<0.5	< 0.1	< 0.1	< 0.1	< 0.5
Vinyl Chloride	ug/L	MAC	2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2
cis+trans1,3-dichloropropene	ug/L				< 0.1	< 0.1	< 0.1	
Acetone	ug/L				< 2	< 2	< 2	
m/p,o Xylene	ug/L				< 0.4	< 0.4	< 0.4	< 0.5
Hexane	ug/L				< 1	< 1	< 1	
2-Hexanone	<u> </u>							
Methyl Ethyl Ketone	ug/L				< 1	< 1	< 1	
Methyl Isobutyl Ketone	ug/L				< 1	< 1	< 1	
Methyl-t-butyl Ether	ug/L				< 1	< 1	< 1	
m-Dichlorobenzene	ug/L				_		_	
o-Dichlorobenzene	ug/L						< 0.1	
p-Dichlorobenzene	ug/L							
F =	~6/ -							
VOC SURROGATES	1							
1,2-dichloroethane-d4	%				99.6	94	104	95
4-bromofluorobenzene	%				85	110	115	114
Toluene-d8	%				105	117	94	96
TOTALCHE-UO	/0	1	l		103	11/	J- 4	30

MILLERS ROAD WDS GUIDELINE 96-1S

ODWSOG REPORT OF ORGANIC ANALYSIS Oct-18 May-19 Oct-19 May-20 PARAMETER TYPE LIMIT UNITS 1,1,1,2-tetrachloroethane ug/L < 0.5 <0.5 <0.5 <0.5 1,1,1-trichloroethane < 0.4 <0.4 <0.4 ug/L < 0.4 1,1,2,2-tetrachloroethane < 0.5 <0.5 <0.5 <0.5 ug/L 1,1,2-trichloroethane ug/L < 0.4 <0.4 <0.4 <0.4 1,1-dichloroethane < 0.4 <0.4 <0.4 <0.4 ug/L MAC < 0.5 <0.5 <0.5 <0.5 1,1-dichloroethylene ug/L 14 1,2-dibromoethane < 0.2 <0.2 <0.2 <0.2 ug/L 1,2-dichlorobenzene ug/L MAC 200 < 0.4 < 0.4 <0.4 <0.4 1,2-dichloroethane ug/L **IMAC** 5 < 0.2 <0.2 <0.2 <0.2 < 0.5 1,2-dichloropropane ug/L <0.5 <0.5 <0.5 1,3,5-trimethylbenzene ug/L < 0.03 < 0.3 < 0.3 <0.3 1,3-dichlorobenzene ug/L < 0.4 <0.4 < 0.4 < 0.4 MAC 1,4-dichlorobenzene ug/L 5 < 0.4 < 0.4 < 0.4 < 0.4 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 < 0.5 < 0.5 < 0.5 < 0.5 Bromodichloromethane ug/L < 0.3 < 0.3 < 0.3 <0.3 Bromoform < 0.4 <0.4 <0.4 <0.4 ug/L < 0.5 <0.5 <0.5 <0.5 Bromomethane ug/L < 0.4 <0.4 cis-1,2-Dichloroethylene ug/L < 0.4 < 0.4 < 0.2 <0.2 <0.2 cis-1,3-Dichloropropylene ug/L < 0.2 Carbon Tetrachloride MAC < 0.2 <0.2 <0.2 <0.2 ug/L ug/L Chloroethane < 0.2 Chloroform < 0.5 ug/L < 0.5 < 0.5 < 0.5 Chloromethane ug/L < 0.2 < 0.2 < 0.2 < 0.2 Dibromochloromethane < 0.3 < 0.3 < 0.3 < 0.3 ug/L < 0.5 Dichlorodifluromethane Dichloromethane MAC 50 < 4.0 <4.0 <4.0 <4.0 ug/L < 0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 < 0.5 <0.5 m/p-xylene ug/L < 0.4 < 0.4 < 0.4 < 0.4 Monochlorobenzene (chlorobenzene) ug/L MAC 80 < 0.5 <0.5 <0.5 <0.5 o-xylene ug/L < 0.4 < 0.4 < 0.4 <0.4 < 0.5 <0.5 <0.5 < 0.5 Styrene ug/L trans-1,2-Dichloroethylene < 0.4 ug/L < 0.4 < 0.4 < 0.4 trans-1,3-Dichloropropylene < 0.2 < 0.2 < 0.2 <0.2 ug/L Tetrachloroethylene ug/L MAC 30 < 0.3 <0.3 <0.3 <0.3 < 0.5 <0.5 Toluene ΑO 24 <0.5 <0.5 ug/L Trichloroethylene MAC 5 <0.3 < 0.3 <0.3 <0.3 ug/L Trichlorofluoromethane ug/L < 0.5 <0.5 <0.5 <0.5 MAC 2 < 0.2 <0.2 Vinyl Chloride ug/L <0.2 <0.2 cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L < 0.5 Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 99 4-bromofluorobenzene % 116

93

Concentrations exceed MDL
Concentrations exceed ODWSOG

%

Toluene-d8

GUIDELINE

07-F

REPORT OF ORGANIC ANALYSIS

ODWSOG

Oct-07

Nov-08

May-09

DADAMETED	TYPE	LIMIT	UNITS				
PARAMETER 1,1,1,2-tetrachloroethane		LIMIT	UNITS	<0.5	<0.5	<0.5	
	ug/L				<0.5		
1,1,1-trichloroethane	ug/L			<0.4		<0.4	
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	
1,1-dichloroethane	ug/L			<0.4	<0.4	<0.4	
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	<0.4	
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5	
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3	
1,3-dichlorobenzene	ug/L			<0.4	<0.4	<0.4	
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	<0.4	
1,2,4-Trichlorobenzene							
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3	
Bromoform	ug/L			<0.4	<0.4	<0.4	
Bromomethane	ug/L			<0.5	<0.5	<0.5	
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	
Chloroethane	ug/L			<1.0	<1.0	<1.0	
Chloroform	ug/L			<0.5	<0.5	<0.5	
Chloromethane	ug/L			<1.0	<1.0	<1.0	
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	
Dichlorodifluromethane	ug/L			\0.5	\0.5	٧٥.5	
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0	
Ethylbenzene		AO	1.6	<0.5	<0.5	<0.5	
•	ug/L	AU	1.0	<1.0	<1.0	<1.0	
m/p-xylene	ug/L	NAAC	00		<0.2		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2		<0.2	
o-xylene	ug/L			<0.5	<0.5	<0.5	
Styrene	ug/L			<0.5	<0.5	<0.5	
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5	
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	<0.2	
cis+trans1,3-dichloropropene	ug/L						
Acetone	ug/L						
m/p,o Xylene	ug/L						
Hexane	ug/L						
2-Hexanone							
Methyl Ethyl Ketone	ug/L						
Methyl Isobutyl Ketone	ug/L						
Methyl-t-butyl Ether	ug/L						
m-Dichlorobenzene	ug/L						
o-Dichlorobenzene	ug/L						
p-Dichlorobenzene	ug/L						
	- 0, -						
VOC SURROGATES							
1,2-dichloroethane-d4	%					115	
4-bromofluorobenzene	%					88	
Toluene-d8	%					111	
Totalife do	70					111	

GUIDELINE 07-FD MILLERS ROAD WDS **ODWSOG REPORT OF ORGANIC ANALYSIS** Nov-08 May-09 Sep-09 Oct-11 PARAMETER TYPE LIMIT UNITS 1,1,1,2-tetrachloroethane ug/L <0.5 <0.5 <0.5 <1 1,1,1-trichloroethane <0.4 <0.4 <0.4 <0.8 ug/L 1,1,2,2-tetrachloroethane <0.5 <0.5 <0.5 <1 ug/L 1,1,2-trichloroethane ug/L <0.4 <0.4 <0.4 <0.8 1,1-dichloroethane ug/L <0.4 <0.4 <0.8 1 1,1-dichloroethylene MAC <0.5 <0.5 <0.5 <1 ug/L 14 1,2-dibromoethane ug/L <1.0 <1.0 <1.0 <0.4 1,2-dichlorobenzene ug/L MAC 200 <0.4 < 0.4 <0.4 <0.8 1,2-dichloroethane ug/L **IMAC** 5 <0.5 <0.5 <0.5 <0.4 1,2-dichloropropane ug/L <0.5 <0.5 <0.5 <1 1,3,5-trimethylbenzene ug/L < 0.3 < 0.3 < 0.3 <0.6 ug/L 1,3-dichlorobenzene <0.4 < 0.4 < 0.4 <0.8 MAC 5 1,4-dichlorobenzene ug/L 0.5 1 0.6 <0.8 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 <0.5 < 0.5 1 <1 Bromodichloromethane ug/L < 0.3 < 0.3 < 0.3 <0.6 Bromoform <0.4 <0.4 <0.4 <0.8 ug/L Bromomethane <0.5 <0.5 <0.5 ug/L <1 47.1 123 61.0 <0.8 cis-1,2-Dichloroethylene ug/L <0.2 < 0.2 cis-1,3-Dichloropropylene ug/L < 0.2 < 0.4 Carbon Tetrachloride MAC <0.5 <0.5 <0.5 <1 ug/L Chloroethane ug/L <1.0 3 < 0.4 1 Chloroform 0.9 <1 ug/L < 0.5 < 0.5 Chloromethane ug/L <1.0 <1.0 <1.0 < 0.4 Dibromochloromethane ug/L < 0.3 < 0.3 < 0.3 <0.6 Dichlorodifluromethane <1 Dichloromethane MAC 50 <4.0 <4.0 9 <8.0 ug/L <0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 <0.5 <1 m/p-xylene ug/L <1.0 <1.0 2 <1 Monochlorobenzene (chlorobenzene) ug/L MAC 80 2.0 3 3.5 2.7 o-xylene ug/L 0.5 0.9 <1 1 Styrene <0.5 < 0.5 <0.5 <1 ug/L trans-1,2-Dichloroethylene <0.4 <0.4 ug/L 1 < 0.8 trans-1,3-Dichloropropylene <0.2 < 0.2 < 0.2 <0.4 ug/L Tetrachloroethylene ug/L MAC 30 <0.3 <0.3 <0.3 <0.6 ΑO 1.4 <0.5 3.5 Toluene 24 <1 ug/L Trichloroethylene MAC 5 <0.3 <0.3 <0.3 <0.6 ug/L Trichlorofluoromethane ug/L <0.5 <0.5 <0.5 <1 MAC 2 8.3 13.8 <0.4 Vinyl Chloride ug/L 31 cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L <1.0 Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L **VOC SURROGATES** 1,2-dichloroethane-d4 % 96 103 4-bromofluorobenzene % 78 108 Toluene-d8 % 108 99

GUIDELINE

07-2S

REPORT OF ORGANIC ANALYSIS

ODWSOG

Sep-09

Sep-09

PARAMETER	TYPE	LIMIT	UNITS				
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5		
1,1,1-trichloroethane	ug/L			<0.4	<0.4		
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5		
1,1,2-trichloroethane	ug/L			<0.4	<0.4		
1,1-dichloroethane	ug/L			<0.4	<0.4		
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5		
1,2-dibromoethane	ug/L			<1.0	<1.0		
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4		
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5		
1,2-dichloropropane	ug/L			<0.5	<0.5		
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3		
1,3-dichlorobenzene	ug/L			<0.4	<0.4		
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	0.8		
1,2,4-Trichlorobenzene	U,						
Benzene	ug/L	MAC	5	<0.5	1		
Bromodichloromethane	ug/L			<0.3	<0.3		
Bromoform	ug/L			<0.4	<0.4		
Bromomethane	ug/L			<0.5	<0.5		
cis-1,2-Dichloroethylene	ug/L			<0.4	4.5		
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2		
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5		
Chloroethane	ug/L			<1.0	2		
Chloroform	ug/L			<0.5	<0.5		
Chloromethane	ug/L			<1.0	<1.0		
Dibromochloromethane	ug/L			<0.3	<0.3		
Dichlorodifluromethane							
Dichloromethane	ug/L	MAC	50	9	9		
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5		
m/p-xylene	ug/L			<1.0	<1.0		
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	1.4		
o-xylene	ug/L			<0.5	<0.5		
Styrene	ug/L			<0.5	<0.5		
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4		
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2		
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3		
Toluene	ug/L	AO	24	<0.5	<0.5		
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3		
Trichlorofluoromethane	ug/L			<0.5	<0.5		
Vinyl Chloride	ug/L	MAC	2	<0.2	3.7		
cis+trans1,3-dichloropropene	ug/L						
Acetone	ug/L						
m/p,o Xylene	ug/L						
Hexane	ug/L						
2-Hexanone							
Methyl Ethyl Ketone	ug/L						
Methyl Isobutyl Ketone	ug/L						
Methyl-t-butyl Ether	ug/L						
m-Dichlorobenzene	ug/L						
o-Dichlorobenzene	ug/L						
p-Dichlorobenzene	ug/L			·			
VOC SURROGATES							
1,2-dichloroethane-d4	%			111	117		
4-bromofluorobenzene	%			95	93		
Toluene-d8	%			105	107		

MILLERS ROAD WDS	GUIDELINE		07-3D					
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-07	May-08	Nov-08	May-09	May-09
								DUP
1,1,1,2-tetrachloroethane	TYPE ug/L	LIMIT	UNITS	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L ug/L			<0.4	<0.4	<0.3	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			3.0	1	1.1	0.6	0.6
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200	0.6	<0.4	0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	0.5	<0.3	<0.3
1,3-dichlorobenzene	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	4.4	2.5	3.8	1.5	1.6
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	3.3	1.5	2.6	1.5	1.5
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			62.8	57	202	17	17
cis-1,3-Dichloropropylene	ug/L		_	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L			7.7	8.2	7.3	<1.0	4.1
Chloroform	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Chloromethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane Dichlorodifluromethane	ug/L			<0.3	<0.3	<0.3	<0.3	<0.3
Dichloromethane	ug/l	MAC	50	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	ug/L ug/L	AO	1.6	1.8	1.4	1.1	2.1	2.1
m/p-xylene	ug/L ug/L	AU	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	17.3	8.1	17.6	6.7	6.5
o-xylene	ug/L	1717 (C		2.8	1.4	2.5	1.5	1.5
Styrene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			3.0	3.6	2.2	3.6	3.6
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	3.7	0.9	2.4	1.1	0.9
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	75.0	46	123	22	22
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURBOCATES								
VOC SURROGATES	0/						112	102
1,2-dichloroethane-d4 4-bromofluorobenzene	%						112 86	103 82
Toluene-d8	%						105	112
I Oluciic-uo	/0	1					103	112

MILLERS ROAD WDS		GUIDELINE	į	07-3D				
REPORT OF ORGANIC ANALYSIS		opwsog		Sep-09	Oct-11	Oct-12	May-16	Apr-17
REPORT OF ORGANIC ANALYSIS		02000		OCP 00	000 11	000 12	Way 10	710117
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	<0.10	< 0.1
1,1,1-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.30	< 0.1
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	<0.10	< 0.4
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.20	< 0.1
1,1-dichloroethane	ug/L			0.4	0	<0.4	0.51	< 0.1
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	<0.30	< 0.1
1,2-dibromoethane	ug/L			<1.0	<0.2	<0.2	<0.10	< 0.1
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	<0.4	0.43	< 0.1
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.2	<0.2	<0.20	< 0.1
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5	<0.20	< 0.1
1,3,5-trimethylbenzene	ug/L			<0.3	0	<0.3	<0.20	
1,3-dichlorobenzene	ug/L			<0.4	<0.4	<0.4	<0.10	< 0.1
1,4-dichlorobenzene	ug/L	MAC	5	2.1	2.7	2.7	3.2	< 0.2
1,2,4-Trichlorobenzene							<0.30	
Benzene	ug/L	MAC	5	1.3	<0.5	1.1	1.3	< 0.5
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3	<0.20	< 0.1
Bromoform	ug/L		-	<0.4	<0.4	<0.4	<0.10	< 0.1
Bromomethane	ug/L			<0.5	<0.5	<0.5	<0.20	< 0.3
cis-1,2-Dichloroethylene	ug/L			159	126	<0.4	170	58.8
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.20	< 0.1
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.20	< 0.2
Chloroethane	ug/L			2.0	2.8	<0.2	2.1	
Chloroform	ug/L			<0.5	<0.5	<0.5	<0.20	< 0.3
Chloromethane	ug/L			<1.0	<0.2	<0.2	<0.40	
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	<0.10	< 0.1
Dichlorodifluromethane	<u> </u>				<0.5	<0.5	0.36	< 1
Dichloromethane	ug/L	MAC	50	12	<4.0	<4.0	<0.30	< 0.3
Ethylbenzene	ug/L	AO	1.6	1.1	<0.5	<0.5	1.2	< 0.5
m/p-xylene	ug/L			<1.0	<0.5	<0.5	0.28	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	9.9	13.5	16.2	18	7.6
o-xylene	ug/L			1.0	1.0	0.9	0.76	< 0.1
Styrene	ug/L			<0.5	<0.5	<0.5	<0.10	< 0.5
trans-1,2-Dichloroethylene	ug/L			1.6	1.4	<0.4	2.0	0.7
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.30	< 0.1
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	<0.20	< 0.2
Toluene	ug/L	AO	24	1.4	0.7	0.7	0.68	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	<0.20	< 0.1
Trichlorofluoromethane	ug/L	141710	,	<0.5	<0.5	<0.5	<0.40	< 0.1
Vinyl Chloride	ug/L	MAC	2	93	62.7	42.7	63	19.8
cis+trans1,3-dichloropropene	ug/L	IVIAC		33	02.7	42.7	<0.30	< 0.1
Acetone	ug/L ug/L						<1.0	4
m/p,o Xylene	ug/L ug/L				1.0	<0.10	1.0	< 0.4
Hexane	ug/L ug/L				1.0	~U.1U	<0.20	< 1
2-Hexanone	ug/L						<1.0	` 1
Methyl Ethyl Ketone	ug/L						<1.0	< 1
Methyl Isobutyl Ketone	ug/L ug/L						<1.0	<1
Methyl-t-butyl Ether							<0.20	<1
m-Dichlorobenzene	ug/L						\U.∠U	<u> </u>
	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			95	105	108	118	107
4-bromofluorobenzene	%			95	102	104	93	98
Toluene-d8	%			107	99	99		106

MILLERS ROAD WDS		GUIDELINE	<u>.</u>	07-3D				
REPORT OF ORGANIC ANALYSIS		opwsog		Oct-17	May-18	Oct-18	May-19	Oct-19
REPORT OF ORGANIC ANALYSIS		02000		000 17	way 10	000 10	Way 10	000 10
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.4	< 0.5	< 0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			0.3	< 0.4	< 0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.1	0.9	< 0.5	<0.5	<0.5
1,2-dibromoethane	ug/L				< 0.2	< 0.2	<0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200	0.2	< 0.4	< 0.4	0.7	2.2
1,2-dichloroethane	ug/L	IMAC	5	< 0.1	< 0.2	< 0.2	<0.2	<0.2
1,2-dichloropropane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L				< 0.3	< 0.3	0.4	<0.3
1,3-dichlorobenzene	ug/L			< 0.1	< 0.4	< 0.4	<0.4	2
1,4-dichlorobenzene	ug/L	MAC	5	2.2	1.9	1.7	4	2
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	0.6	1	0.7	1.2	1
Bromodichloromethane	ug/L			< 0.1	< 0.3	< 0.3	<0.3	<0.3
Bromoform	ug/L			< 0.1	< 0.4	< 0.4	<0.4	<0.4
Bromomethane	ug/L			< 0.3	< 0.5	< 0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			48.8	92.3	45.7	<0.4	212
cis-1,3-Dichloropropylene	ug/L			< 0.1	< 0.2	< 0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	< 0.2	< 0.2	<0.2	<0.2
Chloroethane	ug/L				< 0.2	< 0.2		
Chloroform	ug/L			< 0.3	< 0.5	< 0.5	<0.5	<0.5
Chloromethane	ug/L				< 0.2	1	<0.2	<0.2
Dibromochloromethane	ug/L			< 0.1	< 0.3	< 0.3	<0.3	<0.3
Dichlorodifluromethane				< 1	< 0.5	< 0.3		
Dichloromethane	ug/L	MAC	50	< 0.3	< 4.0	< 4.0	<4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	< 0.5	< 0.5	< 0.5	0.7	<0.5
m/p-xylene	ug/L			< 0.4	< 0.4	< 0.4	<0.4	0.5
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	11.1	11.3	8.9	16.6	11.9
o-xylene	ug/L			< 0.1	< 0.4	< 0.4	0.8	0.5
Styrene	ug/L			< 0.5	< 0.5	< 0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			0.5	0.9	0.5	1.6	1.6
trans-1,3-Dichloropropylene	ug/L			< 0.1	< 0.2	< 0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.2	< 0.3	< 0.3	<0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	< 0.5	0.6	0.8	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.1	< 0.3	0.4	<0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.1	< 0.5	< 0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	25	33	14.9	34.7	83.6
cis+trans1,3-dichloropropene	ug/L			< 0.1				
Acetone	ug/L			4				
m/p,o Xylene	ug/L			< 0.4	< 0.5	< 0.5		
Hexane	ug/L			< 1				
2-Hexanone								
Methyl Ethyl Ketone	ug/L			< 1				
Methyl Isobutyl Ketone	ug/L			< 1				
Methyl-t-butyl Ether	ug/L			< 1				
m-Dichlorobenzene	ug/L			_				
o-Dichlorobenzene	ug/L			< 0.1				
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			102	102	97		
4-bromofluorobenzene	%			116	110	118		
Toluene-d8	%			93	89	92		

MILLERS ROAD WDS

GUIDELINE

07-3D

REPORT OF ORGANIC ANALYSIS

ODWSOG

May-20

Oct-20

1,1,1,2-tetrachioroethane	PARAMETER	TYPE	LIMIT	UNITS				
1,1,2,1-tertachloroethane	1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5		
1,1,2,1-etrachioroethane	1,1,1-trichloroethane	ug/L			<0.4	<0.4		
1,12-trichloroethane	1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5		
1,1 dichloroethane	1,1,2-trichloroethane				<0.4	<0.4		
1,1-dichloroethylene	1,1-dichloroethane				<0.4	<0.4		
1,2-dichloroethane	1,1-dichloroethylene		MAC	14	<0.5	<0.5		
1,2-dichlorobenzene					<0.2	<0.2		
1,2-dichloroethane	1,2-dichlorobenzene		MAC	200	<0.4	<0.4		
1,2-dichloropropane	1,2-dichloroethane		IMAC	5	<0.2	<0.2		
1,3-5trimethylbenzene	1,2-dichloropropane				<0.5	<0.5		
1,3-dichlorobenzene ug/L <0.4					<0.3	<0.3		
1,4-dichlorobenzene	*							
1,2,4-Trichlorobenzene ug/L	· ·		MAC	5				
Benzene ug/L MAC 5 0.8 <0.5	·	- 0/						
Bromodichloromethane		ug/L	MAC	5	0.8	<0.5		
Bromoform Ug/L				-				
Bromomethane								
cis-1,2-Dichloroethylene ug/L 68.3 76.2 cis-1,3-Dichloropropylene ug/L <0.2								
cis-1,3-Dichloropropylene ug/L <0.2								
Carbon Tetrachloride ug/L MAC 5 <0.2 <0.2 Chloroethane ug/L								
Chloroethane ug/L Chloroform ug/L Chloroform ug/L <th< td=""><td></td><td></td><td>MAC</td><td>5</td><td></td><td></td><td></td><td></td></th<>			MAC	5				
Chloroform			171710	3	10.2	10.2		
Chloromethane					<0.5	<0.5		
Dibromochloromethane								
Dichlorodifluromethane ug/L MAC 50 <4.0 <4.0 Ethylbenzene ug/L AO 1.6 0.8 <0.5								
Dichloromethane		ug/ L			10.5	10.5		
Ethylbenzene		ug/l	MAC	50	<10	<10		
m/p-xylene ug/L <0.4								
Monochlorobenzene (chlorobenzene) ug/L MAC 80 9.8 12 o-xylene ug/L 0.5 0.5 0.5 Styrene ug/L <0.5			AU	1.0				
o-xylene ug/L 0.5 0.5 Styrene ug/L <0.5	11 7		MAC	80				
Styrene ug/L <0.5 <0.5 trans-1,2-Dichloroethylene ug/L 1.1 <0.4			IVIAC	00				
trans-1,2-Dichloroethylene ug/L 1.1 <0.4								
trans-1,3-Dichloropropylene ug/L <0.2	•							
Tetrachloroethylene ug/L MAC 30 <0.3								
Toluene			MAC	30				
Trichloroethylene ug/L MAC 5 <0.3 <0.3 Trichlorofluoromethane ug/L <0.5								
Trichlorofluoromethane ug/L <0.5								
Vinyl Chloride ug/L MAC 2 24.6 35.7 cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl-t-butyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L	·		171710	3				
cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L			MAC	2				
Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L	•		171710	_	21.0	33.7		
m/p,o Xylene ug/L Hexane ug/L 2-Hexanone Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L								
Hexane								
2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L								
Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L		~O/ L						
Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L		ug/I						
Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L								
m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L								
o-Dichlorobenzene ug/L								
C.								
p-Dichloropenzene ug/L	p-Dichlorobenzene	ug/L						
70/2	F	~o/ =						
VOC SURROGATES	VOC SURROGATES							
1,2-dichloroethane-d4 %	1,2-dichloroethane-d4	%						
4-bromofluorobenzene %	4-bromofluorobenzene	%					_	
Toluene-d8 %	Toluene-d8	%						

MILLERS ROAD WDS		GUIDELINE		07-3S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-07	May-08	Nov-08	May-09	Sep-09
REFORT OF ORGANIC ANALISIS		02000		00001	may oo	1107 00	may oo	Cop co
PARAMETER	TYPE	LIMIT	UNITS					1
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloropropane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	1	<0.4
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Chloromethane	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	ug/L			<0.3	<0.3	<0.3	<0.3	<0.3
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	<4.0	<4.0	10
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L			<1.0	<1.0	<1.0	<1.0	<1.0
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
Styrene	ug/L			<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L		_	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%						103	109
4-bromofluorobenzene	%						83	95
Toluene-d8	%						110	107

MILLERS ROAD WDS		GUIDELINE		07-3S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-12	May-16	Apr-17	Oct-17	May-18
					•			,
PARAMETER	TYPE	LIMIT	UNITS	-O F	:0.10	.01	.01	.0.5
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.10	< 0.1	< 0.1	< 0.5
1,1,1-trichloroethane	ug/L			<0.4	<0.30	< 0.1	< 0.1	< 0.4
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.10	< 0.4	< 0.4	< 0.5
1,1,2-trichloroethane	ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.4
1,1-dichloroethane	ug/L	1110	4.4	<0.4	<0.30	< 0.1	< 0.1	< 0.4
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.30	< 0.1	< 0.1	< 0.5
1,2-dibromoethane 1.2-dichlorobenzene	ug/L	NAAC	200	<0.2	<0.10	< 0.1	401	< 0.2
,	ug/L	MAC IMAC	200 5	<0.4	<0.10 <0.20	< 0.1	< 0.1 < 0.1	< 0.4 < 0.2
1,2-dichloroptopage	ug/L	IIVIAC	3	<0.5	<0.20	< 0.1	< 0.1	< 0.2
1,2-dichloropropane	ug/L			<0.3	<0.20	< 0.1	< 0.1	
1,3,5-trimethylbenzene 1,3-dichlorobenzene	ug/L ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.3 < 0.4
1,4-dichlorobenzene		MAC	5	<0.4	<0.10	< 0.1	< 0.1	< 0.4
1,2,4-Trichlorobenzene	ug/L	IVIAC	3	\0.4	<0.10	₹ 0.2	₹ 0.2	V 0.4
Benzene	ug/l	MAC	5	<0.5	<0.20	< 0.5	∠ 0 E	< 0 E
Bromodichloromethane	ug/L ug/L	IVIAC	3	<0.3	<0.20	< 0.5	< 0.5 < 0.1	< 0.5 < 0.3
Bromoform	ug/L ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.3
Bromomethane	ug/L ug/L			<0.4	<0.10	< 0.1	< 0.1	< 0.4
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.4
cis-1,3-Dichloropropylene	ug/L ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.4
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.20	< 0.1	< 0.1	< 0.2
Chloroethane	ug/L ug/L	IVIAC	3	<0.2	<0.20	₹ 0.2	₹ 0.2	< 0.2
Chloroform	ug/L			<0.5	<0.20	< 0.3	< 0.3	< 0.5
Chloromethane	ug/L			<0.2	<0.40	\ 0.3	\ U.3	< 0.2
Dibromochloromethane	ug/L			<0.2	<0.40	< 0.1	< 0.1	< 0.2
Dichlorodifluromethane	ug/ L			<0.5	<0.10	<1	<1	< 0.5
Dichloromethane	ug/L	MAC	50	<4.0	<0.30	< 0.3	< 0.3	< 4.0
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.10	< 0.5	< 0.5	< 0.5
m/p-xylene	ug/L	7.0	1.0	<0.5	<0.20	< 0.4	< 0.4	< 0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.10	< 0.2	< 0.2	< 0.5
o-xylene	ug/L	IVII C	00	<0.5	<0.10	< 0.1	< 0.1	< 0.4
Styrene	ug/L			<0.5	<0.10	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.20	< 0.1	< 0.1	< 0.4
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.30	< 0.1	< 0.1	< 0.2
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.20	< 0.2	< 0.2	< 0.3
Toluene	ug/L	AO	24	<0.5	<0.20	< 0.5	< 0.5	< 0.5
Trichloroethylene	ug/L	MAC	5	<0.3	<0.20	< 0.1	< 0.1	< 0.3
Trichlorofluoromethane	ug/L			<0.5	<0.40	< 0.1	< 0.1	< 0.5
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.17	< 0.2	< 0.2	< 0.2
cis+trans1,3-dichloropropene	ug/L		_		<0.30	< 0.1	< 0.1	
Acetone	ug/L				<1.0	< 2	< 2	
m/p,o Xylene	ug/L			<1	<0.20	< 0.4	< 0.4	< 0.5
Hexane	ug/L				<0.20	< 1	< 1	
2-Hexanone	- 0,				<1.0			
Methyl Ethyl Ketone	ug/L				<1.0	< 1	< 1	
Methyl Isobutyl Ketone	ug/L				<1.0	< 1	< 1	
Methyl-t-butyl Ether	ug/L				<0.20	<1	< 1	
m-Dichlorobenzene	ug/L						_	
o-Dichlorobenzene	ug/L						< 0.1	
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			114	86	106	102	104
4-bromofluorobenzene	%			112	102	96	116	115
Toluene-d8	%			99	102	107	94	89

MILLERS ROAD WDS		GUIDELINE		07-3S				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-18	May-19	Oct-19	May-20	Oct-20
REPORT OF ORGANIC ANALYSIS		ODMOOG		OCI-10	May-19	001-19	May-20	OGI-20
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethane	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.5	<0.5	<0.5	<0.5	<0.5
1,2-dibromoethane	ug/L			< 0.2	<0.2	<0.2	<0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200	< 0.4	<0.4	<0.4	<0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	< 0.2	<0.2	<0.2	<0.2	<0.2
1,2-dichloropropane	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-trimethylbenzene	ug/L			< 0.3	<0.3	<0.3	<0.3	<0.3
1,3-dichlorobenzene	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	< 0.4	<0.4	<0.4	<0.4	<0.4
1,2,4-Trichlorobenzene								
Benzene	ug/L	MAC	5	< 0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L			< 0.3	<0.3	<0.3	<0.3	<0.3
Bromoform	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
Bromomethane	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
cis-1,3-Dichloropropylene	ug/L			< 0.2	<0.2	<0.2	<0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	<0.2	<0.2	<0.2	<0.2
Chloroethane	ug/L			< 0.2				
Chloroform	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
Chloromethane	ug/L			< 0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	ug/L			< 0.3	<0.3	<0.3	<0.3	<0.3
Dichlorodifluromethane				< 0.5				
Dichloromethane	ug/L	MAC	50	< 4.0	<4.0	<4.0	<4.0	8
Ethylbenzene	ug/L	AO	1.6	< 0.5	<0.5	<0.5	<0.5	<0.5
m/p-xylene	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	< 0.5	<0.5	<0.5	<0.5	<0.5
o-xylene	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
Styrene	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			< 0.4	<0.4	<0.4	<0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			< 0.2	<0.2	<0.2	<0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.3	<0.3	<0.3	<0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.3	<0.3	<0.3	<0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.5	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	< 0.2	<0.2	<0.2	<0.2	<0.2
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L			< 0.5				
Hexane	ug/L							
2-Hexanone								
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L							
m-Dichlorobenzene	ug/L							
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			100	112			
4-bromofluorobenzene	%			89	95			
Toluene-d8	%			95	105			

GUIDELINE MILLERS ROAD WDS 08-1D **ODWSOG REPORT OF ORGANIC ANALYSIS** Nov-08 May-09 Sep-09 Oct-11 PARAMETER TYPE LIMIT UNITS 1,1,1,2-tetrachloroethane ug/L <0.5 <0.5 <0.5 <1 1,1,1-trichloroethane <0.4 <0.4 <0.4 <0.8 ug/L 1,1,2,2-tetrachloroethane <0.5 <0.5 <0.5 <1 ug/L 1,1,2-trichloroethane ug/L <0.4 <0.4 <0.4 <0.8 1,1-dichloroethane ug/L <0.4 <0.4 <0.4 <0.8 MAC <0.5 <0.5 <0.5 <1 1,1-dichloroethylene ug/L 14 1,2-dibromoethane <1.0 <1.0 <1.0 <0.4 ug/L 1,2-dichlorobenzene ug/L MAC 200 <0.4 < 0.4 <0.4 <0.8 1,2-dichloroethane ug/L **IMAC** 5 <0.5 <0.5 <0.5 <0.4 1,2-dichloropropane ug/L <0.5 <0.5 <0.5 <1 1,3,5-trimethylbenzene ug/L < 0.3 < 0.3 < 0.3 <0.6 1,3-dichlorobenzene ug/L <0.4 <0.4 < 0.4 <0.8 MAC 1,4-dichlorobenzene ug/L 5 <0.4 < 0.4 < 0.4 <0.8 1,2,4-Trichlorobenzene Benzene ug/L MAC 5 < 0.5 < 0.5 < 0.5 <1 Bromodichloromethane ug/L < 0.3 < 0.3 < 0.3 <0.6 Bromoform <0.4 <0.4 <0.4 <0.8 ug/L Bromomethane <0.5 <0.5 <0.5 ug/L <1 6.7 0.6 <0.8 cis-1,2-Dichloroethylene ug/L 1.1 <0.2 < 0.2 cis-1,3-Dichloropropylene ug/L < 0.2 < 0.4 Carbon Tetrachloride MAC <0.5 <0.5 <0.5 <1 ug/L Chloroethane ug/L <1.0 <1.0 <1.0 < 0.4 <0.5 Chloroform <0.5 <0.5 <1 ug/L Chloromethane ug/L <1.0 <1.0 <1.0 < 0.4 Dibromochloromethane ug/L < 0.3 < 0.3 < 0.3 <0.6 Dichlorodifluromethane <1 Dichloromethane MAC 50 <4.0 <4.0 10 <8.0 ug/L <0.5 Ethylbenzene ug/L ΑO 1.6 < 0.5 < 0.5 <1 m/p-xylene ug/L <1.0 <1.0 <1.0 <1 Monochlorobenzene (chlorobenzene) ug/L MAC 80 1.6 <0.2 <0.2 <0.4 o-xylene ug/L < 0.5 < 0.5 < 0.5 <1 <0.5 Styrene <0.5 <0.5 <1 ug/L trans-1,2-Dichloroethylene ug/L 0.5 < 0.4 < 0.4 < 0.8 trans-1,3-Dichloropropylene < 0.2 < 0.2 < 0.2 <0.4 ug/L Tetrachloroethylene ug/L MAC 30 <0.3 <0.3 <0.3 <0.6 ΑO <0.5 <0.5 Toluene 24 <0.5 ug/L <1 Trichloroethylene MAC 5 <0.3 <0.3 <0.3 <0.6 ug/L Trichlorofluoromethane ug/L <0.5 <0.5 <0.5 <1 MAC 2 <0.4 Vinyl Chloride ug/L 8.0 1.6 0.6 cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L <1.0 Hexane ug/L

Concentrations exceed MDL
Concentrations exceed ODWSOG

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

%

107

91

116

2-Hexanone Methyl Ethyl Ketone

Methyl Isobutyl Ketone

Methyl-t-butyl Ether

m-Dichlorobenzene

o-Dichlorobenzene

p-Dichlorobenzene

VOC SURROGATES

1,2-dichloroethane-d4

Toluene-d8

4-bromofluorobenzene

MILLERS ROAD WDS

GUIDELINE

08-1S

REPORT OF ORGANIC ANALYSIS

ODWSOG

Nov-08 May-09

PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5			
1,1,1-trichloroethane	ug/L			<0.4	<0.4			
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5			
1,1,2-trichloroethane	ug/L			<0.4	<0.4			
1,1-dichloroethane	ug/L			<0.4	<0.4			
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5			
1,2-dibromoethane	ug/L			<1.0	<1.0			
1.2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4			
1,2-dichloroethane	ug/L	IMAC	5	<0.5	<0.5			
1,2-dichloropropane	ug/L			<0.5	<0.5			
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3			
1,3-dichlorobenzene	ug/L			<0.4	<0.4			
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4			
1,2,4-Trichlorobenzene	ug/L	IVIAC	3	\0.4	\0.4			
	/1	NAAC	-	40 F	40 F			
Benzene Bromodichloromethane	ug/L	MAC	5	<0.5	<0.5 <0.3			
	ug/L			<0.3				
Bromoform	ug/L			<0.4	<0.4			
Bromomethane	ug/L			<0.5	<0.5			
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4			
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2			
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5			
Chloroethane	ug/L			<1.0	<1.0			
Chloroform	ug/L			<0.5	<0.5			
Chloromethane	ug/L			<1.0	<1.0			
Dibromochloromethane	ug/L			<0.3	<0.3			
Dichlorodifluromethane								
Dichloromethane	ug/L	MAC	50	<4.0	<4.0			
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5			
m/p-xylene	ug/L			<1.0	<1.0			
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2			
o-xylene	ug/L			<0.5	<0.5			
Styrene	ug/L			<0.5	<0.5			
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4			
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2			
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3			
Toluene	ug/L	AO	24	<0.5	<0.5			
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3			
Trichlorofluoromethane	ug/L			<0.5	<0.5			
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2			
cis+trans1,3-dichloropropene	ug/L							
Acetone	ug/L							
m/p,o Xylene	ug/L							
Hexane	ug/L							
2-Hexanone	~6/ -							
Methyl Ethyl Ketone	ug/L							
Methyl Isobutyl Ketone	ug/L							
Methyl-t-butyl Ether	ug/L ug/L							
m-Dichlorobenzene	ug/L ug/L							
o-Dichlorobenzene	ug/L ug/L							
p-Dichlorobenzene								
р-ыспоговендене	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			103	108	98.1	83	
4-bromofluorobenzene	%			102	111	83.1	101	85
Toluene-d8	%			100	101	106		95

MILLERS ROAD WDS		GUIDELINE		Trip Blank				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Oct-11	Oct-12	Apr-14	May-16	Nov-16
REPORT OF ORGANIC ANALISIS				001	001.12	, 10		
PARAMETER	TYPE	LIMIT	UNITS		ı			I
1,1,1,2-tetrachloroethane	ug/L			<0.5	<0.5	< 0.1	<0.10	<0.10
1,1,1-trichloroethane	ug/L			<0.4	<0.4	< 0.1	<0.30	<0.30
1,1,2,2-tetrachloroethane	ug/L			<0.5	<0.5	< 0.4	<0.10	<0.10
1,1,2-trichloroethane	ug/L			<0.4	<0.4	< 0.1	<0.20	<0.20
1,1-dichloroethane	ug/L			<0.4	<0.4	< 0.1	<0.30	<0.30
1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0.5	< 0.1	<0.30	<0.30
1,2-dibromoethane	ug/L			<0.2	<0.2	< 0.1	<0.10	<0.10
1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	< 0.1	<0.10	<0.10
1,2-dichloroethane	ug/L	IMAC	5	<0.2	<0.2	< 0.1	<0.20	<0.20
1,2-dichloropropane	ug/L			<0.5	<0.5	< 0.1	<0.20	<0.20
1,3,5-trimethylbenzene	ug/L			<0.3	<0.3		<0.20	<0.20
1,3-dichlorobenzene	ug/L			<0.4	<0.4	< 0.1	<0.10	<0.10
1,4-dichlorobenzene	ug/L	MAC	5	<0.4	<0.4	< 0.2	<0.10	<0.10
1,2,4-Trichlorobenzene							<0.30	<0.30
Benzene	ug/L	MAC	5	<0.5	<0.5	< 0.5	<0.20	<0.20
Bromodichloromethane	ug/L			<0.3	<0.3	< 0.1	<0.20	<0.20
Bromoform	ug/L			<0.4	<0.4	< 0.1	<0.10	<0.10
Bromomethane	ug/L			<0.5	<0.5	< 0.3	<0.20	<0.20
cis-1,2-Dichloroethylene	ug/L			<0.4	<0.4	< 0.1	<0.20	<0.20
cis-1,3-Dichloropropylene	ug/L			<0.2	<0.2	< 0.1	<0.20	<0.20
Carbon Tetrachloride	ug/L	MAC	5	<0.5	<0.5	< 0.2	<0.20	<0.20
Chloroethane	ug/L			<0.2	<0.2		<0.20	<0.20
Chloroform	ug/L			<0.5	<0.5	< 0.3	<0.20	<0.20
Chloromethane	ug/L			<0.2	<0.2		<0.40	<0.40
Dibromochloromethane	ug/L			<0.3	<0.3	< 0.1	<0.10	<0.10
Dichlorodifluromethane	U,			<0.5	<0.5	< 1	<0.20	<0.20
Dichloromethane	ug/L	MAC	50	<4.0	<4.0	< 0.3	<0.30	<0.30
Ethylbenzene	ug/L	AO	1.6	<0.5	<0.5	< 0.5	<0.10	<0.10
m/p-xylene	ug/L			<0.5	<0.5	< 0.4	<0.20	<0.20
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	<0.2	<0.2	< 0.2	<0.10	<0.10
o-xylene	ug/L			<0.5	<0.5	< 0.1	<0.10	<0.10
Styrene	ug/L			<0.5	<0.5	< 0.5	<0.10	<0.10
trans-1,2-Dichloroethylene	ug/L			<0.4	<0.4	< 0.1	<0.20	<0.20
trans-1,3-Dichloropropylene	ug/L			<0.2	<0.2	< 0.1	<0.30	<0.30
Tetrachloroethylene	ug/L	MAC	30	<0.3	<0.3	< 0.2	<0.20	<0.20
Toluene	ug/L	AO	24	<0.5	<0.5	< 0.5	<0.20	<0.20
Trichloroethylene	ug/L	MAC	5	<0.3	<0.3	< 0.1	<0.20	<0.20
Trichlorofluoromethane	ug/L			<0.5	<0.5	< 0.1	<0.40	<0.40
Vinyl Chloride	ug/L	MAC	2	<0.2	<0.2	< 0.2	<0.17	<0.17
cis+trans1,3-dichloropropene	ug/L	IVII/ CC		10.2	10.2	< 0.1	<0.30	<0.30
Acetone	ug/L					< 2	<1.0	<1.0
m/p,o Xylene	ug/L			<1.0	<1.0	< 0.4	<0.20	<0.20
Hexane	ug/L			-1.0	-1.0	<1	<0.20	<0.20
2-Hexanone	46/ L					`1	<1.0	<1.0
Methyl Ethyl Ketone	ug/L					< 1	<1.0	<1.0
Methyl Isobutyl Ketone	ug/L					<1	<1.0	<1.0
Methyl-t-butyl Ether	ug/L					<1	<0.20	<0.20
m-Dichlorobenzene	ug/L					`1	10.20	\0.20
o-Dichlorobenzene	ug/L							
p-Dichlorobenzene	ug/L ug/L							
p Didinorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%			107	104	100		
4-bromofluorobenzene	%			98	116	115		
Toluene-d8	%			106	94	91		

MILLERS ROAD WDS		GUIDELINE		Trip Blank				
REPORT OF ORGANIC ANALYSIS		ODWSOG		Apr-17	Oct-17	May-18	Oct-18	May-19
PARAMETER	TYPE	LIMIT	UNITS					
1,1,1,2-tetrachloroethane	ug/L	LIIVII I	UNITS	< 0.1	< 0.1	< 0.5	< 0.5	<0.5
1,1,1-trichloroethane	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,1,2,2-tetrachloroethane	ug/L			< 0.4	< 0.4	< 0.4	< 0.5	<0.5
1,1,2-trichloroethane	ug/L			< 0.4	< 0.4	< 0.4	< 0.4	<0.4
1.1-dichloroethane				< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,1-dichloroethylene	ug/L	MAC	14	< 0.1	< 0.1	< 0.4	< 0.4	<0.4
, ,	ug/L	IVIAC	14		< 0.1			
1,2-dibromoethane	ug/L	1446	200	< 0.1 < 0.1	.01	< 0.2	< 0.2	<0.2
1,2-dichlorobenzene	ug/L	MAC	200		< 0.1	< 0.4	< 0.4	<0.4
1,2-dichloroethane	ug/L	IMAC	5	< 0.1	< 0.1	< 0.2	< 0.2	<0.2
1,2-dichloropropane	ug/L			< 0.1	< 0.1	< 0.5	< 0.5	<0.5
1,3,5-trimethylbenzene	ug/L			.0.1		< 0.3	< 0.3	<0.3
1,3-dichlorobenzene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
1,4-dichlorobenzene	ug/L	MAC	5	< 0.2	< 0.2	< 0.4	< 0.4	<0.4
1,2,4-Trichlorobenzene								_
Benzene	ug/L	MAC	5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Bromodichloromethane	ug/L			< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Bromoform	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
Bromomethane	ug/L			< 0.3	< 0.3	< 0.5	< 0.5	<0.5
cis-1,2-Dichloroethylene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
cis-1,3-Dichloropropylene	ug/L			< 0.1	< 0.1	< 0.2	< 0.2	<0.2
Carbon Tetrachloride	ug/L	MAC	5	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
Chloroethane	ug/L					< 0.2	< 0.2	
Chloroform	ug/L			< 0.3	< 0.3	< 0.5	< 0.5	<0.5
Chloromethane	ug/L					< 0.2	< 0.2	<0.2
Dibromochloromethane	ug/L			< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Dichlorodifluromethane				< 1	< 1	< 0.5	< 0.5	
Dichloromethane	ug/L	MAC	50	< 0.3	< 0.3	< 4.0	< 4.0	<4.0
Ethylbenzene	ug/L	AO	1.6	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
m/p-xylene	ug/L			< 0.4	< 0.4	< 0.4	< 0.4	<0.4
Monochlorobenzene (chlorobenzene)	ug/L	MAC	80	< 0.2	< 0.2	< 0.5	< 0.5	<0.5
o-xylene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
Styrene	ug/L			< 0.5	< 0.5	< 0.5	< 0.5	<0.5
trans-1,2-Dichloroethylene	ug/L			< 0.1	< 0.1	< 0.4	< 0.4	<0.4
trans-1,3-Dichloropropylene	ug/L			< 0.1	< 0.1	< 0.2	< 0.2	<0.2
Tetrachloroethylene	ug/L	MAC	30	< 0.2	< 0.2	< 0.3	< 0.3	<0.3
Toluene	ug/L	AO	24	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Trichloroethylene	ug/L	MAC	5	< 0.1	< 0.1	< 0.3	< 0.3	<0.3
Trichlorofluoromethane	ug/L			< 0.1	< 0.1	< 0.5	< 0.5	<0.5
Vinyl Chloride	ug/L	MAC	2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
cis+trans1,3-dichloropropene	ug/L			< 0.1	< 0.1			10.2
Acetone	ug/L			< 2	< 2			
m/p,o Xylene	ug/L			< 0.4	< 0.4	< 0.5	< 0.53	
Hexane	ug/L			< 1	<1	. 5.5	- 0.55	
2-Hexanone	u6/ L			` 1	` ' -			
Methyl Ethyl Ketone	ug/L			< 1	< 1			
Methyl Isobutyl Ketone	ug/L			<1	<1			
Methyl-t-butyl Ether	ug/L ug/L			<1	<1			
m-Dichlorobenzene				<u> </u>	\ 1			
	ug/L				Z 0 1			
o-Dichlorobenzene	ug/L				< 0.1			
p-Dichlorobenzene	ug/L							
VOC SURROGATES								
1,2-dichloroethane-d4	%						101	
4-bromofluorobenzene	%						121	
Toluene-d8	%						93	

MILLERS ROAD WDS

GUIDELINE

Trip Blank

REPORT OF ORGANIC ANALYSIS

ODWSOG

Oct-19

May-20 Oct-20 Vials Broken

1,1,1-trichloroethane						Vials Broken		
1,1-1-trickloroethane	PARAMETER	TYPE	LIMIT	UNITS	T.			
1,1,2-terischloroethane	1 1 1							
1.1.2-tichloroethane	• •					<0.4	4	
13-dichlorosthylene	1,1,2,2-tetrachloroethane				<0.5	<0	5	
1.1-dichloroethylene	1,1,2-trichloroethane				<0.4	<0.4	4	
1,2-dichloromethane	1,1-dichloroethane	ug/L			<0.4	<0.4	4	
1,2-dichlorobenzene	1,1-dichloroethylene	ug/L	MAC	14	<0.5	<0	5	
1,2-dichloroerbane	1,2-dibromoethane	ug/L			<0.2	<0.3	2	
1,2-dichloropropane	1,2-dichlorobenzene	ug/L	MAC	200	<0.4	<0.4	4	
1,3-5-trimethylbenzene ug/L <0.3	1,2-dichloroethane	ug/L	IMAC	5	<0.2	<0.3	2	
1,3-5-trimethylbenzene ug/L <0.3	1,2-dichloropropane	ug/L			<0.5	<0	5	
1.3-dichlorobenzene	1,3,5-trimethylbenzene				<0.3	<0	3	
1,4-dichlorobenzene	1,3-dichlorobenzene	ug/L			<0.4	<0.4	4	
1,2,4-Trichlorobenzene ug/L MAC S <0.5 <0.5 S	1,4-dichlorobenzene		MAC	5	<0.4	<0.4	4	
Bromoform Ug/L	1,2,4-Trichlorobenzene							
Bromoform Ug/L	Benzene	ug/L	MAC	5	<0.5	<0	5	
Bromoform Ug/L	Bromodichloromethane				<0.3	<0	3	
Brommethane	Bromoform				<0.4	<0.	4	
cis-1,2-Dichloroethylene ug/L <0.4								
cis-1,3-Dichloropropylene ug/L A0.2 <0.2								
Carbon Tetrachloride								
Chloroethane			MAC	5				
Chloroform			111710	3	10.2	10	-	
Chloromethane					<0.5	<0	5	
Dibromochloromethane Ug/L								
Dichlorodifluromethane ug/L MAC 50 <4.0 <4.0 Ethylbenzene ug/L AO 1.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <								
Dichloromethane		ug/ L			\0.3	νο	5	
Ethylbenzene ug/L AO 1.6 <0.5 <0.5 <0.5		ug/l	MAC	EO	-10	-11	2	
m/p-xylene ug/L <0.4								
Monochlorobenzene (chlorobenzene) ug/L MAC 80 <0.5	•		AU	1.6				
o-xylene ug/L <0.4			1446	00				
Styrene			IVIAC	80				
trans-1,2-Dichloroethylene ug/L <0.4								
trans-1,3-Dichloropropylene ug/L <0.2	-							
Tetrachloroethylene								
Toluene								
Trichloroethylene ug/L MAC 5 <0.3								
Trichlorofluoromethane ug/L <0.5								
Vinyl Chloride ug/L MAC 2 <0.2			MAC	5				
cis+trans1,3-dichloropropene ug/L Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES ug/L 1,2-dichloroethane-d4 %								
Acetone ug/L m/p,o Xylene ug/L Hexane ug/L 2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES ug/L 1,2-dichloroethane-d4 %			MAC	2	<0.2	<0	2	
m/p,o Xylene ug/L Hexane ug/L 2-Hexanone ————————————————————————————————————								
Hexane								
2-Hexanone ug/L Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES Ug/L 1,2-dichloroethane-d4 %	m/p,o Xylene							
Methyl Ethyl Ketone ug/L Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES 1,2-dichloroethane-d4		ug/L						
Methyl Isobutyl Ketone ug/L Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES Ug/L 1,2-dichloroethane-d4 %								
Methyl-t-butyl Ether ug/L m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES 1,2-dichloroethane-d4								
m-Dichlorobenzene ug/L o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES 1,2-dichloroethane-d4	Methyl Isobutyl Ketone							
o-Dichlorobenzene ug/L p-Dichlorobenzene ug/L VOC SURROGATES 1,2-dichloroethane-d4	Methyl-t-butyl Ether							
p-Dichlorobenzene ug/L VOC SURROGATES 1,2-dichloroethane-d4 %	m-Dichlorobenzene	ug/L						
VOC SURROGATES 1,2-dichloroethane-d4 %	o-Dichlorobenzene	ug/L						
1,2-dichloroethane-d4 %	p-Dichlorobenzene	ug/L						
1,2-dichloroethane-d4 %								
	VOC SURROGATES							
	1,2-dichloroethane-d4	%						
4-bromofluorobenzene %	4-bromofluorobenzene	%						
Toluene-d8 %	Toluene-d8							

Sample Location SW-1

Sample Date					Aug-96	Nov-96	Nov-98	Jul-99	Oct-99	Nov-99
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	Limit		CWQG	APV	21	13	20	20	12	10
BOD	IPWQO	a								
		+	122	400	2	<1	<1	3	<1	<1
Chloride			120	180	21.8	22.8	29.4	22.5	31.6	17.8
Conductivity					125	129	154	148	162	106
DOC										
N-NH3 (Ammonia)					0.04	0.05	0.04			0.06
N-NH3 (unionized)	PWQO	0.02	L		< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
N-NO2 (Nitrite)			0.6		< 0.1	<0.1	< 0.01	<0.1	<0.1	< 0.1
N-NO3 (Nitrate)			3		<0.1	0.3	0.01	0.2	0.2	0.2
pH	PWQO	6.5-8.5	6.5-9		6.62	7.10	6.89	6.44	6.14	6.76
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	0.021	0.04	0.011	0.001
Sulphate					21	6	4			
TDS		+				-	-			
Total phosphorous	IPWQO	0.03			0.05	0.15	0.02	0.05	0.03	0.07
Turbidity	ii wqo	0.03			3.3	0.13	1.6	2	1.1	0.07
Hardness as CaCO3		+	 		29	25	33	37	35	26
Calcium		-	 							
		-			6.96	6.01	8.42	9.23	9.24	6.40
Magnesium			ļ		2.87	2.44	2.96	3.25	2.93	2.33
Potassium					7.8	2.4		<0.04	<0.4	1.4
Sodium			<u> </u>		10.8	14.6	15.7	14.1	17.3	12.8
Aluminum (dissolved)	IPWQO	0.075			0.01	0.14	0.10	0.17	0.16	0.14
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on	0.00						
Cadmium	-	0.0002 C		0.00021	< 0.0001	< 0.0001	0.0002	0.0011	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099	L		0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Cobalt	IPWQO	0.0009						< 0.0005	< 0.0005	< 0.0005
	PWQO	0.005 d	1							
Copper	IPWQO		d	0.0069	0.0012	0.0025	0.0176	0.0022	<0.0005	<0.0005
Iron	PWQO	0.3	0.3		1.45	0.81	0.85	2.13	1.16	1.09
11011	-				1.45	0.61	0.65	2.13	1.10	1.09
Lead	PWQO	0.025 0.005	based on	0.002	0.0002	0.0003	0.0002	<0.0002	<0.0002	<0.0002
Lead	IPWQO		hardness	0.002	0.0002	0.0003	0.0002	10.0002	10.0002	10.0002
Manganese					0.07	0.06	0.04			
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon	1 11400	0.025								
Silver			—			V0.02		10.02	VO.02	
Strontium	DWOO	0.0001			<0.0001					<0.0001
Thallium	PWQO	0.0001			<0.0001	0.0002	0.001	0.0001	<0.0001	<0.0001
					<0.0001					<0.0001
	PWQO IPWQO	0.0001			<0.0001					<0.0001
Titanium	IPWQO	0.0003			<0.0001					<0.0001
		0.0003			<0.0001					<0.0001
Titanium Vanadium	IPWQO	0.0003	0.007			0.0002	0.001	0.0001	<0.0001	
Titanium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	<0.0001					<0.0001
Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007			0.0002	0.001	0.0001	<0.0001	
Titanium Vanadium Zinc	IPWQO IPWQO PWQO	0.0003		0.89		0.0002	0.001	0.0001	<0.0001 0.01	<0.1
Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007			0.0002	0.001	0.0001	<0.0001	
Titanium Vanadium Zinc	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02		0.89		0.0002	0.001	0.0001	<0.0001 0.01	<0.1
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02		0.89	0.01	0.0002 <0.01	<0.01 <0.01	0.0001 0.01 <0.001 80	<0.0001 0.01 <0.001 81	<0.1 <0.001 73
Titanium Vanadium Zinc Arsenic COD Colour	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130	0.0002 <0.01 55 124	0.001 <0.01 59 94.4	0.0001 0.01 <0.001 80 139	<0.0001 0.01 <0.001 81 132	<0.1 <0.001 73 130
Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001	0.0002 <0.01 55 124 <0.0001	0.001 <0.01 59 94.4 <0.0001	0.0001 0.01 <0.001 80 139 <0.0001	<0.0001 0.01 <0.001 81 132 <0.0001	<0.1 <0.001 73 130 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130	0.0002 <0.01 55 124	0.001 <0.01 59 94.4	0.0001 0.01 <0.001 80 139	<0.0001 0.01 <0.001 81 132	<0.1 <0.001 73 130
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001	0.0002 <0.01 55 124 <0.0001 <0.001	0.001 <0.01 59 94.4 <0.0001 <0.001	0.0001 0.01 <0.001 80 139 <0.0001	<0.0001 0.01 <0.001 81 132 <0.0001	<0.1 <0.001 73 130 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001	0.0002 <0.01 55 124 <0.0001 <0.001	0.001 <0.01 59 94.4 <0.0001 <0.001	0.0001 0.001 <0.001 80 139 <0.0001 <0.0001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001	<0.1 <0.001 73 130 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73	0.0001 0.001 <0.001 80 139 <0.0001 <0.001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82	<0.1 <0.001 73 130 <0.0001 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001	0.0002 <0.01 55 124 <0.0001 <0.001	0.001 <0.01 59 94.4 <0.0001 <0.001	0.0001 0.001 <0.001 80 139 <0.0001 <0.0001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001	<0.1 <0.001 73 130 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73	0.0001 0.001 <0.001 80 139 <0.0001 <0.001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82	<0.1 <0.001 73 130 <0.0001 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73	0.0001 0.001 <0.001 80 139 <0.0001 <0.001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82	<0.1 <0.001 73 130 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73	0.0001 0.001 <0.001 80 139 <0.0001 <0.001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82	<0.1 <0.001 73 130 <0.0001 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73 8	0.0001 0.01 <0.001 80 139 <0.0001 <0.001 1.29 15	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82 <1	<0.1 <0.001 73 130 <0.0001 <0.0001 0.73 2
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005		0.89	0.01 55 130 <0.0001 <0.001 21 1.17	0.0002 <0.01 55 124 <0.0001 <0.001 21.9 0.75	0.001 <0.01 59 94.4 <0.0001 <0.001 21.2 0.73	0.0001 0.001 <0.001 80 139 <0.0001 <0.001	<0.0001 0.01 <0.001 81 132 <0.0001 <0.001 0.82	<0.1 <0.001 73 130 <0.0001 <0.001

Sample Location SW-1

Sample Date					Jun-00	Aug-00	Oct-00	Sep-01	Dec-01	Jun-02
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	13	55	29	12	11	8
BOD	IPWQU	а								2
Chloride	-		420	400	<1	<1	<1	1	1	
	-		120	180	14.0	15.1	30.7	35.8	450	18.2
Conductivity	ļ				98	116	156	150	158	103
DOC										
N-NH3 (Ammonia)					0.09	0.15	0.05	0.03	0.04	0.11
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	< 0.01			
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.1	0.2	0.2	<0.1	0.3	0.1
pH	PWQO	6.5-8.5	6.5-9		6.79	6.74	6.93	6.93	7.19	6.13
Phenols	IPWQO	0.001	0.004	0.961	0.022	0.006	0.006	<0.001	< 0.001	<0.001
Sulphate									13	6
TDS										
Total phosphorous	IPWQO	0.03			0.04	0.04	0.02	0.01	0.01	0.03
Turbidity		0.00			1.6	9	1.5	1.9	1.6	1.9
Hardness as CaCO3					21	30	36	28	39	20
Calcium					5.39	7.3	8.55	6.76	9.81	4.91
Magnesium				1	1.88	2.85	3.46	2.73	3.44	1.83
Potassium				-						
Sodium	-	1		1	<0.4	2.3	0.4	0.6	2.3	0.9
					10.0	8.7	15.3	17.0	20.1	10.6
Aluminum (dissolved)	IPWQO	0.075		1	0.14	0.19	0.15	0.11	0.10	0.11
Aluminum total	IPWQO	0.075								
Barium									0.015	0.015
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	0.0001
Chromium	PWQO	0.0099	Hai uness		<0.01	<0.01	<0.01	<0.01		<0.01
Cobalt									0.000.	\0.01
Copail	IPWQO	0.0009			<0.0005	0.0012	<0.0005	0.0014	0.0034	
Copper	PWQO	0.005 d	d	0.0069	<0.0005	0.0024	<0.0005	0.0007	<0.0005	0.0011
Сорреі	IPWQO		u	0.0003	<0.0003	0.0024	<0.0003	0.0007	<0.0003	0.0011
Iron	PWQO	0.3	0.3		1.28	1.44	0.83	0.60	0.59	0.64
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005		0.002	0.001	< 0.0002	0.0024	<0.0002	<0.0002	0.0012
	IPWQO		hardness							
Manganese									0.03	0.02
Molybdenum	IPWQO	0.04							0.00	
Nickel										
	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon	PWQO			0.025	<0.02	<0.02	<0.02	<0.02		<0.02
Silicon Silver	PWQO PWQO			0.025	<0.02	<0.002	<0.02	<0.02		<0.02
		0.025		0.025					<0.02	
Silver		0.025		0.025					<0.02	
Silver Strontium	PWQO	0.025		0.025					<0.02	
Silver Strontium Thallium	PWQO	0.025 0.0001 0.0003		0.025					<0.02	
Silver Strontium Thallium Titanium	PWQO IPWQO	0.025 0.0001 0.0003		0.025					<0.02	
Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007		<0.0001	<0.0001	<0.0001	<0.0001	<0.02	<0.0001
Silver Strontium Thallium Titanium	PWQO IPWQO	0.025 0.0001 0.0003	0.007	0.025					<0.02	
Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003		0.89	<0.0001	<0.0001	<0.0001	<0.0001	<0.02	<0.0001
Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007		<0.0001	<0.0001	<0.0001	<0.0001	<0.02	<0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	<0.0001 <0.001 <0.001	<0.0001 <0.01 0.001	<0.0001 <0.001 <0.001	<0.0001 0.01 <0.001	<0.02 0.0003 <0.001	0.02
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1		0.89	<0.0001 <0.001 <0.001 61	<0.0001 <0.001 0.001	<0.0001 <0.001 <0.001 34	<0.0001 0.01 <0.001 26	<0.02 0.0003 <0.001 39	<0.0001 0.02 <0.001 51
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 61 128	<0.0001 <0.001 0.001 19 43	<0.0001 <0.001 <0.001 34 85	<0.0001 0.01 <0.001 26 58	<0.02 0.0003 <0.001	<0.0001 0.02 <0.001 51 87
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.01 <0.001 61 128 <0.0001	<0.0001 <0.01 0.001 19 43 <0.0001	<0.0001 <0.001 <0.001 34 85 <0.0001	<0.0001 0.01 <0.001 26 58 <0.0001	<0.02 0.0003 <0.001 39 79	<0.0001 0.02 <0.001 51 87 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 61 128	<0.0001 <0.001 0.001 19 43	<0.0001 <0.001 <0.001 34 85	<0.0001 0.01 <0.001 26 58	<0.02 0.0003 <0.001 39	<0.0001 0.02 <0.001 51 87
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.01 <0.001 61 128 <0.0001	<0.0001 <0.01 0.001 19 43 <0.0001	<0.0001 <0.001 <0.001 34 85 <0.0001	<0.0001 0.01 <0.001 26 58 <0.0001	<0.02 0.0003 <0.001 39 79	<0.0001 0.02 <0.001 51 87 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.01 <0.001 61 128 <0.0001	<0.0001 <0.01 0.001 19 43 <0.0001	<0.0001 <0.001 <0.001 34 85 <0.0001	<0.0001 0.01 <0.001 26 58 <0.0001	<0.02 0.0003 <0.001 39 79	<0.0001 0.02 <0.001 51 87 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.001 0.001 19 43 <0.0001 <0.001	<0.001 <0.001 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.01 <0.001 61 128 <0.0001	<0.0001 <0.01 0.001 19 43 <0.0001	<0.0001 <0.001 <0.001 34 85 <0.0001	<0.0001 0.01 <0.001 26 58 <0.0001	<0.02 0.0003 <0.001 39 79 <0.001	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.01 0.001 19 43 <0.0001 <0.001 0.76	<0.001 <0.01 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2 0.57	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1 0.71
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.01 0.001 19 43 <0.0001 <0.001 0.76	<0.001 <0.01 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2 0.57	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1 0.71
Silver Strontium Trhallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.01 0.001 19 43 <0.0001 <0.001 0.76	<0.001 <0.01 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2 0.57	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1 0.71
Silver Strontium Trhallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.001 0.001 19 43 <0.0001 <0.0001 0.76 12	<0.001 <0.01 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2 0.57	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1 0.71
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 61 128 <0.0001 <0.001	<0.0001 <0.01 0.001 19 43 <0.0001 <0.001 0.76	<0.001 <0.01 <0.001 34 85 <0.0001 <0.001	<0.0001 0.01 <0.001 26 58 <0.0001 <0.001	<0.02 0.0003 <0.001 39 79 <0.001 2 0.57	<0.0001 0.02 <0.001 51 87 <0.0001 <0.001 17.1 0.71

Sample Location SW-1

Sample Date					Aug-03	Oct-03	Mar-04	Jul-04	Sept-04	May-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	33	9	13	12	34	13
BOD	IPWQU	а			<1	1	2	<1	1	<1
Chloride			120	180	22.3	43.5	36.2	29	27.4	24
Conductivity			120	180	161	202	164	148	185	24
DOC					101	202	104	140	103	
N-NH3 (Ammonia)					0.05	0.02	0.11	0.05	0.06	0.03
N-NH3 (unionized)	DIMOO	0.00			<0.03	<0.02	<0.11	<0.03	<0.01	<0.03
	PWQO	0.02			<0.01	<0.01	<0.1	<0.01	<0.01	<0.02
N-NO2 (Nitrite) N-NO3 (Nitrate)			0.6		0.4	0.2	0.3	0.1	0.6	<0.10
			3							
pH	PWQO	6.5-8.5	6.5-9		7.04	6.86	7.28	6.68	7.6	6.61
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	0.001	<0.001	<0.001
Sulphate							6	2	5	
TDS							80	65	86.1	
Total phosphorous	IPWQO	0.03			0.02	0.01	0.01	0.03	0.02	<0.01
Turbidity					3.9	1.1	2.1	2.7	2.3	1.1
Hardness as CaCO3					38	32	31	28	51	21
Calcium		1			9.2	8.11	7.88	7.18	12.7	5
Magnesium					3.7	2.95	2.82	2.42	4.67	2
Potassium					0.8	1.3	1.3	0.5	1.2	<1
Sodium					13.2	20.6	17.7	15.6	12.7	9
Aluminum (dissolved)	IPWQO	0.075			0.116	0.081	0.121	0.144	0.11	0.12
Aluminum total	IPWQO	0.075		1						
Barium	ii WQO	0.073			0.016					0.01
Beryllium	PWQO	(b) 0.011			<0.001	<0.001				<0.001
Boron	IPWQO	0.2	1.5	3.55	0.008	0.006				<0.01
BOTOTI				3.33	0.000	0.000				\0.01
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	< 0.001	<0.0001	< 0.0001
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.003	0.0002	0.0009	<0.002	0.0009	<0.001
Cobalt	IPWQO	0.0009			0.0004	0.0001	0.0002	< 0.001	0.0004	< 0.0002
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.002	0.032	<0.002	<0.02	<0.002	<0.001
Iron	PWQO	0.3	0.3		1.5	0.578	0.62	1.05	0.987	0.51
11011	-				1.5	0.570	0.02	1.03	0.507	0.51
Lead	PWQO	0.025 0.005	based on	0.002	0.0009	0.0019	0.0011	< 0.005	< 0.0005	< 0.001
	IPWQO		hardness							
Manganese					0.085					0.03
Molybdenum	IPWQO	0.04			0.0013	< 0.0001				<0.005
Nickel	PWQO	0.025		0.025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.005
Silicon					3	5				2.6
Silver	PWQO	0.0001			0.0001	< 0.0001	< 0.0001	< 0.001	< 0.0001	< 0.0001
Strontium					0.054					0.031
Thallium										
Titanium	IPWQO	0.0003								< 0.0001
	IPWQO	0.0003								
Vanadium										<0.01
vanadium	IPWQO	0.006								
Zinc	IPWQO PWQO		0.007	0.89	0.024	0.005	0.008	0.01	0.007	<0.01
	IPWQO	0.006	0.007	0.89	0.024	0.005	0.008	0.01	0.007	<0.01 <0.001
Zinc	IPWQO PWQO	0.006								<0.01 <0.001
	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	0.024	0.005	0.008	0.01	0.007	<0.01 <0.001
Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			<0.03	0.005	0.001	<0.03	0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1					0.001 76	<0.03	0.001	<0.01 <0.001
Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005	0.001 76 64	<0.03 66 300	0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001	<0.03 66 300 <0.0001	0.001 44 160	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005	0.001 76 64	<0.03 66 300	0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001	<0.03 66 300 <0.0001	0.001 44 160	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01 41
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01 41 41 42 8.41
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01 41
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			<0.03	0.005 50 <0.0001	0.001 76 64 <0.0001 <0.001	<0.03 66 300 <0.0001 <0.01	0.001 44 160 <0.001	<0.01 <0.001 <0.01 41 41 42 8.41

Sample Location SW-1

Sample Date					Aug-05	Nov-05	May-06	Aug-06	Oct-06	May-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	27	11.8	11	33	16	9
BOD	II WQO	- a			<1	<1	<1	<1	<1	<1
Chloride		+	120	180	34	34	18	31	23	18
Conductivity			120	100	37	34	102	181	125	89
DOC		+					16.2	16.9	27.8	13.9
N-NH3 (Ammonia)		+			0.1	0.19	<0.02	10.5	27.0	<0.02
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	V0.02			<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0		<0.10	<0.10		<0.10	<0.10	<0.10
N-NO3 (Nitrate)			0.6		0.17	<0.10		0.27	<0.10	<0.10
pH	DIMOO	65.05	3		7.18	6.37		0.27	<0.10	6.33
Phenols	PWQO	6.5-8.5	6.5-9	0.064	<0.001	<0.001		<0.001	<0.001	< 0.001
	IPWQO	0.001	0.004	0.961	<0.001	<0.001				
Sulphate			 					5	4	4
TDS						0.05	66	118	81	58
Total phosphorous	IPWQO	0.03			0.04	0.05	<0.01	0.03	0.01	<0.01
Turbidity					2.3	1.5				1.6
Hardness as CaCO3					37	30		44	23	21
Calcium			<u> </u>		10	7	5	11	6	5
Magnesium			<u> </u>		3	3	2	4	2	2
Potassium					<1	1	<1	<1	<1	1
Sodium					16	20	11	15	15	11
Aluminum (dissolved)	IPWQO	0.075			0.11	0.09	0.11	0.08	0.16	0.1
Aluminum total	IPWQO	0.075	I							
Barium			i		0.02	0.01	0.01	0.02	0.01	< 0.01
Beryllium	PWQO	(b) 0.011	ĺ		<0.001	<0.001	0.00	<0.001	< 0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DOTOTI		0.0002 c		3.33	0.01	10.01	10.01	10.01	10.01	10.01
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001		<0.0001	< 0.0001	<0.0001
	IPWQO		hardness	0.000						
Chromium	PWQO	0.0099	<u> </u>		0.002	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009	<u> </u>		0.0003	<0.0002	<0.0002	0.0005	<0.0002	<0.0002
_	PWQO	0.005 d	l .							
Copper	IPWQO		d	0.0069	<0.001	<0.001	0.003	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		0.71	0.68	0.68	1.11	1	0.48
11011	-				0.71	0.00	0.00	1.11		0.40
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001
	IPWQO		hardness							
Manganese			1		0.05	0.02	0.03	0.18	0.03	0.03
Molybdenum	IPWQO	0.04	1		< 0.005	<0.005		< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	<0.005		<0.005	< 0.005	<0.005
Silicon		1								
Silver			I		11	6	1.1	8	4.7	1.9
Strontium	PWQO	0.0001		 	11 <0.0001	6 <0.0001	1.1	<0.0001	4.7 <0.0001	1.9 <0.0001
	PWQO	0.0001			<0.0001	<0.0001		<0.0001	<0.0001	<0.0001
i i nailium	- ,				<0.0001 0.052	<0.0001 0.042	0.032	<0.0001 0.058	<0.0001 0.035	<0.0001 0.023
Thallium Titanium	PWQO	0.0001			<0.0001 0.052 <0.0001	<0.0001 0.042 <0.0001		<0.0001 0.058 <0.0001	<0.0001 0.035 <0.0001	<0.0001 0.023 0.0005
Titanium Vanadium	IPWQO	0.0003			<0.0001 0.052 <0.0001 <0.01	<0.0001 0.042 <0.0001 <0.01		<0.0001 0.058 <0.0001 <0.01	<0.0001 0.035 <0.0001 <0.01	<0.0001 0.023 0.0005 <0.01
Titanium	IPWQO	0.0003			<0.0001 0.052 <0.0001	<0.0001 0.042 <0.0001		<0.0001 0.058 <0.0001	<0.0001 0.035 <0.0001	<0.0001 0.023 0.0005
Titanium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	<0.0001 0.052 <0.0001 <0.01 <0.001	<0.0001 0.042 <0.0001 <0.01 <0.001		<0.0001 0.058 <0.0001 <0.01	<0.0001 0.035 <0.0001 <0.01	<0.0001 0.023 0.0005 <0.01
Titanium Vanadium	IPWQO	0.0003	0.007	0.89	<0.0001 0.052 <0.0001 <0.01	<0.0001 0.042 <0.0001 <0.01	0.032	<0.0001 0.058 <0.0001 <0.01 <0.001	<0.0001 0.035 <0.0001 <0.01 <0.001	<0.0001 0.023 0.0005 <0.01 <0.001
Titanium Vanadium Zinc	IPWQO IPWQO PWQO	0.0003			<0.0001 0.052 <0.0001 <0.01 <0.001	<0.0001 0.042 <0.0001 <0.01 <0.001	0.032	<0.0001 0.058 <0.0001 <0.01 <0.001	<0.0001 0.035 <0.0001 <0.01 <0.001	<0.0001 0.023 0.0005 <0.01 <0.001
Titanium Vanadium	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02	0.007	0.89	<0.0001 0.052 <0.0001 <0.01 <0.001	<0.0001 0.042 <0.0001 <0.01 <0.001	0.032	<0.0001 0.058 <0.0001 <0.01 <0.001	<0.0001 0.035 <0.0001 <0.01 <0.001	<0.0001 0.023 0.0005 <0.01 <0.001
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02			<0.0001 0.052 <0.0001 <0.01 <0.001	<0.0001 0.042 <0.0001 <0.01 <0.001	0.032	<0.0001 0.058 <0.0001 <0.01 <0.001	<0.0001 0.035 <0.0001 <0.01 <0.001	<0.0001 0.023 0.0005 <0.01 <0.001
Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01 39	<0.0001 0.058 <0.0001 <0.01 <0.01 <0.01 444	<0.0001 0.035 <0.0001 <0.001 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.035 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	<0.01 39	<0.0001 0.058 <0.0001 <0.01 <0.01 <0.01 444	<0.0001 0.035 <0.0001 <0.001 <0.001 <0.01	<0.0001 0.023 0.0005 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.001 <0.001 <0.001	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	0.032 <0.01 39 0.54	<0.0001 0.058 <0.0001 <0.01 <0.01 <0.01 444 0.73	<0.0001 0.035 <0.0001 <0.001 <0.001 <0.01 68	<0.0001 0.023 0.0005 <0.01 <0.001 <68 0.76
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.01 <0.01 40 40	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	0.032 <0.01 39 0.54	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01 444 0.73	<0.0001 0.035 <0.0001 <0.001 <0.01 <0.01 68	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001 68 0.76
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.001 <0.001 <0.01 40 40 6 7.98	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	0.032 <0.01 39 0.54 55 8.01	<pre><0.0001 0.058 <0.0001 <0.001 <0.001 <0.001 <4.001 444 0.73 3 7.93</pre>	<0.0001 0.035 <0.0001 <0.001 <0.001 <0.001 <0.016 68 0.76 20 8.09	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001 68 0.76 47 8.06
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.052 <0.0001 <0.01 <0.01 <0.01 40 40	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	0.032 <0.01 39 0.54	<0.0001 0.058 <0.0001 <0.01 <0.001 <0.01 444 0.73	<0.0001 0.035 <0.0001 <0.001 <0.01 <0.01 68	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001 68 0.76
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			<0.0001 0.052 <0.0001 <0.001 <0.001 <0.01 40 40 6 7.98	<0.0001 0.042 <0.0001 <0.01 <0.001 <0.01	0.032 <0.01 39 0.54 55 8.01	<pre><0.0001 0.058 <0.0001 <0.001 <0.001 <0.001 <4.001 444 0.73 3 7.93</pre>	<0.0001 0.035 <0.0001 <0.001 <0.001 <0.001 <0.016 68 0.76 20 8.09	<0.0001 0.023 0.0005 <0.01 <0.001 <0.001 68 0.76 47 8.06

Sample Location SW-1

					•					
Sample Date					May-07	Aug-07	Aug-07	Oct-07	Oct-07	May-08
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	Limit IPWQ0		CWQG	APV	9	33	38	22	25	13
BOD	IPWQU	a			<1	<1	<1	2	3	13
Chloride			120	180	18	30	30	47	47	27
Conductivity			120	180	92	170	168	200	200	
DOC						14.6				131
N-NH3 (Ammonia)					14.3 <0.02	0.07	15 0.08	15.2 0.02	15.2 0.02	16.9
	D14400	0.00								0.05
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		<0.10	0.27	0.27	<0.10	<0.10	<0.10
pH	PWQO	6.5-8.5	6.5-9		6.39	7.4	7.35	6.83	6.87	6.93
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					4	4	4	3	3	3
TDS					60	111	109	130	130	85
Total phosphorous	IPWQO	0.03			0.04	0.04	0.04	<0.02	<0.02	< 0.01
Turbidity					1.2	2.6	2.6	2.0	2.3	1.2
Hardness as CaCO3					21	44	41	35	35	23
Calcium					5	11	10	9	9	6
Magnesium					2	4	4	3	3	2
Potassium					1	<1	<1	1	1	<1
Sodium		1		1	11	16	16	24	24	17
Aluminum (dissolved)	IPWQO	0.075	1		0.1	0.07	0.07	0.06	0.06	0.10
Aluminum total	IPWQO	0.075			0.1	0.07	0.07	0.00	0.00	0.10
Barium	IPWQU	0.075			<0.01	0.01	0.01	0.02	0.02	0.04
	DIMOO	(1-) 0.044			<0.01	<0.01	<0.01	<0.02	<0.02	0.01
Beryllium	PWQO	(b) 0.011								<0.001
Boron	IPWQO	0.2	1.5	3.55	<0.01	0.01	0.01	<0.01	<0.01	<0.01
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Caulliulli	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099			< 0.001	0.001	0.001	< 0.001	< 0.001	0.001
Cobalt	IPWQO	0.0009			<0.0002	0.0002	0.0002	0.0002	0.0003	0.0002
	PWQO	0.005 d								0.000
Copper	-	0.005 u	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	IPWQO					0.00	0.00	0.64	0.05	
Iron	PWQO	0.3	0.3		0.48	0.86	0.88	0.64	0.65	0.69
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Leau	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese					0.03	0.07	0.07	0.06	0.06	0.04
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon	1 WQO	0.023		0.023	1.8	6.3	6.5	5.6	5.7	1.3
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium	PWQU	0.0001								
Thallium	1811100	0.0000			0.024	0.052	0.051	0.056	0.056	0.033
	IPWQO	0.0003		1	0.0005	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	181110.5	0.000		1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	IPWQO	0.006			<0.001	0.001	0.001	<0.001	<0.001	0.001
7:	PWQO	0.03 0.02	0.007	0.00	r0.01	40 O1	r0 01	r0.01	r0.01	-0.01
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	-	0.1	l .	+	+					
Arsenic	PWQO	0.1	0.005	0.15	1					
	IPWQO	0.005								
COD					68	68	68	68	68	
Colour		1.	-							
Mercury					1	l				
	PWQO	0.0002								
Selenium	PWQO PWQO	0.0002								
Tannin & Lignin										
Tannin & Lignin TOC					0.76	0.76	0.76	0.76	0.76	
Tannin & Lignin TOC TKN					0.76	0.76	0.76	0.76	0.76	
Tannin & Lignin TOC TKN Sus. Solids					0.76	0.76	0.76	0.76	0.76	
Tannin & Lignin TOC TKN Sus. Solids Field Parameters					0.76		0.76		0.76	
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec					0.76	4	0.76	10	0.76	
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			0.76	4 7.84	0.76	10 7.59	0.76	
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO		0.1 f			0.76	4 7.84 5.72	0.76	10 7.59 4.81	0.76	
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			0.76	4 7.84	0.76	10 7.59	0.76	

Sample Location SW-1

Sample Date Limit PWQO CWQG APV	11	QA/QC 11 <17 93 14.1 <0.02 <0.02 <0.02 <0.10 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 9 0.09 <0.01 <0.01 <0.01 <0.001 <0.001	Jul-09 13 <1 27 137 20.0 0.03 <0.02 <0.10 <0.10 6.87 <0.001 6.89 0.06 1.0 2 3 89 0.06 1.0 2 3 6 2 <1 16 0.09 0.11 <0.001 <0.001 <0.001 <0.001 <0.0001	Jul-09 QA/QC 15 <1 27 139 19.4 0.03 <0.02 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 2 3 6 2 <1 17 0.10 0.12 0.01 <0.001 <0.001 <0.001 <0.001 <0.001
Alkalinity as CaCO3	Color Colo	11 <1 7 93 14.1 <0.02 <0.02 <0.10 <0.10 <6.82 <0.001 4 61 0.02 1.1 14 4 1 9 0.09 <0.00 <0.01 <0.000 <0.01 <0.001 <0.001	<1 27 27 20.0 0.03 <0.02 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00	15 <1 27 139 19.4 0.03 <0.02 <0.10 <0.10 <0.10 <3 90 0.02 1.0 23 6 2 <1 17 0.10 -0.10 <0.01 <0.001 <0.001 <0.001
Alkalinity as CaCO3	Color Colo	11 <1 7 93 14.1 <0.02 <0.02 <0.10 <0.10 <6.82 <0.001 4 61 0.02 1.1 14 4 1 9 0.09 <0.00 <0.01 <0.000 <0.01 <0.001 <0.001	<1 27 27 20.0 0.03 <0.02 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00	15 <1 27 139 19.4 0.03 <0.02 <0.10 <0.10 <0.10 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001 <0.001
BOD	Color Colo	<pre><1 17 93 14.1 <0.02 <0.02 <0.10 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 0.00 10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001</pre>	<1 27 27 20.0 0.03 <0.02 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.11 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00	<1 27 139 19.4 0.03 <0.02 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 6 2 <1 17 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Chloride	17 93 13.9 2 <0.02 2 <0.02 0 <0.10 0 <0.10 5 61 0.02 1.7 14 4 1 1 <1 9 0.09	17 93 14.1 <0.02 <0.02 <0.00 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.001 <0.001	27 137 20.0 0.03 <0.02 <0.10 <0.10 6.87 <0.001 <3 89 0.06 1.0 23 6 0.09 0.01 16 0.09 0.11 0.01 <0.001 <0.001 <0.001	27 139 19.4 0.03 <0.02 <0.10 <0.10 6.94 <0.001 3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.01
Conductivity	93 13.9 2 <0.02 2 <0.02 0 <0.10 0 <0.10 5 6.83 1 <0.001 5 61 0.02 1.7 14 4 4 1 <1 9 0.09 <0.01 1 <0.001 1 <0.001 1 <0.001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001	93 14.1 <0.02 <0.02 <0.10 <0.10 <6.82 <0.001 4 61 0.02 1.1 14 4 1 9 0.09 <0.01 <0.001 <0.001 <0.001	137 20.0 0.03 <0.02 <0.10 <0.10 <0.10 <3 89 0.06 1.0 23 6 1.0 23 6 0.06 1.0 0.06 1.0 <0.001 <<0.001 <0.001 <0.001 <0.0001	139 19.4 0.03 <0.02 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001 <0.001
DOC N-NH3 (Ammonia) 0.04 0.02 0.03 0.001 0.	13.9 2	14.1 <0.02 <0.02 <0.02 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.001 0.0001	20.0 0.03 <0.02 <0.10 <0.10 6.87 <0.001 <3 89 0.06 1.0 23 6 0.09 0.11 0.01 <0.001 <0.001 <0.0001	19.4 0.03 <0.02 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 -0.10 <0.001 <0.001
N-NH3 (Ammonia)	2	 <0.02 <0.02 <0.10 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.001 <0.0001 <0.0001 	0.03 <0.02 <0.10 <0.10 <0.10 6.87 <0.001 <3 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <<0.001	0.03 <0.02 <0.10 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.001 <0.001
N-NH3 (unionized)	2	 <0.02 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 <0.09 <0.01 <0.001 <0.0001 <0.0001 <0.0001 	<pre><0.02 <0.10 <0.10 <0.10 <6.87 <0.001 <3 89 0.06 1.0 23 <1 10 0.01 <0.001 <0.001 <0.001 <0.0001</pre>	<0.02 <0.10 <0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 2 <11 17 0.10 0.12 0.01 <0.001
N-NO2 (Nitrite) N-NO3 (Nitrate) 3 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.1	0	<0.10 <0.10 <0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.0001 0.0001 0.0001	<0.10 <0.10 <0.10 <0.10 6.87 <0.001 <3 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001 <0.0001	<0.10 <0.10 <0.10 <0.10 <0.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
N-NO3 (Nitrate) PWQO 6.5-8.5 6.5-9 6.89 6.83	0	<0.10 6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.001 0.0001	<0.10 6.87 <0.001 <3 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	<0.10 6.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
PH	6.83 1 <0.001 5 61 0.02 1.7 14 4 1 <1 9 0.09 <0.01 1 <0.001 1 <0.001 1 <0.0001 1 <0.0001 1 <0.0001 1 <0.0001	6.82 <0.001 4 61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.0001	6.87 <0.001 <0.38 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.0001	6.94 <0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.001 <0.001
Phenols	1	<0.001 4 61 0.02 1.1 14 4 1 9 0.09 <0.01 <0.01 <0.001 <0.0001 0.0001	<pre><0.001 <3 89 0.06 1.0 23 <1 16 0.09 0.11 0.01 <0.001 <0.0001</pre>	<0.001 <3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001 <0.001
Sulphate 3 3 TDS 85 90 Total phosphorous IPWQO 0.03 0.03 0.01 Total phosphorous IPWQO 0.03 0.03 0.01 0.01 Total phosphorous IPWQO 0.03 0.03 0.01 0.12 1.8 Hardness as CaCO3 23 26 6 7 7 7 1 <td< td=""><td>5 61 0.02 1.7 14 4 4 1 1 < 1 9 0.09 < 0.01 1 < 0.001 1 < 0.001 0.0 1 0.0 0.0 1 0.0 0.0 1 0.0 0.0</td><td>4 61 0.02 1.1 14 4 1 1 <1 9 0.09 <0.01 <0.001 <0.0001</td><td><3 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001</td><td><3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001</td></td<>	5 61 0.02 1.7 14 4 4 1 1 < 1 9 0.09 < 0.01 1 < 0.001 1 < 0.001 0.0 1 0.0 0.0 1 0.0 0.0 1 0.0 0.0	4 61 0.02 1.1 14 4 1 1 <1 9 0.09 <0.01 <0.001 <0.0001	<3 89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	<3 90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
TDS	61 0.02 1.7 14 4 1 <1 9 0.09	61 0.02 1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.0001	89 0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	90 0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
Total phosphorous IPWQO 0.03 0.03 0.01	0.02 1.7 14 4 1 <1 9 0.09 <0.01 1 <0.001 1 <0.0001 0.0001 0.0001	0.02 1.1 14 4 1 1 <1 9 0.09 <0.01 <0.001 <0.0001	0.06 1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.0001	0.02 1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
Turbidity 1.2 1.8 Hardness as CaCO3 23 26 Calcium 6 7 Magnesium 2 2 Potassium	1.7 14 4 1 1 <1 9 0.09	1.1 14 4 1 <1 9 0.09 <0.01 <0.001 <0.0001 0.0001	1.0 23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	1.0 23 6 2 <1 17 0.10 0.12 0.01 <0.001
Hardness as CaCO3	14 4 1 1 9 0.09 <0.01 1 <0.001 1 <0.001 1 <0.001 1 <0.001 1 <0.001	14 4 1 1 <1 9 0.09 <0.01 <0.001 <0.0001 0.0001	23 6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	23 6 2 <1 17 0.10 0.12 0.01 <0.001
Calcium 6 7 Magnesium 2 2 Potassium	4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 1 9 0.09 <0.01 <0.001 <0.001 <0.0001	6 2 <1 16 0.09 0.11 0.01 <0.001 <0.001	6 2 <1 17 0.10 0.12 0.01 <0.001
Magnesium 2 2 2 2 Potassium 3 3 3 3 3 3 3 3 3	1 <1 9 0.09	1 <1 9 0.09 <0.01 <0.001 <0.001 0.001	2 <1 16 0.09 0.11 0.01 <0.001 <0.0001	2 <1 17 0.10 0.12 0.01 <0.001 <0.001
Potassium	<pre></pre>	<1 9 0.09 <0.01 <0.001 <0.001 <0.0001	<1 16 0.09 0.11 0.01 <0.001 <0.001 <0.0001	<1 17 0.10 0.12 0.01 <0.001 <0.001
Sodium	9 0.09 <0.01 1 <0.001 0.001 0.001 0.001 0.0001	9 0.09 <0.01 <0.001 <0.001 <0.0001	16 0.09 0.11 0.01 <0.001 <0.001 <0.0001	17 0.10 0.12 0.01 <0.001 <0.001
Aluminum (dissolved) IPWQO 0.075 0.14 0.09 Aluminum total IPWQO 0.075 0.01 0.01 Barium Volume 0.01 0.01 0.01 Beryllium PWQO (b) 0.011 0.001 0.001 Boron IPWQO 0.2 1.5 3.55 0.01 0.01 Cadmium PWQO 0.0002 based on hardness 0.0001 0.0001 0.0001 Chromium PWQO 0.0099 0.001 0.001 0.001 Cobalt IPWQO 0.005 d 0.0069 0.0002 0.0002 Copper PWQO 0.05 d 0.0069 0.001 0.001 Iron PWQO 0.3 0.3 0.70 0.59 Lead PWQO 0.025 0.005 based on hardness 0.004 0.02 Manganese 0.04 0.02 0.005 0.005 0.005 0.005	0.09 <0.01 1 <0.001 1 <0.001 1 <0.0001 0.0001 0.0001 0.0001	0.09 <0.01 <0.001 <0.001 <0.0001	0.09 0.11 0.01 <0.001 <0.001 <0.0001	0.10 0.12 0.01 <0.001 <0.01
Aluminum total IPWQO 0.075	<0.01 1 <0.001 1 <0.001 01 <0.0001 0 0.001 0 0.0002	<0.01 <0.001 <0.01 <0.001	0.11 0.01 <0.001 <0.01 <0.0001	0.12 0.01 <0.001 <0.001
Barium	1 <0.001 1 <0.001 01 <0.0001 1 0.001 02 <0.0002	<0.001 <0.01 <0.0001	0.01 <0.001 <0.01 <0.0001	0.01 <0.001 <0.01
Beryllium Boron PWQO (b) 0.011 <0.001 <0.001 <0.001 Boron IPWQO 0.02 1.5 3.55 <0.01	1 <0.001 1 <0.001 01 <0.0001 1 0.001 02 <0.0002	<0.001 <0.01 <0.0001	<0.001 <0.01 <0.0001	<0.001 <0.01
Beryllium	1 <0.001 1 <0.001 01 <0.0001 1 0.001 02 <0.0002	<0.001 <0.01 <0.0001	<0.001 <0.01 <0.0001	<0.001 <0.01
Boron IPWQO 0.2 1.5 3.55 <0.01 <0.01	0.001 01 <0.0001 01 0.001 02 <0.0002	<0.01 <0.0001 0.001	<0.01	<0.01
Cadmium PWQO IPWQO 0.0002 c 0.0099 based on hardness 0.00021 <0.0001 <0.0001 Chromium PWQO 0.001 0.0099 0.001 0.001 0.001 Cobalt IPWQO IPWQO 0.005 d 0.005 d 0.005 d d 0.0069 <0.001	0.0001 0.001 0.001 0.0002	<0.0001 0.001	<0.0001	
Cadmium IPWQO hardness 0.00021 <0.0001 <0.0001 Chromium PWQO 0.0099 0.001 0.001 0.001 Cobalt IPWQO 0.0009 0.0002 <0.0002	0.001	0.001		<0.0001
Chromium PWQO 0.0099 0.001 0.001 Cobalt IPWQO 0.0009 0.0002 <0.0002	0.0002		<0.001	
Cobalt IPWQO 0.0009 0.0002 <0.0002 Copper PWQO 0.005 d 0.0069 <0.001	0.0002		< 0.001	+
PWQO		<0.0002		<0.001
Copper IPWQO d 0.0069 <0.001 <0.001 Iron PWQO 0.3 0.3 0.70 0.59 Lead PWQO 0.025 0.005 based on hardness 0.002 <0.001	1 <0.001		<0.0002	<0.0002
Iron	1 \0.001	<0.001	<0.001	<0.001
Lead PWQO IPWQO 0.025 0.005 based on hardness 0.002 closed on hardness 0.001 closed on hardness 0.001 closed on hardness 0.004 closed on hardness 0.005 closed on hardness		<0.001	<0.001	<0.001
Lead IPWQO hardness 0.002 <0.001 <0.001 Manganese 0.04 0.02 0.04 0.02 Molybdenum IPWQO 0.04 <0.005	0.48	0.48	0.89	0.90
Lead IPWQO hardness 0.002 <0.001 <0.001 Manganese 0.04 0.02 0.04 0.02 Molybdenum IPWQO 0.04 <0.005				
Manganese 0.04 0.02 Molybdenum IPWQO 0.04 <0.005	1 <0.001	< 0.001	<0.001	< 0.001
Molybdenum IPWQO 0.04 <0.005 <0.005	0.00	0.00	0.00	0.00
	0.03	0.03	0.03	0.03
		<0.005	<0.005	<0.005
		<0.005	<0.005	<0.005
Silicon 1.3 5.0	1.2	1.2	4.6	4.8
Silver PWQ0 0.0001 <0.0001 <0.0001			<0.0001	<0.0001
Strontium 0.034 0.038		0.027	0.041	0.040
Thallium IPWQO 0.0003 <0.0001 <0.0001			<0.0001	<0.0001
Titanium <0.01 <0.01		<0.05	<0.01	<0.01
Vanadium IPWQO 0.006 0.001 <0.001	1 <0.001	<0.001	<0.001	<0.001
PWQO 0.03 0.02 0.007 0.00 40.01 40.01	.0.01	40.04	40.04	40.04
Zinc IPWQO 0.03 0.02 0.007 0.89 <0.01 <0.01	<0.01	<0.01	<0.01	<0.01
PWQO 0.1			+	
Arsenic 0.005 0.15				
IPWQO 0.005				<u> </u>
COD				
Colour				
Mercury PWQO 0.0002				
Selenium PWQO 0.1				
Tannin & Lignin			1	
TOC			1	
TKN				
Sus. Solids				
Field Parameters			T	
Discharge L/sec			46.2	46.2
	65.6	65.6		
iph I I I I I I I I I I I I I I I I I I I				7.7
pH DO PWOO f	7.7	65.6 7.7 8.47	7.7	7.7 5.2
		7.7	7.7	

Sample Location SW-1

					•					
Sample Date					Sep-09	Sep-09	May-10	May-10	Aug-10	Aug-10
PARAMETER	Limit	PWQO	CWQG	APV		QA/QC		QA/QC		QA/QC
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	21	17	14	15	27	27
BOD	IF WVQO	a			<1	<1	<1	<1	<1	<1
Chloride			420	400						
			120	180	35	34	31	30	36	35
Conductivity					171	170				
DOC					18.5	18.0				
N-NH3 (Ammonia)					0.02	0.02	<0.02	<0.02	<0.02	<0.02
N-NH3 (unionized)	PWQO	0.02			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
N-NO3 (Nitrate)			3		0.10	0.10	<0.10	<0.10	0.21	0.21
На	PWQO	6.5-8.5	6.5-9		7.04	6.91	7.23	7.13	7.28	7.26
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	ii WQO	0.001	0.004	0.501	2	8	10.001	10.001	10.001	40.001
TDS										
					111	111				
Total phosphorous	IPWQO	0.03			0.02	0.02	0.02	0.04	0.01	0.01
Turbidity					2.0	1.8	1.7	1.9	1.9	2.0
Hardness as CaCO3					30	30				
Calcium			-		7	7	7	7	11	11
Magnesium					3	3	2	2	4	4
Potassium					1	1	1	1	<1	<1
Sodium				<u> </u>	19	19	16	16	19	20
Aluminum (dissolved)	IDMOC	0.075	1	1						
	IPWQO	0.075			0.06	0.06	0.07	0.07	0.04	0.04
Aluminum total	IPWQO	0.075								
Barium					0.01	0.01	0.01	0.01	0.02	0.02
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
	PWQO	0.0002 c	based on				0.00			
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.001	0.001	< 0.001	< 0.001	0.002	0.002
Cobalt	IPWQO	0.0009			< 0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002
	PWQO	0.005 d								
Copper		0.005 u	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	IPWQO									
Iron	PWQO	0.3	0.3		0.76	0.69	0.48	0.58	0.63	0.26
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganoso	ii vvqo		Haruness		0.00	0.00	0.00	0.04	0.00	0.00
Manganese					0.03	0.03	0.03	0.04	0.02	0.02
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon					6.9	7.0	1.4	1.5	6.0	6.1
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium					0.045	0.045	0.038	0.040	0.058	0.058
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	11 *** QO	0.0003			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	IDMOC	0.000		1						
vanaululli	IPWQO	0.006		1	<0.001	<0.001	<0.001	<0.001	0.001	<0.001
7inc	PWQO	0.03 0.02	0.007	0.00	z0.01	-O O1	-O O1	-O O1	-O O1	ZO 01
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	-	0.1		1	1					
Arsenic	PWQO	0.1	0.005	0.15	1					
, a serific	IPWQO	0.005	0.003	0.13	1					
COD							43	43	35	30
Colour		+		 	 					
Mercury				l	1					
	DIVIOO	0.0003								
	PWQO	0.0002								
Selenium	PWQO PWQO	0.0002 0.1								
Selenium Tannin & Lignin										
Selenium Tannin & Lignin TOC										
Selenium Tannin & Lignin TOC TKN										
Selenium Tannin & Lignin TOC										
Selenium Tannin & Lignin TOC TKN Sus. Solids										
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters					21 1	21 1	11 2			<i>A</i>
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec					21.1	21.1	11.3			4
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			8.1	8.1	7.9			8.2
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO		0.1 f			8.1 7.31	8.1 7.31	7.9 5.96			8.2 3.49
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			8.1	8.1	7.9			8.2

Sample Location SW-1

Sample Date Detail Detai	PARAMETER											
Akalinitry as GaCO3	Alkalimity sc CaCO3	Sample Date					Oct-10	Oct-10	Jun-11	Jun-11	Aug-11	Aug-11
Akalinity as GaCO3	Alkalimity sc CaCO3	PARAMETER	Limit	DWOO	CWOG	ΛD\/		04/00		04/00		04/00
BOD	BOD				CWQG	APV	25		12		24	
Chloride	Chloride		IPWQU	d								
Conductivity	Conductivity				420	400						
DOC No.NF3 (Ammonis)	DOC No.NF3 (Amonis)				120	180	28	27	20	20	25	25
N-N-N-1 N-N-N-1 N-N-N-1 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	N-N-H3 (Jamonia) PWQQ											
N-N-NO2 (Nitrite)	N-N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO3 (Nitri											
N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO3 (Nitrite	N-NO2 (Nitrite)											
N-NO3 (Nitrate) PH	N-NO3 (Nitrate) PH PH PWQ0 0.001 0.001 0.004 0.961 0.001 0.0	N-NH3 (unionized)	PWQO	0.02			< 0.02	< 0.02	0.02	0.02	< 0.02	< 0.02
N.NO3 (NiVirate) PMQO 0.5 - 8.5 3 0.42 0.45 0.10 0.10 0.16 0.16	N.NO3 (Nitrate)	N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenois	PH	N-NO3 (Nitrate)										
Phenols PhwQO 0.001 0.004 0.961 0.000 0.0005	Phenols Physical		PW/OO	65-85								
Sulphate TOS TOS TOTAL Plosphorous IPWQO 0.03	Sulphate TOS Total phosphorous IPWQO 0.03					0.061						
Total phosphorous	TOSI TOTAIL Phosphorous TOTAIL Phosphorous Total		IF WQO	0.001	0.004	0.301	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total phosphorous IPWQO 0.03	Total phosphorous IPWQO 0.03											
Turbidity	Turbidity											
Hardness as CaCO3	Hardness as CaCQ3		IPWQO	0.03								
Calcium	Calcium						2.4	2.5	2.3	1.9	1.4	1.3
Magnesium Potassium 4 4 2 2 3 3 Potassium Sodium 1 1 1 1 -1<	Magnesium Potassium 4 4 2 2 3 3 Sodium Sodium 1 1 1 1 1 1 1 4 14	Hardness as CaCO3										
Magnesium Potassium 4 4 2 2 3 3 Potassium Sodium 1 1 1 1 -1<	Magnesium Potassium 4 4 2 2 3 3 Sodium Sodium 1 1 1 1 1 1 1 4 14	Calcium					11	11	6	6	8	8
Potassium	Potassium											
Sodium	Sodium					1						
Aluminum (dissolved) IPWQO 0.075 0.07 0.08 0.12 0.12 0.12 0.06 0.06	Aluminum (dissolved) IPWQO 0.075 0.08 0.12 0.12 0.12 0.06 0.06 Aluminum total IPWQO 0.075 0.000 0.001 0.01 0.01 0.001 Beryllium PWQO (b) 0.011 0.02 0.01 0.001 0.001 0.001 0.001 0.001 Beryllium PWQO 0.002 1.5 3.55 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Boron IPWQO 0.002 1.5 3.55 0.001 0.001 0.001 0.001 0.001 0.001 0.001 Cadmium PWQO 0.0000 based on hardness 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 Crobalt IPWQO 0.0009 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 Iron PWQO 0.005 d d 0.0069 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 Iron PWQO 0.3 0.3 0.3 0.76 0.73 0.98 1.03 1.00 0.77 Lead IPWQO 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Manganese 0.03 0.03 0.03 0.03 0.05 0.05 0.005 0.			1		1						
Aluminum total IPWQO 0.075	Aluminum total IPWQQ 0.075		1011100	0.075								
Barlum	Barlum					1	0.07	0.08			0.06	0.06
Beryllium	Beryllium		IPWQO	0.075		1						
Boron IPWQO 0.2 1.5 3.55 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0	Boron IPWQO D.2 1.5 3.55 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001											
Cadmium	Cadmium		PWQO	(b) 0.011			< 0.001	< 0.001	<0.0005	< 0.0005	< 0.01	< 0.0005
Cadmium PWQQ0 IPWQQ 0.0002 c biased on hardness 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Cadmium PWQQ0 0.0002 classed on IPWQO 0.0099 0.0001 classed on hardness 0.0001 close close classed on hardness 0.0001 close clos	Boron	IPWQO	0.2	1.5	3.55	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cadmium	Cadmium		PWOO	0.0002 c	based on							
Chromium	Chromium	Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.01	< 0.0001
Cobalt IPWQO 0.0009 <0.0002 <0.0002 0.0002 0.0002 <0.001 <0.001 <0.001 <0.0002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00	Cobalt				naraness							
Copper	Copper											
Copper IPWQO	Copper IPWQO	Cobalt	IPWQO	0.0009			< 0.0002	< 0.0002	0.0002	0.0002	< 0.01	< 0.0002
FPWQQ	IPWQO		PWQO	0.005 d	_							
Iron	Iron	Copper	IBWOO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.01	<0.001
Lead	Lead	Iron		0.2	0.2		0.76	0.72	0.00	4.02	4.00	0.77
Lead IPWQO hardness 0.002 c0.001 c0.005 c0.	Lead IPWQO hardness 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	11011	-				0.76	0.73	0.98	1.03	1.00	0.77
Nanganese	Nanganese Nang	Load	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.001
Manganese	Manganese	Leau	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.01	<0.001
Molybdenum IPWQO 0.04 0.025 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	Molybdenum IPWQO 0.04 0.025 0.005	Manganese	-,-				0.03	0.03	0.05	0.05	0.04	0.03
Nickel	Nickel		IDWOO	0.04								
Silicon	Silicon					0.025						
Silver	Silver		PWQU	0.025		0.025						
Strontium	Strontium											
Thallium	Thallium		PWQO	0.0001								
Titanium PWQO 0.006	Titanium										0.050	
Vanadium IPWQO 0.006 <0.001 <0.001 <0.001 <0.05 0.001 Zinc PWQO IPWQO 0.03 0.02 0.007 0.89 <0.01	Vanadium	Thallium	IPWQO	0.0003		1	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.01	< 0.0001
Vanadium IPWQO 0.006 <0.001 <0.001 <0.001 <0.05 0.001 Zinc PWQO IPWQO 0.03 0.02 0.007 0.89 <0.01	Vanadium	Titanium					< 0.01	< 0.01	< 0.01	< 0.01	< 0.10	< 0.01
Zinc	Zinc		IPWOO	0.006								
PWQO	PWQO					1	2.002	2.002	2.002	2.002	2.00	2.302
Arsenic	Arsenic PWQO 0.1 0.005 0.15	Zinc		0.03 0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	< 0.05	< 0.01
Arsenic IPWQO 0.005 0.005 0.15 COD	Arsenic IPWQO 0.005 0.15 COD 35 35 60 60 62 62 Colour Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TINN TINN TINN Sus. Solids TEIGH Parameters TINN TINN TOC TINN <		IPWQO			1						
Arsenic IPWQO 0.005 0.005 0.15 COD	Arsenic IPWQO 0.005 0.15 COD 35 35 60 60 62 62 Colour Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TINN TINN TINN Sus. Solids TEIGH Parameters TINN TINN TOC TINN <		PWOO	0.1		1						
COD Colour Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO PWQO F DO PW	COD Colour PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Sick Solids Sick Solids Sick Solids Sick Sick Solids Sick Sick Sick Sick Sick Sick Sick Sick	Arsenic			0.005	0.15		1				
Colour Mercury PWQO 0.0002	Colour Mercury PWQO 0.0002	000	IPWQU	0.005	T.	1						
Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO 9.554 3.63 4.27 Conductivity mg/i 131 81 108	Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO F 9.54 3.63 4.27 Conductivity mg/l 131 81 108						35	35	60	60	62	62
Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	Selenium PWQO 0.1 Tannin & Lignin		<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>					
Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	Selenium PWQO 0.1 Tannin & Lignin	Mercury	PWQO	0.0002								
Tannin & Lignin TOC TIKN Sus. Solids Field Parameters Discharge L/sec PH DO DO PWQO F DO PWQO F DO DO PWQO F DO DO PWQO F DO DO PWQO F DO	Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F 9.54 Conductivity PWQO TOC 2.5 24.8 7.0 6.7 D.0 PWQO F 9.54 3.63 4.27 Conductivity Mg/I 131 81 108	Selenium										
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F Sus. Solids Field Parameters 1000 1000 1000 1000 1000 1000 1000 10	TOC TKN Sus. Solids Field Parameters Discharge L/sec PH Sus. Solids Field Parameters Discharge L/sec PH Sus. Solids Field Parameters Sus. Sus. Solids Field Parameters Sus. Solids Sus. Solids Sus. Solids Field Parameters Sus. Solids Sus. Sus. Sus. Sus. Sus. Sus. Sus. Sus.					1						
TKN Sus. Solids Field Parameters Discharge L/sec Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	TKN Sus. Solids Field Parameters Field Parameters 2.5 24.8 7.0 Discharge L/sec 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108							—				
Sus. Solids Field Parameters 2.5 24.8 7.0 Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	Sus. Solids Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108			1		1		+			+	+
Field Parameters 2.5 24.8 7.0 Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	Field Parameters Discharge L/sec 2.5 24.8 7.0 pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108					-		-			-	-
Discharge L/sec 2.5 24.8 7.0	Discharge L/sec					-		1				
pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	pH 8.1 7.1 6.7 DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108											
DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108		<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>
DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108	DO PWQO f 9.54 3.63 4.27 Conductivity mg/l 131 81 108								7.1		6.7	
Conductivity mg/l 131 81 108	Conductivity mg/l 131 81 108		PWOO	f							4.27	
,	,	-				1		 				
	0.2 27.0 21.7			1116/1								

Sample Location SW-1

Sample Date					Oct-11	Oct-11	Jun-12	Aug-12	Aug-12	Oct-12
PARAMETER	Limit	PWQO	CWQG	APV					QA/QC	
Alkalinity as CaCO3	IPWQO	a	cwqo	7.1. •	17	16	15	24	24	10
BOD	ii waa	u		+	<1	<1	<1	3	3	2
Chloride			120	180	37	37	27	39	39	49
Conductivity			120	100	37	37	21	33	33	73
DOC										
N-NH3 (Ammonia)					<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0			<0.02	<0.02	<0.02	<0.02	<0.02
N-NO3 (Nitrate)			0.6	-	<0.10					
pH	811100		3		<0.10	<0.10	<0.10	0.10	0.10	<0.10
Phenols	PWQO	6.5-8.5	6.5-9	0.004	6.36	6.29	6.56	6.85	6.80	6.51
	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			< 0.01	0.01	0.02	0.02	0.01	0.02
Turbidity					0.9	0.9	1.1	1.5	1.5	1.2
Hardness as CaCO3							21	37	37	35
Calcium					7	7	5	10	10	9
Magnesium					3	2	2	3	3	3
Potassium					1	1	<1	<1	<1	1
Sodium					22	22	14	18	18	24
Aluminum (dissolved)	IPWQO	0.075			0.06	0.06	0.07	0.04	0.04	0.05
Aluminum total	IPWQO	0.075		1	0.07	0.07	0.080	0.04	0.04	0.08
Barium		0.075			0.01	0.01	0.01	0.02	0.02	0.02
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	<0.00	<0.00	<0.00	<0.000	<0.003	<0.01
501011				3.33	\0.01	\0.01	\0.01	₹0.01	\0.01	\0.01
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			< 0.001	0.001	0.001	< 0.001	< 0.001	<0.001
Cobalt	IPWQO	0.0009			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
_	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		0.56	0.57	0.56	0.56	0.55	0.48
	-				0.30	0.57	0.50	0.30	0.55	0.48
Lead	PWQO	0.025 0.005	based on	0.002	< 0.01	< 0.01	< 0.001	< 0.001	< 0.001	<0.001
	IPWQO		hardness							
Manganese					0.02	0.02	0.04	0.03	0.03	0.02
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Silicon					5.8	5.7	1.9	7.2	7.2	6.4
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Strontium					0.043	0.043	0.038	0.058	0.056	0.052
Thallium	IPWQO	0.0003		+	0.0.0	0.0.0				
Titanium					< 0.0001	< 0.0001	<0.001	<0.0001	< 0.0001	<0.001
	ii wac	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Vanadium					<0.10	<0.10	<0.01	<0.01	<0.01	< 0.01
Vanadium	IPWQO	0.006								
Vanadium Zinc	IPWQO PWQO		0.007	0.89	<0.10 <0.001	<0.10 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001
	IPWQO	0.006	0.007	0.89	<0.10	<0.10	<0.01	<0.01	<0.01	< 0.01
Zinc	IPWQO PWQO	0.006			<0.10 <0.001	<0.10 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001
	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	<0.10 <0.001	<0.10 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001
Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			<0.10 <0.001	<0.10 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001	<0.01 <0.001
Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01	<0.01 <0.001 <0.01 29	<0.01 <0.001 <0.01	<0.01 <0.001 0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.10 <0.001 <0.01 42 6.0 6.5	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01 38 41.0 6.7	<0.01 <0.001 <0.01 29 8.0 7.0	<0.01 <0.001 <0.01 30 8.0 7.0	<0.01 <0.001 0.01 37
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			<0.10 <0.001 <0.01 42	<0.10 <0.001 <0.01	<0.01 <0.001 <0.01 38	<0.01 <0.001 <0.01 29	<0.01 <0.001 <0.01 30	<0.01 <0.001 0.01 37 54 6.6

Sample Location SW-1

					•					
Sample Date					Jun-13	Jun-13	Aug-13	Aug-13	Nov-13	Apr-14
PARAMETER	Limit	PWQO	CMUC	APV		QA/QC		QA/QC		
Alkalinity as CaCO3	Limit IPWQ0		CWQG	APV	13	12	20	17	12	6
BOD	IPWQU	а			<1	<1	1	17	<1	< 3
Chloride			120	180	20	20	30	30	21	12.1
Conductivity			120	100	20	20	30	30	21	12.1
DOC										
N-NH3 (Ammonia)					<0.02	<0.02	0.02	0.03	<0.02	< 0.01
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.03	<0.02	
N-NO2 (Nitrite)	PWQU	0.02	0.6							< 0.01
N-NO3 (Nitrate)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	< 0.1
pH	DIMOO	65.05	3		<0.10	<0.10	<0.10	<0.10	<0.10	0.1
Phenols	PWQO	6.5-8.5	6.5-9	0.004	6.77	6.64	6.88	6.75	6.66	. 0 004
	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			<0.01	<0.01	0.02	0.01	<0.01	0.01
Turbidity					1.2	1.3	1.7	1.4	0.8	1.8
Hardness as CaCO3					23	23	30	30	23	12
Calcium					6	6	7	7	6	2.97
Magnesium					2	2	3	3	2	1.07
Potassium					<1	<1	<1	<1	<1	1
Sodium					12	10	18	18	30	9.1
Aluminum (dissolved)	IPWQO	0.075					0.08	0.08	0.08	0.007
Aluminum total	IPWQO	0.075			0.15	0.14	0.07	0.07	0.08	
Barium					0.01	0.01	0.01	0.01	<0.01	0.007
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.002
Boron	IPWQO	0.2	1.5	3.55	<0.01	<0.01	<0.01	<0.01	<0.01	0.006
	PWQO	0.0002 c	based on	0.00	10.02	10.01	10.01	10.02	10.02	0.000
Cadmium	-	0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00002
Characteris	IPWQO		hardness							
Chromium	PWQO	0.0099			0.001	0.001	<0.001	<0.001	<0.001	0.0009
Cobalt	IPWQO	0.0009			0.0003	0.0003	<0.0002	<0.0002	<0.0002	< 0.0001
Connor	PWQO	0.005 d	d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	0.0004
Copper	IPWQO		u	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	0.0004
Iron	PWQO	0.3	0.3		1.18	1.2	0.72	0.73	0.48	0.411
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005		0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.00019
Managanaga	IPWQU		hardness		0.07	0.07				0.045
Manganese					0.07	0.07	0.04	0.04	0.01	0.015
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0001
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.0005
Silicon					2.5	2.5	5.7	5.6	5	2.9
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Strontium					0.037	0.035	0.048	0.048	0.027	0.02
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00005
Titanium					<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005
Vanadium	IPWQO	0.006			< 0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.005
	PWQO	0.03 0.02								
Zinc	IPWQO		0.007	0.89	0.02	0.02	0.04	0.02	<0.01	0.012
	-	0.1		-	-					
Arsenic	PWQO	0.1	0.005	0.15	1					
, a serific	IPWQO	0.005	0.003	0.13	1					
COD					57	58	50	46	44	33
Colour										
Mercury				 	t					
Selenium	PWOO	0.0002								
	PWQ0 PWQ0	0.0002 0.1								
Tannin & Lignin	PWQO PWQO									
Tannin & Lignin TOC										
TOC										
TOC TKN										
TOC TKN Sus. Solids										
TOC TKN Sus. Solids Field Parameters					20.2		14.42		22.2	02.1
TOC TKN Sus. Solids Field Parameters Discharge L/sec					39.2		14.43		33.2	93.1
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			7.2		6.9		7.2	7
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO		0.1 f			7.2 2.81		6.9 5.09		7.2 9.67	7 6.79
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			7.2		6.9		7.2	7

Sample Location SW-1

Sample Date					Jul-14	Jul-14	Oct-14	Jun-15	Aug-15	Aug-15
PARAMETER	Limit	PWQO	CWQG	APV		QA/QC				QA/QC
Alkalinity as CaCO3	IPWQO	а			12	11	10	11	14	14
BOD					< 3	< 3	< 3	< 3	< 3	< 3
Chloride			120	180	29.1	29	22	26	40.4	40.3
Conductivity										
DOC										
N-NH3 (Ammonia)					< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.1	< 0.1	< 0.1
N-NO3 (Nitrate)			3		0.1	0.1	0.1	0.1	0.1	0.1
pH	PWQO	6.5-8.5	6.5-9							
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001
Sulphate										
TDS							51.8			
Total phosphorous	IPWQO	0.03			0.02	0.02	< 0.01	0.01	0.01	0.03
Turbidity	,				2.5	2.1	1.3	1.7	3.6	2.7
Hardness as CaCO3					25	25	18	19	34	35
Calcium					6.38	6.44	4.47	4.73	10.1	9.99
Magnesium					2.2	2.24	1.58	1.82	3.42	3.37
Potassium					0.3	0.3	1.01	0.5	0.8	0.8
Sodium					17.2	17.8	13.4	13.3	25.2	24.8
Aluminum (dissolved)	IPWQO	0.075			0.09	0.09	0.07	0.05	0.05	0.05
Aluminum total	IPWQO	0.075			0.03	0.03	0.07	0.05	0.05	0.05
Barium		0.075			0.013	0.013	0.009	0.009	0.022	0.021
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Boron	IPWQO	0.2	1.5	3.55	< 0.005	< 0.005	< 0.005	0.01	0.006	0.006
50.0	PWQO	0.0002 c	based on	3.33	₹ 0.003	< 0.003	< 0.003	0.01	0.000	0.000
Cadmium		0.0002 C		0.00021	< 0.00002	< 0.00002	0.00002	< 0.00002	< 0.00002	0.00003
	IPWQO		hardness							
Chromium	PWQO	0.0099			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Cobalt	IPWQO	0.0009			0.0002	0.0002	< 0.0001	0.0002	0.0001	0.0001
Copper	PWQO	0.005 d	d	0.0069	0.0003	0.0004	0.0003	< 0.0001	0.0009	0.0009
Сорреі	IPWQO		u	0.0003	0.0003	0.0004	0.0003	< 0.0001	0.0003	0.0009
Iron	PWQO	0.3	0.3		1.22	1.22	0.573	0.648	0.864	0.858
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005	hardness	0.002	0.00035	0.00035	0.00023	0.00018	0.00064	0.00046
Manganese	IF WQO		Hai uness		0.036	0.035	0.01	0.044	0.039	0.038
Molybdenum	IPWQO	0.04			0.0001	< 0.0001	0.001	< 0.0001	< 0.0001	< 0.0001
Nickel				0.025	0.0001	0.0001				
Silicon	PWQO	0.025		0.025			< 0.0005 4.21	< 0.0005	0.0006	0.0006
Silver	BILLOO	0.0004			5.31	5.41		1.62	7.14	7.04
Strontium	PWQO	0.0001			< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Thallium	IDMOO	0.0000			0.044	0.045	0.03	0.031	0.066	0.065
	IPWQO	0.0003			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium	IPWQO	0.006			0.005	< 0.005	< 0.005	< 0.005 < 0.005	< 0.005	< 0.005
Vanadium	וויייייוו			1				< 0.005	< 0.005	< 0.005
	-				< 0.005	< 0.005	< 0.005	₹ 0.003	10.005	1 0.003
Zinc	PWQO	0.03 0.02	0.007	0.80						
Zinc	-		0.007	0.89	0.012	0.005	0.008	< 0.005	0.008	0.009
Zinc	PWQO IPWQO	0.03 0.02		0.89						
Zinc Arsenic	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89						
Arsenic	PWQO IPWQO	0.03 0.02			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02								
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012	0.013	0.008	< 0.005	0.008	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			61	0.013	65	< 0.005 45	20	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012 61 20.5	0.013	0.008	< 0.005 45 24.4	20	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			0.012 61 20.5 6.9	0.013	0.008 65 71.4 7.4	< 0.005 45 24.4 7.0	20 24.9 7.1	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.012 61 20.5 6.9 7.07	0.013	71.4 7.4 9.62	45 45 24.4 7.0 6.65	20 24.9 7.1 6.65	0.009
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			0.012 61 20.5 6.9	0.013	0.008 65 71.4 7.4	< 0.005 45 24.4 7.0	20 24.9 7.1	0.009

Sample Location SW-1

Sample Date										
•					Oct-15	May-16	Aug-16	Aug-16	Nov-16	Apr-17
PARAMETER	Limit	PWQO	CWQG	APV				QA/QC		
Alkalinity as CaCO3	IPWQO		CWQG	APV	10	9	17	20	15	< 5
BOD	IPWQU	a			< 3	<5	<5	<5	<5	<3
Chloride			120	180	39.3	17.2	45.6	45.7	45.8	6.6
Conductivity			120	100	39.3	17.2	43.0	43.7	45.6	0.0
DOC						13.3	20.1	19.3	13.0	
N-NH3 (Ammonia)					< 0.01	<0.02	0.04	0.07	0.04	0.04
N-NH3 (unionized)	DWOO	0.02				<0.02 NR	0.0042	0.00097	0.0017	
N-NO2 (Nitrite)	PWQO	0.02	0.6		< 0.01					< 0.01
N-NO3 (Nitrate)			0.6		< 0.1	<0.05	<0.05	<0.05	<0.05	< 0.1
pH	DIMOO	6505	3		0.1	<0.05	<0.05	<0.05	<0.05	0.3
Phenols	PWQO	6.5-8.5	6.5-9	0.064	0.004	-0.004	.0.004	0.004	-0.004	0.004
	IPWQO	0.001	0.004	0.961	< 0.001	<0.001	<0.001	0.001	<0.001	< 0.001
Sulphate						2.50	1.56	1.57	1.95	
TDS										
Total phosphorous	IPWQO	0.03			< 0.01	0.02	0.06	0.04	<0.01	< 0.01
Turbidity					0.9	1.0	2.2	1.9	1.9	1.1
Hardness as CaCO3					24	15.3	30.0	29.6	26.3	8
Calcium					5.82	3.78	7.42	7.29	6.53	2.21
Magnesium					2.26	1.42	2.79	2.77	2.42	0.78
Potassium					0.9	0.69	0.59	0.60	1.30	0.4
Sodium					19.2	9.47	21.8	22.1	21.3	5.9
Aluminum (dissolved)	IPWQO	0.075			0.06					0.08
Aluminum total	IPWQO	0.075								
Barium					0.012	0.010	0.018	0.017	0.012	0.005
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002
Boron	IPWQO	0.2	1.5	3.55	< 0.005	<0.010	<0.010	<0.010	<0.010	< 0.005
	PWQO	0.0002 c	based on				.0.0			
Cadmium	IPWQO	0.0002	hardness	0.00021	< 0.00002	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.000020
Charamairma		0.0000	naruness			0.000	0.000	0.000	0.000	
Chromium	PWQO	0.0099			< 0.002	<0.003	<0.003	<0.003	<0.003	< 0.001
Cobalt	IPWQO	0.0009			< 0.0001	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0001
Copper	PWQO	0.005 d	d	0.0069	0.0003	<0.002	<0.002	<0.002	<0.002	< 0.0001
Сорреі	IPWQO		u	0.0003	0.0003	\0.002	<0.002	<0.002	\0.002	< 0.0001
Iron	PWQO	0.3	0.3		0.52	0.41	0.82	0.90	0.43	
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005	hardness	0.002	0.00017	< 0.001	<0.001	<0.001	<0.001	0.0001
Manganese	IF WQC		Hai uness		0.014	0.010	0.001	0.001	0.017	0.000
Molybdenum	IPWQO	0.04			0.014	0.019	0.061	0.061	0.017	0.008
Nickel				0.025	< 0.0001	<0.002	<0.002	<0.002	<0.002	< 0.0001
	PWQO	0.025		0.025	< 0.0005	<0.003	<0.003	<0.003	<0.003	0.0003
Silicon	511100	0.0004			6.1	1.32	6.58	6.95	8.52	2.87
Silver	PWQO	0.0001			0.0003	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Strontium					0.038	0.027	0.048	0.050	0.036	0.013
Thallium	IPWQO	0.0003			< 0.00005	<0.0003	<0.0003	<0.0003	<0.0003	< 0.00005
LITANIIIM								0.002		
Titanium					< 0.005	<0.002	0.002	0.003	<0.002	< 0.005
Vanadium	IPWQO	0.006			< 0.005 < 0.005	<0.002 <0.002	0.002 <0.002	<0.003	<0.002	< 0.005 < 0.005
Vanadium	IPWQO PWQO	0.006 0.03 0.02	0.007	0.00	< 0.005	<0.002	<0.002	<0.002	<0.002	< 0.005
			0.007	0.89						
Vanadium	PWQO IPWQO	0.03 0.02	0.007	0.89	< 0.005	<0.002	<0.002	<0.002	<0.002	< 0.005
Vanadium	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89	< 0.005	<0.002	<0.002	<0.002	<0.002	< 0.005
Vanadium Zinc Arsenic	PWQO IPWQO	0.03 0.02			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD	PWQO IPWQO PWQO	0.03 0.02			< 0.005	<0.002	<0.002	<0.002	<0.002	< 0.005
Vanadium Zinc Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006	<0.002	<0.002 0.007	<0.002	<0.002	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006 41	<0.002 0.006 28	<0.002 0.007	<0.002	<0.002 0.005	< 0.005 0.005
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			< 0.005 0.006 41 36.3	<0.002 0.006 28 75.7 6.6	<0.002 0.007 48	<0.002	<0.002 0.005 37 14.6	22
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			< 0.005 0.006 41 36.3 7.6	<0.002 0.006 28 75.7	<0.002 0.007 48 6.7	<0.002	37 37 14.6 7.5	22 230 6.4

Sample Location SW-1

Sample Date	PARAMETER											
Akalaintry as CaCO3 PWQO	Akalinity as GaCO3 IPWQO B S C C C C C C C C C	·					Aug-17		Oct-17	May-18		Jul-18
BOD	BOD	PARAMETER	Limit	PWQO	CWQG	APV		QA/QC			QA/QC	
BOD	BOD	Alkalinity as CaCO3	IPWQO	а			15	13	20	9	8	22
Chloride	Chloride	BOD					< 3		4			< 1
Conductivity	Conductivity	Chloride			120	180				< 1		
DOC N-NH3 (Ammonia)	DOC N-N13 (Ammonia)	Conductivity										
NANH3 (Jamonia)	N-N-N-1 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N									Q 1	8.0	171
NN-NO2 (Nirtrie)	N-NN3 (minorized) PWQQ						< 0.01	< 0.01	< 0.01			
NNO2 (Nitrite)	N-NO2 (Nitrite) PWQ0		DWOO	0.02			₹ 0.01	< 0.01				
NNOS (NIVITATE) PWQO	N-NO3 (Nitrate) PH		PWQU	0.02	0.6		- 0.05	- 0.05				
PMO	Phenois											
Phenols PWQO 0.001 0.004 0.961 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.00	Phenols Phen						< 0.05	< 0.05	< 0.05			
Sulphate TOS	Sulphate Top											
TOS	TOS		IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001			
Total plosphorous IPWQO 0.03	Total phosphorous IPWQO 0.03 0.03 0.016 0.017 0.07 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.016 0.017 0.03 0.018 0									2	2	2
Turbidity Hardness acaCO3 Calcium Magnesium Port 1.7 1.7 1.7 1.9 0.6 0.6 0.5 2.3 Calcium Magnesium 0 0.2 0.5 0.5 1.1 0.1 0.1 0.1 Calcium 1.7 1.7 1.9 0.6 0.6 0.6 0.6 Magnesium 0 0.2 0.5 0.5 0.5 1.1 0.1 0.1 0.1 Calcium 1.7 1.7 1.7 1.9 0.6 0.6 0.6 Magnesium 0 0.2 0.05 0.5 0.5 1.1 0.1 0.1 0.1 0.1 Calcium 1.7 1.7 1.7 1.9 0.6 0.6 0.6 0.6 Magnesium 0 0.05 0.5 0.5 1.1 0.1 0.1 0.1 0.1 0.1 Calcium 1.7 1.7 1.7 1.7 1.9 0.6 0.6 0.6 0.6 Magnesium 0 0.05 0.5 0.5 1.1 0.1 0.1 0.1 0.1 0.1 Calcium 1.7 1.7 1.7 1.7 1.9 0.6 0.5 0.0	Turbidity											
Turbidity	Turbidity	Total phosphorous	IPWQO	0.03			0.01	< 0.01	0.03	0.016	0.017	0.024
Hardness as CaCO3	Hardness as CaCO3	Turbidity										
Calcium	Calcium	Hardness as CaCO3										
Magnesium Potassium Lobal Sodium 2,04 1,98 2,19 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Magnesium Potassium 2.04 1.98 2.19 <1 <1 Potassium (disolved) 0.05 0.5 0.5 1.3 <1											
Potassium Sodium Potassium Potassi	Potassium											
Sodium	Sodium											
Aluminum (dissolved) IPWQO 0.075 0.07 0.06 0.005 0.0005	Aluminum (dissolved) IPWQQ 0.075 0.075 0.06 0.00 0.											
Aluminum total IPWQO 0.075	Aluminum total IPWQO 0.075		IDVICO	0.075								
Barium	Barlum						0.07	0.06	0.06			0.08
Beryllium	Beryllium		IPWQO	0.075								
Boron IPWQO 0.002 0.0002 0.0006 0.0006 0.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	Boron IPWQO D.22 1.5 3.55 D.006 D.006 D.007 C.0.01 C.0.01 C.0.001 C.0.00											
Cadmium PWQQ IPWQQ 0.0002 c IPWQQ based on hardness 0.00021 0.000096 0.000014 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.00	Cadmium			(b) 0.011						< 0.0005	< 0.0005	< 0.0005
Cadmium	Cadmium	Boron	IPWQO	0.2	1.5	3.55	0.006	0.006	0.007		< 0.01	< 0.01
Cadmium	Cadmium		PWQO	0.0002 c	based on							
Chromium	Chromium	Cadmium				0.00021	0.000096	0.000056	< 0.000014	< 0.0001	< 0.0001	< 0.0001
Cobalt IPWQO 0.0009 0.0003 0.0003 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0000 <0.0000 <0.00000 <0.00000 <0.0000 <0.0000 <0.	Cobalt IPWQO 0.0009 0.0003 0.0003 0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <	Chromium		0.0000	Haruness		0.004	0.004	0.004	0.004	0.004	0.004
Copper	PWQO											
Copper IPWQO	Copper IPWQO O.3 O.0069 O.0068 O.0053 O.0002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0	Copail					0.0003	0.0003	0.0002	< 0.0002	< 0.0002	0.0003
Info	PWQO	Connor	PWQO	0.005 d	٨	0.0060	0.0068	0.0053	0.0002	< 0.001	< 0.001	< 0.001
Lead	Lead	Copper	IPWQO		u	0.0069	0.0068	0.0053	0.0002	< 0.001	< 0.001	< 0.001
Lead	Lead	Iron	PWOO	0.3	0.3		1 10	1 1/1	1 0/	0.20	0.29	1.02
Deal	Lead IPWQO		-				1.13	1.14	1.04	0.23	0.23	1.02
Manganese	Manganese 0.052 0.049 0.051 0.02 0.02 Molybdenum IPWQ0 0.04 0.0002 0.0001 < 0.0001	Lead		0.025 0.005		0.002	0.00067	0.00049	0.0003	< 0.001	< 0.001	< 0.001
Molybdenum IPWQO 0.04 0.0002 0.0001 < 0.0001 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Molybdenum IPWQO 0.04 0.0002 0.0001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00005 <0.00005 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.000		IPWQO		hardness							
Nickel	Nickel	Manganese					0.052	0.049	0.051	0.02	0.02	0.06
Silicon	Silicon Silver PWQ0 0.0001	Molybdenum	IPWQO	0.04			0.0002	0.0001	< 0.0001	< 0.005	< 0.005	< 0.005
Silicon	Silicon	Nickel	PWQO	0.025		0.025	0.0022	0.0011	0.0003	< 0.005	< 0.005	< 0.005
Silver	Silver	Silicon	-,									
Strontium	Strontium		PWOO	0.0001								
Thallium	Thallium			0.0001								
Titanium PWQO 0.006	Titanium PWQ0		IDWOO	0.0003								
Vanadium IPWQO 0.006 < 0.005 < 0.005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <	Vanadium		IF VVQU	0.0003		-						
Zinc	Zinc		IDWOO	0.000								
PWQO	Arsenic IPWQO 0.007 0.89 0.006 0.005 < 0.005 < 0.001 <	vaildululli					< 0.005	< 0.005	< 0.005	< 0.001	< 0.001	< 0.001
Arsenic	Arsenic PWQO 0.1 0.005 0.15	Zinc	PWQO	0.03 0.02	0.007	0.00	0.006	0.005	< 0.00E		Z 0 01	Z 0 01
Arsenic PWQO 0.1 0.005 0.15 0.15 0.15 0.15 0.15 0.15	Arsenic PWQO 0.1 1 0.005 0.15 0.15 0.15 0.15 0.15 0.	ZIIIC	IPWQO		0.007	0.89	0.006	0.005	< 0.005		< 0.01	< 0.01
Arsenic IPWQO 0.005 0.005 0.15 0.1	Arsenic IPWQO 0.005 0.005 0.15 COD 72 64 60 30 25 Colour PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH PWQO f PWQO f O.005 O.006	-	0.1	l								
PWQO 0.005 72 64 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 30 25 44 60 60 60 60 60 60 60	COD COD 72 64 60 30 25	Arsenic			0.005	0.15		1			1	
Colour Mercury PWQO 0.0002	Colour Mercury		IPWQO	0.005			<u> </u>	<u> </u>			<u> </u>	
Colour Mercury PWQO 0.0002 Selenium Selenium PWQO 0.1 Selenium Selenium Image: Color of the pwgo Image: Color of t	Colour Mercury						72	64	60	30	25	44
Selenium PWQO 0.1 Image: Conductivity PWQO 0.1 Image: Conductivity	Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec DH	Colour										
Selenium PWQO 0.1 Image: Conductivity PWQO 0.1 Image: Conductivity	Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec DH		PWOO	0.0002								
Tannin & Lignin TOC TIKN Sus. Solids Field Parameters Discharge L/sec DO PWQO f Conductivity TOC TIKN TIKN Sus. Solids TOC TOS	Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DOO PWQO f TOC TOC TOC TOC TOC TOC TOC TO							1			1	
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F Conductivity PH DO PWQO F TKN Sus. Solids Sus. Sus. Sus. Sus. Sus. Sus. Sus. Sus.	TOC TKN Sus. Solids Field Parameters Discharge L/sec pH		1 11 40	0.1				-			<u> </u>	
TKN Sus. Solids Field Parameters Field Parameters Discharge L/sec 33 37.8 182.9 66.33 pH 7 7.5 7.1 DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	TKN Sus. Solids Field Parameters Susceptible Discharge L/sec 33 37.8 182.9 6 pH 7 7.5 7 DO PWQO f 6.25 5.49			1				1			1	
Sus. Solids Field Parameters 33 37.8 182.9 66.33 pH 7 7.5 7.1 DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	Sus. Solids Field Parameters Discharge L/sec 33 37.8 182.9 6 pH 7 7.5 7 DO PWQO f 6.25 5.49			-		1	1	1			1	
Field Parameters 33 37.8 182.9 66.33 Discharge L/sec 33 37.8 182.9 66.33 PH 7 7.5 7.1 DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	Field Parameters 33 37.8 182.9 6 Discharge L/sec 33 37.8 182.9 6 pH 7 7.5 7 DO PWQO f 6.25 5.49			1			1	1			1	
Discharge L/sec 33 37.8 182.9 66.33 pH 7 7.5 7.1 DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	Discharge L/sec 33 37.8 182.9 6 pH 7 7.5 DO PWQO f 6.25 5.49											
pH 7 7.5 7.1 DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	PH 7 7.5 DO PWQO f 6.25 5.49											
DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	DO PWQO f 6.25 5.49						33		37.8			
DO PWQO f 6.25 5.49 7.16 Conductivity mg/l 109 47 118	DO PWQO f 6.25 5.49	pH								7.5		7.1
Conductivity mg/l 109 47 118			PWOO	f								
	(Conductivity mg/l 100 17	-						-			 	
	,			1116/1								22.6

Sample Location SW-1

					•					
Sample Date					Jul-18 SW 8	Oct-18	Oct-18 SW 8	May-19	May-19 SW 8	Aug-19
PARAMETER	Limit	PWQO	CWQG	APV	QA/QC		QA/QC		QA/QC	
Alkalinity as CaCO3	IPWQO	а			16	20	24	9	7	23
BOD					< 1	< 1	< 1	4	5	<1
Chloride			120	180	38	43	42	23	20	41
Conductivity			120	100	- 50				20	
DOC					18.3	16.3	16.2	10.4	11.3	14
N-NH3 (Ammonia)					0.07	0.2	0.15	<0.02	<0.02	0.02
N-NH3 (unionized)	PWQO	0.02			< 0.02	< 0.2	< 0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.6							
N-NO3 (Nitrate)			0.6		< 0.10	< 0.10	< 0.10	<0.1	<0.1	<0.10
			3		< 0.10	< 0.10	< 0.10	<0.1	<0.1	0.11
pH	PWQO	6.5-8.5	6.5-9		7.09	7.17	7.31	6.86	6.96	7.32
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	<0.001	<0.001	0.001
Sulphate					2	2	2	3	3	2
TDS										
Total phosphorous	IPWQO	0.03			0.023	0.01	0.01	0.008	0.009	0.012
Turbidity					1.9	0.8	1	0.8	0.9	1.5
Hardness as CaCO3					23	23	23	14	14	32
Calcium					6	6	6	4	4	8
Magnesium					2	2	2	1	1	3
Potassium					<1	1	1	<1	<1	<1
Sodium		1			21	23	22	12	12	23
Aluminum (dissolved)	IBMAGO	0.075						12	12	23
Aluminum total	IPWQO	0.075	ı		0.08	0.06	0.06	0.00	0.00	
	IPWQO	0.075						0.08	0.08	0.04
Barium					0.01	0.01	< 0.01	<0.01	<0.01	0.01
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099	Har uness		4 0 001	4 O OO1	4 O OO1			<0.001
Cobalt					< 0.001	< 0.001	< 0.001	-0.0000	-0.0002	<0.001
CODAIL	IPWQO	0.0009			0.0003	< 0.0002	< 0.0002	<0.0002	<0.0002	<0.0002
Copper	PWQO	0.005 d	d	0.0069	< 0.001	< 0.001	< 0.001	0.001	<0.001	
Соррег	IPWQO		u	0.0003	₹ 0.001	₹ 0.001	₹0.001	0.001	VO.001	< 0.001
Iron	PWQO	0.3	0.3		1.01	0.66	0.66	0.36	0.35	0.53
	PWQO	0.025 0.005	based on							
Lead		0.025 0.005		0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
	IPWQO		hardness							
Manganese					0.06	0.02	0.02	0.02	0.02	0.02
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
Silicon					3.2	8	8	2.2	2.2	6.5
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Strontium					0.039	0.05	0.048	0.023	0.022	0.051
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
Titanium		2.2000			< 0.001	< 0.001	< 0.001	<0.01	<0.01	<0.01
Vanadium	IPWQO	0.006			< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
					₹ 0.001	₹0.001	₹0.001	\0.001	\0.001	.0.001
Zinc	PWQO	0.03 0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	
	IPWQO		5.507	3.03	. 3.01	. 5.51	. 5.51	.5.01		< 0.01
	PWQO	0.1								
Arsenic			0.005	0.15						
con	IPWQO	0.005	ı				_			
COD					46	33	35	29	30	19
Colour										
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin										
TOC										
TKN										
Sus. Solids										
				1	1					F 1
Field Parameters										
Field Parameters Discharge L/sec						11.71		98		5.1
Field Parameters Discharge L/sec pH						8		7.9		8.1
Field Parameters Discharge L/sec pH DO	PWQO	f				8 8.4		7.9 9.4		8.1 12.8
Field Parameters Discharge L/sec pH	PWQO	f mg/l				8		7.9		8.1

Sample Location SW-1

Sample Date					Aug-19 SW 8	Oct-19	Oct-19 SW 8	May-20	May-20 Dup #1	Sep-20
PARAMETER	Limit	PWQO	CWQG	APV	QA/QC		QA/QC		QA/QC	
Alkalinity as CaCO3	IPWQO	а			17	16	12	8	24	12
BOD					<1	2	2	2	<1	4
Chloride			120	180	41	50	50	23	23	28
Conductivity					-					
DOC					23.2	13.1	13	13.1	13.1	20
N-NH3 (Ammonia)					0.021	0.031	<0.010	<0.010	<0.010	<0.01
N-NH3 (unionized)	PWQO	0.02			<0.021	<0.02	<0.02	<0.010	<0.010	<0.01
N-NO2 (Nitrite)	PWQU	0.02	0.0							
N-NO3 (Nitrate)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	B11/00	65.05	3		0.11	<0.10	<0.10	<0.10	<0.10	<0.10
pH	PWQO	6.5-8.5	6.5-9		7.23	7.38	7.11	6.83	7.95	6.8
Phenols	IPWQO	0.001	0.004	0.961	0.001	<0.001	<0.001	0.003	0.002	0.007
Sulphate					2	4	4	3	3	1
TDS										
Total phosphorous	IPWQO	0.03			0.013	0.008	0.009	<0.020	<0.020	0.01
Turbidity					1.2	1	0.8	0.6	0.6	1.2
Hardness as CaCO3					32	32	32	14	18	23
Calcium					8	8	8	4	4	6
Magnesium					3	3	3	1	2	2
Potassium					<1	1	2	<1	<1	<1
Sodium				<u> </u>	19	25	25	14	14	17
Aluminum (dissolved)	IPWQO	0.075			13	23	23	0.06	0.06	0.09
Aluminum total				-	0.04	0.06	0.00	0.06	0.06	0.09
	IPWQO	0.075			0.04	0.06	0.06			0.04
Barium					0.01	0.01	0.01	<0.01	<0.01	0.01
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01
	PWQO	0.0002 c	based on	0.00004			0.0004		0.0004	0.0004
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099	Tidi diress		<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Cobalt	IPWQO	0.0009			<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
CODAIL					₹0.0002	₹0.0002	₹0.0002	₹0.0002	₹0.0002	₹0.0002
Copper	PWQO	0.005 d	d	0.0069						
сорре.	IPWQO		<u> </u>	0.0003	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Iron	PWQO	0.3	0.3		0.56	0.36	0.36	0.4	0.39	0.72
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganoso	IPWQU		Haruness		0.001	0.001	0.001	0.001	0.001	0.001
Manganese	1011100						<0.005		<0.02	
Molybdenum	IPWQO	0.04			<0.005	<0.005		<0.005		<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon					6.4	6.1	6.1	2.2	2.2	4.7
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium					0.051	0.052	0.051	0.024	0.024	0.034
Thallium	IPWQO	0.0003			<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
Titanium					< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Vanadium	IPWQO	0.006			<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
	PWQO	0.03 0.02		1						
Zinc		0.03 0.02	0.007	0.89						
	IPWQO				<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01
	II WQO									
	PWQO	0.1								
Arsenic	PWQO		0.005	0.15						
	-	0.1 0.005	0.005	0.15	25	2r	26	40	44	[2
COD	PWQO		0.005	0.15	25	35	36	40	44	52
COD Colour	PWQO IPWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium	PWQO IPWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO	0.005	0.005	0.15	25	35	36	40	44	52
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO	0.005	0.005	0.15	25		36		44	
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005	0.005	0.15	25	32	36	56	44	25.5
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15	25	32 8.3	36	56	44	25.5 6.1
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO IPWQO PWQO	0.005 0.0002 0.1	0.005	0.15	25	32 8.3 10.8	36	56 8.3 9.3	44	25.5 6.1 8.7
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15	25	32 8.3	36	56	44	25.5 6.1

Sample Location SW-1

Sample Date					Sep-20	Oct-20			
					Dup #1				
PARAMETER	Limit	PWQO	CWQG	APV	QA/QC				
Alkalinity as CaCO3	IPWQO	а			21	10			
BOD					3	<1			
Chloride			120	180	28	35			
Conductivity									
DOC					20.4	14			
N-NH3 (Ammonia)					0.01	<0.010			
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.010			
N-NO2 (Nitrite)	PWQU	0.02	0.6						
N-NO3 (Nitrate)			0.6		<0.10	<0.10			
			3		<0.10	<0.10			
pH	PWQO	6.5-8.5	6.5-9		6.8	7.07			
Phenols	IPWQO	0.001	0.004	0.961	0.007	<0.001			
Sulphate					1	3			
TDS									
Total phosphorous	IPWQO	0.03			0.01	0.007			
Turbidity					0.9	0.9			
Hardness as CaCO3					19	23			
Calcium					6	6			
Magnesium					1	2			
Potassium					<1	1			
Sodium									
					17	19			
Aluminum (dissolved)	IPWQO	0.075	I		0.09	0.05			
Aluminum total	IPWQO	0.075							
Barium					0.01	0.01			
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005			
Boron	IPWQO	0.2	1.5	3.55	< 0.01	< 0.01			
	PWQO	0.0002 c	based on						
Cadmium	IPWQO		hardness	0.00021	< 0.0001	< 0.0001			
Chromium		0.0000	Haruness		<0.001	<0.001			
	PWQO	0.0099							
Cobalt	IPWQO	0.0009			<0.0002	<0.0002			
6	PWQO	0.005 d		0.0000					
Copper	IPWQO		d	0.0069	< 0.001	< 0.001			
Iron	PWQO	0.3	0.3		0.73	0.4			
11011					0.73	0.4			
Lead	PWQO	0.025 0.005	based on	0.002					
2000	IPWQO		hardness	0.002	< 0.001	< 0.001			
Manganese					0.02	0.01			
Molybdenum	IPWQO	0.04			< 0.005	< 0.005			
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005			
Silicon	1 WQO	0.025		0.023	4.7	5.1			
Silver	PWQO	0.0001			<0.0001	<0.0001			
Strontium	PWQU	0.0001			0.034	0.037			
Thallium	1811100	0.0000			<0.0001	<0.0001			
	IPWQO	0.0003							
Titanium					<0.01	<0.01			
Vanadium	IPWQO	0.006			<0.001	<0.001			
71	PWQO	0.03 0.02	0.007	0.00					
Zinc	IPWQO		0.007	0.89	0.01	<0.01			
					0.01	\0.01			
Arsenic	PWQO	0.1	0.005	0.15					
, 11 3C111C	IPWQO	0.005	0.003	0.13					
COD					52	36			
Colour									
Mercury	PWQO	0.0002		 	l				
Selenium	PWQO	0.0002		1					
	PWQU	0.1		-					
Tannin & Lignin TOC				1					
TKN									
Sus. Solids									
Field Parameters									
Discharge L/sec	-					25.7			
рН						7.1			
DO	PWQO	f				7.4			
Conductivity		mg/l		<u> </u>		170			
Temperature		1118/1		 		4.2			
· cpcrature		1	l	1	1	4.2		1	

Sample Location SW-2

					•					
Sample Date					Aug-96	Nov-96	Nov-98	Jul-99	Oct-99	Nov-99
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	216	141	260	148	229	164
BOD	IPWQU	а			40	2	<1	2	<1	<1
Chloride			120	180	9.4	25.6	8.0	15.4	7.9	10.1
Conductivity			120	100	447		427	360	466	349
DOC					447	392	427	360	400	349
N-NH3 (Ammonia)					0.1	0.17	0.01			<0.01
N-NH3 (unionized)	PWQO	0.02				<0.01	<0.01	<0.01	<0.01	<0.01
N-NO2 (Nitrite)	PWQU	0.02	0.6		<0.01					
N-NO3 (Nitrate)			0.6		<0.1	<0.1	<0.01	<0.1	<0.1	<0.1
pH	511100		3		<0.1	<0.1	<0.1	0.2	<0.1	0.1
Phenols	PWQO	6.5-8.5	6.5-9	0.064	7.62	8.31	7.04	7.54	7.44	8.20
	IPWQO	0.001	0.004	0.961	0.013	<0.001	0.037	0.003	0.021	<0.001
Sulphate					10	24	13			
TDS										
Total phosphorous	IPWQO	0.03			1.55	0.27	0.26	0.02	<0.01	0.05
Turbidity					<200	106	60	2.9	3.3	7.3
Hardness as CaCO3					186	155	271	172	248	202
Calcium					68.90	46.20	88.80	52.00	78.90	63.40
Magnesium					11.10	9.56	11.70	10.10	12.20	10.40
Potassium					8.5	8.8		< 0.04	< 0.4	2.0
Sodium					9.4	16.1	7.4	8.1	8.4	8.3
Aluminum (dissolved)	IPWQO	0.075			0.19	< 0.01	0.51	0.07	0.23	0.10
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on	5.55						
Cadmium	-	0.0002 C		0.00021	< 0.0001	< 0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001
0.	IPWQO		hardness						2 24	
Chromium	PWQO	0.0099			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	IPWQO	0.0009						<0.0005	0.0005	0.0007
C	PWQO	0.005 d		0.0069	0.0123	0.0022	0.0257	<0.0005	40 000F	0.0000
Copper	IPWQO		d	0.0069	0.0123	0.0022	0.0257	<0.0005	<0.0005	0.0008
Iron	PWQO	0.3	0.3		44.50	14.50	45.10	9.43	1.87	6.48
	PWQO	0.025 0.005	based on		11130	250	13.120	3.13	2.07	00
Lead	-	0.023 0.003		0.002	0.0142	0.0003	0.0008	< 0.0002	< 0.0002	<0.0002
	IPWQO		hardness							
Manganese					3.28	1.77	3.09			
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon										
Silver	PWQO	0.0001			0.0002	0.0004	0.0008	0.0005	0.0003	<0.0001
Strontium										
Thallium	IPWQO	0.0003								
Titanium										
Vanadium	IPWQO	0.006								
	PWQO	0.03 0.02								
Zinc	IPWQO	0.02	0.007	0.89	0.13	<0.01	0.12	0.02	0.01	0.01
		1			T	1				
Arsenic	PWQO	0.1	0.005	0.15		1		0.002	<0.001	<0.001
Aiseill	IPWQO	0.005	0.005	0.15		1		0.002	<0.001	<0.001
COD					90	15	7	16	10	6
Colour					6	2	<1	6	7	6
Mercury	PWQO	0.0002			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Selenium	PWQO	0.0002			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001
Tannin & Lignin	1 11 40	J.1			\0.001	10.001	~0.001	~0.001	2.002	2.001
TOC		+			9.4	4.9	5.9			
		+		-				0.21	0.1	0.27
		1			3.82	0.61	0.84			
TKN Sus Solids					427	38	80	80	3	26
Sus. Solids										
Sus. Solids Field Parameters										
Sus. Solids Field Parameters Discharge L/sec										
Sus. Solids Field Parameters Discharge L/sec pH										
Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f					7	9	9	9
Sus. Solids Field Parameters Discharge L/sec pH	PWQO	f mg/l					7	9	9	9

Sample Location SW-2

PARAMETER											
Akalaniny as GaCO3	Sample Date					Jun-00	Aug-00	Oct-00	Sep-01	Dec-01	Jun-02
BOD	PARAMETER	Limit	PWQO	CWQG	APV						
Chloride		IPWQO	а			151	210	202	182	163	282
Conductivity										1	1
DOC N-NH3 (Ammonia) N-NH				120	180	13.4	7.6	7.2	6.1		18.8
N.N-H3 (Innibial)						336	375	376	352	352	648
N-N-N-OZ (Nitrite) N-NOZ (No.001 (N.001											
N-NO2 (Nitrite)									0.02	< 0.01	0.49
N-NO3 (Nitrate) PH PWQO		PWQO	0.02								
PH				0.6							<0.1
Phenols PWQO 0.001 0.004 0.961 0.005 0.004 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001											<0.1
Sulphate TOS Total phosphorous IPWQO 0.03 0.02 0.08 0.01 0.01 0.02 1.3 8 1.5											7.31
Total phosphorous IPWQQ 0.03 0.02 0.08 0.01 0.01 0.02 0.07 Turbidity 3.2 16.5 2.4 2 12.3 8 8 8 8 8 8 8 Trotal phosphorous IPWQQ 0.03 0.03 0.02 0.08 0.01 0.01 0.02 0.07 Turbidity 3.2 16.5 2.4 2 12.3 8 8 8 8 8 8 8 8 8		IPWQO	0.001	0.004	0.961	0.005	0.004	0.001	<0.001		0.003
Total phosphorous IPWQO 0.03 0.02 0.08 0.01 0.01 0.02 0.07										11	29
Turbidity											
Hardness as CaCO3		IPWQO	0.03								0.02
Calcium											86
Magnesium											307
Potassium Sodium											61.40
Sodium					1						13.20
Aluminum (dissolved) IPWQO 0.075 0.14 0.31 0.28 0.40 0.16 <0.40 0.05											3.5
Aluminum total IPWQO											13.0
Barlum						0.14	0.31	0.28	0.40	0.16	< 0.01
Beryllium		IPWQO	0.075								
Boron IPWQO D.002 D.5 D.5 D.5 D.0001 D.00										0.05	0.09
Cadmium											
Cadmium IPWQO Chromium PWQO 0.0099 Chromium PWQO 0.0099 Cobalt IPWQO 0.0009 Chromium PWQO 0.0009 Chromium PWQO 0.0009 Chromium Chromium PWQO 0.0009 Chromium Chromium PWQO 0.0009 Chromium C	Boron	IPWQO	0.2	1.5	3.55						
Chromium PWQQ 0.0099	Cadasiiia	PWQO	0.0002 c	based on	0.00031	40 0001	0.0001	r0 0001	40 0001	-0.0001	z0.0001
Cobalt IPWQO 0.0009 0.0005 0.0023 <0.0005 0.0018 0.0023	Caumium	IPWQO		hardness	0.00021	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt	Chromium	PWQO	0.0099			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Copper	Cobalt										
Copper IPWQO O.3 O.3 O.0069 O.0009 O.0024 O.0005 O.0012 O.0005 O.0005 O.0012 O.0005											
Iron	Copper		0.005	d	0.0069	0.0009	0.0024	<0.0005	0.0012	<0.0005	0.0043
Lead	Iron		0.2	0.2		2.16	2.00	0.60	4 57	1 67	2.74
Lead IPWQO	11011	-				5.10	3.09	0.09	4.37	1.07	3.74
Manganese Mang	Lead		0.025 0.005		0.002	<0.0002	0.0002	<0.0002	0.0006	< 0.0002	0.0005
Molybdenum IPWQO 0.04		IPWQO		hardness	1 11						
Nickel										0.46	1.56
Silicon Silver PWQO 0.0001 <0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0											
Silver		PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Strontium IPWQO 0.0003											
Thallium		PWQO	0.0001			<0.0001	0.0001	<0.0001	0.0001	0.0001	<0.0001
Titanium Vanadium IPWQO 0.006											
Vanadium		IPWQO	0.0003								
Zinc											
PWQO	vanadium				1						
Arsenic PWQO 0.1 0.005 0.05 0.05 0.001 0.002 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	7inc	PWQO	0.03 0.02	0.007	0.00	0.03	0.01	z0.01	0.03	ZO 01	0.01
Arsenic PWQO 0.1 0.005 0.15 0.001 0.002 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.000	ZINC	IPWQO		0.007	0.89	0.02	0.01	<0.01	0.03	<0.01	0.01
Arsenic IPWQO 0.005 0.005 0.001 0.			0.1								
PWQO 0.005	Arsenic			0.005	0.15	0.001	0.002	< 0.001	0.001	< 0.001	<0.001
Colour	COD	IPWQO	0.005			_		_	_		2 -
Mercury											24
Selenium					1					3	4
Tannin & Lignin TOC TKN Sus. Solids Sus. Solids Spiech arge L/sec PH DO PWQO F Conductivity TOC Sus. Solids Spiech arge L/sec Spiech arge											<0.0001
TOC TKN		PWQO	0.1			<0.001	<0.001	<0.001	<0.001	<0.001	0.001
TKN 0.2 0.84 0.22 0.18 0.19 0.6 Sus. Solids 5 25 11 16 18 3: Field Parameters Discharge L/sec Discharge L/sec D D PWQO 6 8 Conductivity Mg/I											
Sus. Solids 5 25 11 16 18 3: Field Parameters Discharge L/sec pH DO PWQO f Conductivity mg/l					1						7
Field Parameters Discharge L/sec Discharge L/sec DO DO PWQO f Conductivity mg/l					1						0.68
Discharge L/sec						5	25	11	16	18	31
pH DO PWQO f 8 Conductivity mg/l											
DO PWQO f 8 Conductivity mg/l					1						
Conductivity mg/l					1						
		PWQO			1		8				
I emperature			mg/l		1						
	remperature										

Sample Location SW-2

					•					
Sample Date					Aug-03	Oct-03	Mar-04	Jul-04	Sept-04	May-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AI V	36	154	118	143	147	143
BOD	ii wqo	a			<1	<1	2	<1	1	<1
Chloride			120	180	12.3	16.4	16	20.9	19.6	22
Conductivity			120	180	139	404	305	411	356	22
					139	404	303	411	330	
DOC								0.45		0.05
N-NH3 (Ammonia)					0.04	0.08	0.03	0.15	<0.01	0.05
N-NH3 (unionized)	PWQO	0.02			<0.01	<0.01	<0.01	<0.01	<0.01	<0.02
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.10
N-NO3 (Nitrate)			3		0.3	0.3	0.2	0.1	0.2	<0.10
pH	PWQO	6.5-8.5	6.5-9		7.34	8.1	6.72	7.92	8.33	7.73
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate		0.001	0.00.	0.501	6	14	10	29	11	
TDS							158	197	181	
Total phosphorous	IDMAGO	0.00			0.01	0.01	0.03	0.02	0.02	0.03
	IPWQO	0.03								
Turbidity					1.8	3.8	15	6.5	4.8	4.9
Hardness as CaCO3					43	158	128	170	137	147
Calcium					11	46.9	38.1	50.7	40.2	44
Magnesium					3.76	9.95	8.1	10.4	8.96	9
Potassium					0.9	4.9	3	3.9	3.7	3
Sodium					8.6	10.5	8.7	11.3	9.6	9
Aluminum (dissolved)	IPWQO	0.075	1		0.051	0.011	0.143	0.095	0.044	<0.01
			ı		0.031	0.011	0.145	0.095	0.044	<0.01
Aluminum total	IPWQO	0.075			0.010					
Barium					0.012					0.06
Beryllium	PWQO	(b) 0.011			<0.001	<0.001				<0.001
Boron	IPWQO	0.2	1.5	3.55	0.006	0.064				0.03
	PWQO	0.0002 c	based on							
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.003	0.0002	0.0011	<0.002	0.0003	<0.001
Cobalt	IPWQO	0.0009			0.0001	0.0005	0.0003	< 0.001	0.0003	0.0005
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.002	0.016	< 0.002	< 0.02	< 0.002	< 0.001
Lance					0.640	0.753	F 70	0.007	2.02	4.26
Iron	PWQO	0.3	0.3		0.648	0.752	5.72	0.887	2.92	1.26
Lond	PWQO	0.025 0.005	based on	0.000	0.0000	0.0044	0.004.4	-0.005	-0.0005	-0.004
Lead	IPWQO		hardness	0.002	0.0009	0.0011	0.0014	<0.005	<0.0005	<0.001
Manganese			mar arress		0.032					0.5
	IDMOO	0.04			0.0014	0.0002				<0.005
Molybdenum	IPWQO	0.04					-0.01	-0.01	-0.04	
Nickel	PWQO	0.025		0.025	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005
Silicon								16		9.6
Silver	PWQO	0.0001			<0.0001	< 0.0001	< 0.0001	<0.001	< 0.0001	<0.0001
Strontium					0.049					0.118
Thallium	IPWQO	0.0003								<0.0001
Titanium		0.0005				<u> </u>	<u> </u>		 	<0.01
Vanadium	IPWQO	0.006		1	1	<0.005	1			<0.01
variadiditi						\0.003	-			₹0.001
Zinc	PWQO	0.03 0.02	0.007	0.89	<0.005	<0.005	0.008	<0.005	0.006	0.02
LIIIC	IPWQO		0.007	0.89	<0.005	<0.005	0.008	<0.005	0.006	0.02
	-	0.1	l .			+	+		+	
Arsenic	PWQO	0.1	0.005	0.15	<0.03	0.001	0.001	<0.03	0.001	
	IPWQO	0.005	0.003	0.13			0.001	10.03	0.001	
COD					29	<2	8	6	7	<5
Colour		1					2	5	6	
Mercury	PWQO	0.0002				<0.0001	<0.0001	<0.0001		
Selenium						<0.0001	<0.0001	<0.0001	<0.001	
	PWQO	0.1				~0.001	~0.001	~U.UI	~U.UUI	
Tannin & Lignin										
TOC										
			1	1			0.21	0.26	0.1	
TKN						1	2.2		0	
							23	7	8	
TKN							23	/	8	
TKN Sus. Solids Field Parameters							23	/	8	0.5
TKN Sus. Solids Field Parameters Discharge L/sec							23	/	8	0.5
TKN Sus. Solids Field Parameters Discharge L/sec pH	nwo.c				7.0		23	/	8	8.06
TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f			7.9		23	/	8	8.06 0
TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	f mg/l			7.9		23	/	8	8.06

Sample Location SW-2

Sample Date					Aug-05	Nov-05	May-06	Aug-06	Oct-06	May-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	cwqo	7.1. •	197	158	196	183	181	225
BOD	11 11 40	u			<1	<1	<1	<1	<1	<1
Chloride			120	180	14	13	10	14	12	10
Conductivity			120	100		- 10	467	409	388	466
DOC							2.9	2.8	3.2	3
N-NH3 (Ammonia)					0.04	0.06	<0.02	2.0	3.2	<0.20
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	₹0.02			<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0		<0.10	<0.10		<0.10	<0.10	<0.10
N-NO3 (Nitrate)			0.6		<0.10	<0.10		<0.10	<0.10	<0.10
pH	D14400	6505	3		8.08	8.08		₹0.10	<0.10	7.87
	PWQO	6.5-8.5	6.5-9	0.054	8.08	<0.001		<0.001	<0.001	<0.001
Phenols	IPWQO	0.001	0.004	0.961		<0.001				
Sulphate								13	14	11
TDS							304	266	252	303
Total phosphorous	IPWQO	0.03			0.03	0.04	0.03	0.09	0.11	0.05
Turbidity					1.5	5.5				2.1
Hardness as CaCO3					199	165		187	203	239
Calcium					65	53	71	60	65	76
Magnesium					9	8	9	9	10	12
Potassium					3	3	3	3	3	3
Sodium					8	8	8	8	9	10
Aluminum (dissolved)	IPWQO	0.075			<0.01	<0.01	0.01	<0.01	<0.01	<0.01
Aluminum total	IPWQO	0.075			.5.01		5.01	.5.01	.0.01	-5.01
Barium	11 VVQU	0.073			0.06	0.05	0.07	0.11	0.14	0.06
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	0.07	<0.01	<0.001	<0.001
Boron			4.5	2.55	0.001	0.001	0.05	0.04	0.001	0.05
ВОГОП	IPWQO	0.2	1.5	3.55	0.09	0.04	0.05	0.04	0.04	0.03
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001
Cadmidin	IPWQO		hardness	0.00021	<0.0001	<0.0001		<0.0001	VO.0001	₹0.0001
Chromium	PWQO	0.0099			0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0002	< 0.0002	0.0003	0.0003	0.0003	0.0002
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001
luen					0.29	0.79	1.54	3.46	4.36	0.51
Iron	PWQO	0.3	0.3		0.29	0.79	1.54	3.40	4.36	0.51
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001		<0.001	<0.001	<0.001
Lead	IPWQO		hardness	0.002	VO.001	VO.001		\0.001	VO.001	VO.001
Manganese					0.4	0.97	0.56	1.15	1.37	0.28
Molybdenum	IPWQO	0.04			< 0.005	< 0.005		< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005		< 0.005	< 0.005	< 0.005
Silicon	1 1140	0.025		0.023	14.3	9.3	8	10.1	9.1	10.0
Silver	PWQO	0.0001			<0.0001	<0.0001	U	<0.0001	<0.0001	<0.0001
Strontium	1 WQO	0.0001			0.158	0.136	0.19	0.143	0.136	0.172
Thallium	IPWQO	0.0003			<0.0001	<0.0001	0.19	<0.0001	<0.0001	0.172
Titanium	IPWQU	0.0003								
Vanadium	IDWOO	0.000			<0.01 0.002	<0.01 <0.001		<0.01 0.002	<0.01 0.001	<0.01 <0.001
variaululli	IPWQO	0.006			0.002	<0.001		0.002	0.001	<0.001
Zinc	PWQO	0.03 0.02	0.007	0.89	<0.01	<0.01	0.01	0.02	0.04	0.01
21110	IPWQO		0.007	0.09	\U.U1	\U.U1	0.01	0.02	0.04	0.01
	PWQO	0.1	1		1					
Arsenic	-		0.005	0.15	1	1				
	IPWQO	0.005								
COD					7	<5	<5	<5	5	5
Colour										
Mercury	PWQO	0.0002								
Selenium		0.1								
	PWQO	0.1			1 -	1	1	1		
Tannin & Lignin	PWQO	0.1								
Tannin & Lignin TOC	PWQO	0.1								
	PWQO	0.1					0,22	0,23	<0.05	< 0.05
TOC	PWQO	0.1					0.22	0.23	<0.05	<0.05
TOC TKN Sus. Solids	PWQO	0.1					0.22	0.23	<0.05	<0.05
TOC TKN Sus. Solids Field Parameters	PWQO	0.1			1	0.25				
TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO	0.1			1 7 68	0.25	0.1	0.1	0.05	2.0
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH					7.68	8.34	0.1 7.48	0.1 7.67	0.05 7.61	2.0 7.35
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f			7.68 4.08	8.34 6.99	0.1 7.48 4.5	0.1 7.67 5.82	0.05 7.61 12.03	2.0 7.35 5.93
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH					7.68	8.34	0.1 7.48	0.1 7.67	0.05 7.61	2.0 7.35

Sample Location SW-2

Sample Date					Aug-07	Oct-07	May-08	Oct-08	May-09	Jul-09
PARAMETER	Limit	PWQO	CMOC	APV						
Alkalinity as CaCO3	Limit IPWQO		CWQG	APV	159	161	222	239	209	200
BOD	IPWQU	a			<1	2	1	<1	<1	<1
Chloride			120	180	12	10	12	12	11	9
Conductivity			120	100	386	375	518	494	463	431
DOC					2.7	2.8	3.0	4.4	2.8	3.2
N-NH3 (Ammonia)					0.09	<0.02	0.03	<0.02	<0.02	<0.02
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.03	<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.6		<0.02	<0.02				
N-NO3 (Nitrate)			0.6		<0.10	<0.10	<0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10
pH	DIMOO	6505	3		8.17	8.01	<0.10			
Phenols	PWQO	6.5-8.5	6.5-9	0.004	<0.001	<0.001	8.08	7.88	8.10	8.10
	IPWQO	0.001	0.004	0.961			<0.001	<0.001	<0.001	<0.001
Sulphate					24	16	35	7	24	17
TDS					251	244	337	321	301	280
Total phosphorous	IPWQO	0.03			1.75	<0.02	0.01	0.02	<0.01	0.01
Turbidity					>100	8.9	2.1	6.0	0.5	0.3
Hardness as CaCO3					183	177	250	242	232	218
Calcium					60	56	82	77	78	71
Magnesium					8	9	11	12	9	10
Potassium					3	3	4	3	3	3
Sodium					9	10	10	10	7	10
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aluminum total	IPWQO	0.075								< 0.01
Barium					0.09	0.07	0.07	0.07	0.05	0.05
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	0.05	0.04	0.05	0.06	0.08	0.05
	PWQO	0.0002 c	based on							
Cadmium	IPWQO	0.0002	hardness	0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chananairina		0.0000	naruness		0.001	<0.001	0.000	0.000	0.004	0.004
Chromium	PWQO	0.0099					0.002	0.002	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0003	0.0002	0.0004	0.0004	0.0003	<0.0002
Copper	PWQO	0.005 d	d	0.0069	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Сорреі	IPWQO		u	0.0003	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		3.45	1.47	0.60	2.08	0.06	0.49
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005	hardness	0.002	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Manganese	IF WQO		Hai uness		4.42	0.40	0.50	1.12	0.04	0.24
Molybdenum	IPWQO	0.04			1.43 < 0.005	0.48	0.53 <0.005	<0.005	0.01	0.24 <0.005
Nickel								<u.uu5< td=""><td></td><td></td></u.uu5<>		
		0.04		0.025		<0.005			<0.005	
	PWQO	0.04		0.025	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Silicon	PWQO	0.025		0.025	<0.005 9.8	<0.005 8.7	<0.005 8.8	<0.005 10.8	<0.005 7.2	<0.005 8.3
Silicon Silver				0.025	<0.005 9.8 <0.0001	<0.005 8.7 <0.0001	<0.005 8.8 <0.0001	<0.005 10.8 <0.0001	<0.005 7.2 <0.0001	<0.005 8.3 <0.0001
Silicon Silver Strontium	PWQO	0.025		0.025	<0.005 9.8 <0.0001 0.169	<0.005 8.7 <0.0001 0.159	<0.005 8.8 <0.0001 0.227	<0.005 10.8 <0.0001 0.197	<0.005 7.2 <0.0001 0.200	<0.005 8.3 <0.0001 0.189
Silicon Silver Strontium Thallium	PWQO	0.025		0.025	<0.005 9.8 <0.0001 0.169 <0.0001	<0.005 8.7 <0.0001 0.159 <0.0001	<0.005 8.8 <0.0001 0.227 <0.0001	<0.005 10.8 <0.0001 0.197 <0.0001	<0.005 7.2 <0.0001 0.200 <0.0001	<0.005 8.3 <0.0001 0.189 <0.0001
Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01
Silicon Silver Strontium Thallium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025	<0.005 9.8 <0.0001 0.169 <0.0001	<0.005 8.7 <0.0001 0.159 <0.0001	<0.005 8.8 <0.0001 0.227 <0.0001	<0.005 10.8 <0.0001 0.197 <0.0001	<0.005 7.2 <0.0001 0.200 <0.0001	<0.005 8.3 <0.0001 0.189 <0.0001
Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO	0.025 0.0001 0.0003	0.007		<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.025	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01
Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02	0.007		<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007		<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO PWQO IPWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01 5	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 -0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Sitver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01 5	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 <0.01 0.002 0.03	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.01 5	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001	<0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002
Silicon Silver Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 0.002 0.03 5 <0.05	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.001 5 <0.005	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001 <0.01	<.0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002 <0.01
Silicon Silver Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO PWQO IPWQO PWQO IPWQO IPWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 0.002 0.03 5 <0.05	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.001 5 <0.05	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001 <0.01	<.0.005 8.3 <0.0001 0.189 <0.0001 <0.01 0.002 <0.01 1.0 7.9
Silicon Silver Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.005 9.8 <0.0001 0.169 <0.0001 0.002 0.03 5 <0.05	<0.005 8.7 <0.0001 0.159 <0.0001 <0.01 <0.001 5 <0.005	<0.005 8.8 <0.0001 0.227 <0.0001 <0.01 0.004	<0.005 10.8 <0.0001 0.197 <0.0001 <0.01 0.003	<0.005 7.2 <0.0001 0.200 <0.0001 <0.05 <0.001 <0.01	<.0.005 8.3 <0.0001 0.189 <0.0001 0.002 <0.01

Sample Location SW-2

					·					
Sample Date					Sep-09	May-10	Aug-10	Oct-10	Jun-11	Aug-11
DADAMETED										
PARAMETER	Limit	PWQO	CWQG	APV			_		_	
Alkalinity as CaCO3	IPWQO	a			187	210	195	190	217	198
BOD					<1	<1	<1	<1	<1	<1
Chloride			120	180	8	8	9	9	9	9
Conductivity					392					
DOC					2.9					
N-NH3 (Ammonia)					<0.02	<0.02	<0.02	<0.02	<0.02	0.03
N-NH3 (unionized)	PWQO	0.02			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
N-NO3 (Nitrate)			3		< 0.10	< 0.10	< 0.10	0.10	< 0.10	< 0.10
pH	PWQO	6.5-8.5	6.5-9		7.87	8.29	7.99	8.18	8.16	8.03
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	<0.001	< 0.001	< 0.001
Sulphate					12					
TDS					255					
Total phosphorous	IPWQO	0.03			0.01	<0.01	<0.01	<0.01	0.01	< 0.01
Turbidity	ii waa	0.03			3.8	0.8	2.3	1.3	6.9	3.5
Hardness as CaCO3					172	0.0	2.5	1.5	0.5	3.3
Calcium					54	68	62	66	67	61
Magnesium										
Potassium					9	10	9	9	10	9
					3	3	3	3	3	
Sodium					10	11	10	10	8	10
Aluminum (dissolved)	IPWQO	0.075				<0.01	<0.01	<0.01	<0.01	< 0.01
Aluminum total	IPWQO	0.075			< 0.01				0.01	
Barium					0.05	0.05	0.05	0.04	0.08	0.07
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	< 0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.04	0.05	0.04	0.05	0.05	0.05
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium	PWQO	0.0099	Har uness		<0.001	<0.001	0.004	0.002	<0.001	<0.001
Cobalt										
CODAIL	IPWQO	0.0009			<0.0002	0.0002	0.0002	<0.0002	0.0002	0.0002
Copper	PWQO	0.005 d	d	0.0069	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
соррег	IPWQO		u	0.0003	\0.001	VO.001	VO.001	VO.001	VO.001	<0.001
Iron	PWQO	0.3	0.3		0.24	0.49	0.38	0.12	1.66	1.02
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Manganoco	IPWQU		Haruness		0.40	0.16	0.25	0.11	0.65	0.50
Manganese	1011100				0.40	0.16	0.25	0.11	0.65	0.56
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon					8.6	7.8	8.2	8.4	7.6	7.9
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium					0.162	0.169	0.159	0.152	0.180	0.170
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Titanium					< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium	IPWQO	0.006			0.001	< 0.001	0.002	< 0.001	0.001	0.001
	PWQO	0.03 0.02								
Zinc	IPWQO	0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	-									
		0.1								
	PWQO	0.1								
Arsenic	PWQO IPWQO	0.005	0.005	0.15						
			0.005	0.15		<5	<5	10	<5	8
COD			0.005	0.15		<5	<5	10	<5	8
COD Colour	IPWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury	IPWQO PWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium	IPWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO	0.005	0.005	0.15		<5	<5	10	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO	0.005	0.005	0.15						
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO	0.005	0.005	0.15	N/M	0.5	0.5	0.5	1.0	0.5
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO PWQO	0.005	0.005	0.15	8.0	0.5 8.1	0.5	0.5	1.0	0.5 7.5
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO	0.005	0.005	0.15		0.5	0.5	0.5	1.0	0.5 7.5 6.56
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15	8.0	0.5 8.1	0.5	0.5	1.0	0.5 7.5

Sample Location SW-2

Sample Date					Oct-11	Jun-12	Aug-12	Oct-12	Jun-13	Aug-13
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			193	202	193	190	217	200
BOD					<1	<1	2	2	<1	1
Chloride			120	180	9	7	7	7	8	8
Conductivity										
DOC										
N-NH3 (Ammonia)					<0.02	< 0.02	< 0.02	0.02	<0.02	0.03
N-NH3 (unionized)	PWQO	0.02			<0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02
N-NO2 (Nitrite)	-1-		0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.20	<0.10	<0.10	<0.10	<0.10	<0.10
pH	PWQO	6.5-8.5	6.5-9		7.81	7.88	7.98	7.91	8.02	7.98
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	II WQO	0.001	0.004	0.501	\0.001	VO.001	VO.001	₹0.001	\0.001	₹0.001
TDS										
Total phosphorous	IDIAGO	0.02			-0.01	0.04	-0.01	-0.01	0.01	0.04
	IPWQO	0.03			<0.01	0.01	<0.01	<0.01	0.01	0.01
Turbidity					0.9	1.7	2.8	4.7	0.6	9.6
Hardness as CaCO3						172	175	187	228	30
Calcium					61	54	57	60	75	7
Magnesium					9	9	8	9	10	3
Potassium					3	3	3	4	4	<1
Sodium					10	8	8	9	7	18
Aluminum (dissolved)	IPWQO	0.075	l-		< 0.01	<0.01	<0.01	<0.01		< 0.01
Aluminum total	IPWQO	0.075			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Barium	WQU	0.075			0.06	0.07	0.06	0.06	0.07	0.06
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.04	0.05	0.05	0.05	0.05	0.00
BOTOTI				3.33	0.04	0.05	0.05	0.05	0.05	0.07
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	IPWQO		hardness	0.00021	10.0001	10.0001	10.0001	10.0001	10.0001	10.0001
Chromium	PWQO	0.0099			< 0.001	0.002	< 0.001	0.001	0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0002	0.0003	0.0002	0.0002	0.0002	0.0003
	PWQO	0.005 d								
Copper	IPWQO	0.005	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
luen					0.05	4.00	0.00	0.70	0.64	4.04
Iron	PWQO	0.3	0.3		0.35	1.23	0.83	0.78	0.64	1.04
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Leau	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	-				0.34	0.52	0.32	0.37	0.34	0.39
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon	TWQO	0.023		0.023	7.8	9.0	7.8	7.4	8.0	7.1
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.001	<0.0001		<0.0001
	PWQU	0.0001							<0.0001	
Strontium					0.162	0.167	0.143	0.141	0.188	0.169
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium				1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	IPWQO	0.006			<0.001	0.003	<0.001	<0.001	<0.001	0.001
	PWQO	0.03 0.02	0.007	0.00						
Zinc			0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
-	IPWOO									
	IPWQO	0.1								
Arsenic	PWQ0	0.1	0.005	0.15						
Arsenic	-	0.1 0.005	0.005	0.15						
Arsenic COD	PWQO		0.005	0.15	5	<5	<5	<5	<5	8
	PWQO		0.005	0.15	5	<5	<5	<5	<5	8
COD Colour	PWQO IPWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury	PWQO IPWQO PWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium	PWQO IPWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO	0.005	0.005	0.15	5	<5	<5	<5	<5	8
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO	0.005	0.005	0.15						
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005	0.005	0.15	0.8	0.5	1.5	1.0	0.9	1
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005	0.005	0.15	0.8	0.5	1.5	1.0 7.1	0.9	1 7.7
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005	0.005	0.15	0.8	0.5	1.5	1.0	0.9	1 7.7 6.42
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15	0.8	0.5	1.5	1.0 7.1	0.9	1 7.7

Sample Location SW-2

Commis Data										
Sample Date					Nov-13	Apr-14	Jul-14	Oct-14	Jun-15	Aug-15
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			189	178	180	169	185	176
BOD					2	< 3	< 3	< 3	7	< 3
Chloride			120	180	7	6.3	6.1	6.8	6.3	6.2
Conductivity										
DOC										
N-NH3 (Ammonia)					0.04	< 0.01	< 0.01	0.06	< 0.01	0.01
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
N-NO2 (Nitrite)		0.02	0.6		<0.10	< 0.1	< 0.10	< 0.10	< 0.1	< 0.1
N-NO3 (Nitrate)			3		<0.10	0.1	< 0.10	0.1	0.1	0.1
pH	PWQO	6.5-8.5	6.5-9		8.06	0.1		0.1	0.1	0.1
Phenols	IPWQO	0.001	0.004	0.961	<0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001
Sulphate	IF WQO	0.001	0.004	0.501	<0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001
TDS								202		
Total phosphorous	IDMOO	0.00			-0.04	0.04	0.04		. 0.04	. 0.01
	IPWQO	0.03			<0.01	0.01	0.01	0.01	< 0.01	< 0.01
Turbidity					7.2	4	2.2	15.1	2.6	2.7
Hardness as CaCO3					201	218	207	183	169	198
Calcium					64	69.8	59.4	58	53.1	64.4
Magnesium					10	10.5	9.28	9.28	8.91	10.6
Potassium					4	4	3.5	4.1	2.8	4.2
Sodium					8	7.5	6.4	8.1	5.7	8.5
Aluminum (dissolved)	IPWQO	0.075			< 0.01	0.02	0.02	0.01	0.01	0.02
Aluminum total	IPWQO	0.075			<0.01					
Barium					0.06	0.067	0.053	0.063	0.049	0.06
Beryllium	PWQO	(b) 0.011			<0.0005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Boron	IPWQO	0.2	1.5	3.55	0.05	0.06	0.052	< 0.002	0.05	0.062
DOIGH				3.33	0.03	0.06	0.032	< 0.005	0.03	0.062
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	< 0.00002	< 0.00002	< 0.00002	0.00019	< 0.00002
	IPWQO		hardness	0.00021	10.0001	\ 0.0000Z	\ 0.0000Z	\ 0.0000Z	0.00013	\ 0.00002
Chromium	PWQO	0.0099			< 0.001	< 0.0002	< 0.002	< 0.002	< 0.002	0.002
Cobalt	IPWQO	0.0009			0.0002	0.0001	< 0.0001	0.0007	0.0003	< 0.0001
	PWQO	0.005 d								
Copper	IPWQO	0.005	d	0.0069	< 0.001	0.0003	0.0001	0.0007	0.0015	< 0.0001
lue a					0.0	4.07	0.045	2.40		
Iron	PWQO	0.3	0.3		0.9	1.97	0.245	2.18	0.727	0.429
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	0.00012	0.00008	0.00015	0.00082	< 0.00002
Leau	IPWQO		hardness	0.002	<0.001	0.00012	0.00008	0.00013	0.00082	< 0.00002
Manganese					0.33	0.526	0.136	0.453	0.314	0.396
Molybdenum	IPWQO	0.04			<0.005	0.0002	0.0003	0.0009	0.0003	0.0004
Nickel	PWQO	0.025		0.025	<0.005	0.0014	0.0021	0.0368	0.0028	0.0012
Silicon	11100	0.025		0.023	8.4	8.39	7.31	7.48	6.01	8.62
Silver	PWQO	0.0001			<0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Strontium	PWQU	0.0001				0.19	0.176			
Thallium	1011100	0.0000			0.143			0.159	0.139	0.176
	IPWQO	0.0003			<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium					<0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Vanadium	IPWQO	0.006			<0.001	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
71	PWQO	0.03 0.02	0.007	0.00	-0.04	0.044	0.000	0.000	. 0.005	. 0 005
Zinc	IPWQO		0.007	0.89	<0.01	0.011	0.009	0.009	< 0.005	< 0.005
	-	0.1								
Arsenic			0.00=	0.15						
	PWQO		0.005							i e
	PWQO IPWQO	0.005	0.005	0.15						
COD			0.005	0.13	<5	< 5	< 5	10	6	< 5
COD Colour			0.005	0.13	<5	< 5	< 5	10	6	< 5
	IPWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury	IPWQO PWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury Selenium	IPWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	< 5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO	0.005	0.005	0.13	<5	< 5	< 5	10	6	<5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO	0.005	0.005	0.13						
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO	0.005	0.005	0.13	1	0.5	1.2	1	1.4	0.5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO PWQO	0.005	0.005	0.15	1 7.9	0.5	1.2	1 7.7	1.4	0.5 7.5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO	0.005	0.005	0.15	1 7.9 10.66	0.5 8.1 5.8	1.2 8.1 5.85	1 7.7 6.82	1.4 7.7 6.42	0.5 7.5 8.22
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.13	1 7.9	0.5	1.2	1 7.7	1.4	0.5 7.5

Sample Location SW-2

Sample Date					Oct-15	May-16	Aug-16	Nov-16	Apr-17	Aug-17
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	162	170	148	170	176	180
BOD	IF WQO	a			< 3	<5	<5	<5	< 3	< 3
Chloride			120	180	6.4	7.07	9.00	8.36	5.9	6.8
Conductivity			120	100	0.4	7.07	9.00	0.30	3.3	0.8
DOC						2.6	2.0	2.7		
N-NH3 (Ammonia)					0.01	<0.02	0.07	0.10	< 0.01	< 0.01
N-NH3 (unionized)	PWQO	0.02			< 0.01	NR	0.0068	0.0064	< 0.01	< 0.01
N-NO2 (Nitrite)	FWQO	0.02	0.6		< 0.01	<0.05	<0.05	<0.05	0.2	< 0.05
N-NO3 (Nitrate)						<0.05	<0.05	0.06		
pH	PWQO	C F O F	3 6.5-9		0.1	<0.05	<0.03	0.06	0.3	< 0.05
Phenols	IPWQO	6.5-8.5 0.001	0.004	0.961	. 0 004	<0.001	<0.001	<0.001	. 0 004	. 0 004
Sulphate	IPWQU	0.001	0.004	0.961	< 0.001				< 0.001	< 0.001
TDS						21.2	9.96	8.67		
Total phosphorous	IPWQO	0.03			< 0.01	0.04	0.02	0.01	< 0.01	< 0.01
Turbidity					5.8	<0.5	15.4	100.00	1.9	4.1
Hardness as CaCO3					146	185	148	165	194	195
Calcium					45.3	58.8	46.1	51.6	56.5	55.8
Magnesium					7.92	9.17	7.93	8.79	9.6	9.8
Potassium					3.2	3.26	3.31	4.32	3.6	3.5
Sodium					6.7	5.48	6.83	6.97	5.8	7.6
Aluminum (dissolved)	IPWQO	0.075	l-		0.02				0.04	0.02
Aluminum total	IPWQO	0.075								
Barium					0.046	0.067	0.080	0.056	0.051	0.064
Beryllium	PWQO	(b) 0.011			< 0.002	<0.001	<0.001	<0.001	< 0.002	< 0.002
Boron	IPWQO	0.2	1.5	3.55	0.043	0.049	0.042	0.039	0.047	0.064
501011		0.0002 c	based on	3.33	0.043	0.043	0.042	0.039	0.047	0.004
Cadmium	PWQO	0.0002 C		0.00021	< 0.00002	< 0.0001	<0.0001	<0.0001	< 0.000020	< 0.000014
	IPWQO		hardness							
Chromium	PWQO	0.0099			< 0.002	< 0.003	< 0.003	< 0.003	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0001	< 0.0005	< 0.0005	<0.0005	0.0001	0.0002
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.0006	< 0.002	<0.002	<0.002	< 0.0001	0.0002
Iron	PWQO	0.3	0.3		0.189	2.09	3.71	2.48	0.987	0.964
	-				0.169	2.03	3.71	2.40	0.967	0.904
Lead	PWQO	0.025 0.005	based on	0.002	0.00006	< 0.001	< 0.001	< 0.001	0.00003	0.00004
	IPWQO		hardness							
Manganese					0.269	0.576	0.976	0.623	0.407	0.361
Molybdenum	IPWQO	0.04			0.0002	< 0.002	< 0.002	< 0.002	0.0002	0.0002
Nickel	PWQO	0.025		0.025	0.0022	< 0.003	< 0.003	< 0.003	0.0019	0.0016
Silicon					6.7	6.82	7.29	7.36	6.88	7.87
Silver	PWQO	0.0001			0.00011	< 0.0001	< 0.0001	< 0.0001	< 0.00002	< 0.00002
Strontium		0.000			0.124	0.161	0.118	0.099	0.127	0.159
Thallium	IPWQO	0.0003			< 0.00005	<0.0003	<0.0003	<0.0003	< 0.00005	< 0.00005
Titanium		0.0003			< 0.005	<0.0003	<0.002	<0.002	< 0.005	< 0.005
Vanadium	IPWQO	0.006			< 0.005	<0.002	<0.002	<0.002	< 0.005	< 0.005
					\ 0.003	~U.UUZ	\U.UUZ	\U.UUZ	\ 0.00J	\ U.UUJ
Zinc	PWQO	0.03 0.02	0.007	0.89	0.008	0.008	0.014	0.006	< 0.005	0.009
	IPWQO		0.007	0.05	0.000	0.000	0.01.	0.000		0.000
	PWQO	0.1								
Arsenic	IPWQO	0.005	0.005	0.15					1	
COD	irwqu	0.005								
COD		1			< 5	<5	<5	<5	< 5	6
Colour										
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin										
TOC										
TKN										
Sus. Solids										
Field Parameters										
Discharge L/sec					۸.	1.3	1	0.75	1	1
Discharge L/Sec					0.5	1.5		0.73		
pH	PWOO	f			7.8	7.7	7.4	7.8	7.3	
pH DO	PWQO	f mg/l			7.8 8.15	7.7 10.42	7.4 5.66	7.8 9.64	7.3 9.58	4.32
pH	PWQO	f mg/l			7.8	7.7	7.4	7.8	7.3	

Sample Location SW-2

Sample Date					Oct-17	May-18	Jul-18	Oct-18	May-19	Aug-19
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			180	179	216	185	190	169
BOD					< 3	< 1	< 1	< 1	4	<1
Chloride			120	180	7.4	6	8	7	13	7
Conductivity										
DOC						1.8	2.8	7.6	1.9	14
N-NH3 (Ammonia)					< 0.01	0.18	0.05	0.15	0.049	0.022
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.02	< 0.02	< 0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		< 0.05	< 0.10	< 0.10	< 0.10	<0.1	<0.10
N-NO3 (Nitrate)			3		< 0.05	< 0.10	< 0.10	< 0.10	0.23	<0.10
рН	PWQO	6.5-8.5	6.5-9			8.17	8.03	8.07	7.68	8.12
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Sulphate						10		8	11	9
TDS										
Total phosphorous	IPWQO	0.03			0.07	0.01	0.008	0.003	0.006	0.009
Turbidity		0.00			26.5	1.7	1	0.5	5.9	6.6
Hardness as CaCO3					20.3	206	192	167	177	174
Calcium					63.8	66	62	52	56	55
Magnesium					10.8	10	9	9	9	9
Potassium						4	4	4		3
Sodium					3.9	6	7	7	<u>3</u>	
	1011100	0.075			8.5				9	7
Aluminum (dissolved) Aluminum total	IPWQO	0.075			0.05	< 0.01	< 0.01	< 0.01	-0.4	0.04
	IPWQO	0.075				< 0.01			<0.1	<0.01
Barium					0.095	0.05	0.07	0.06	0.05	0.07
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.055	0.04	0.08	0.04	0.05	0.05
Cadasium	PWQO	0.0002 c	based on	0.00031	0.000014	4 O OOO1	z 0 0001	4 0 0001	-0.0001	<0.0001
Cadmium	IPWQO		hardness	0.00021	0.000014	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099			< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Cobalt	IPWQO	0.0009			< 0.0001	< 0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002
	PWQO	0.005 d			10.0001	10.0002	10.0002	10.0002	10.0002	
Copper		0.005 u	d	0.0069	0.0005	< 0.001	< 0.001	< 0.001	< 0.001	
	IPWQO									<0.001
Iron	PWQO	0.3	0.3		5.8	0.83	0.81	0.19	1.72	0.89
Load	PWQO	0.025 0.005	based on	0.003	0.00024	- 0 001	- 0 001	- 0 001	40 001	
Lead	IPWQO		hardness	0.002	0.00034	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Manganese					0.972	0.25	0.36	0.27	0.14	0.52
Molybdenum	IPWQO	0.04			0.0002	< 0.005	< 0.005	< 0.005	0.14	<0.005
Nickel	PWQO	0.025		0.025	0.0002	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Silicon	1 WQO	0.023		0.023	8.31	7.2	7.3	7.6	6.8	6.8
Silver	PWQO	0.0001			< 0.00002	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Strontium	PWQU	0.0001			0.182	< 0.150	0.179	0.158	0.132	0.148
Thallium	IDMOO	0.0002								<0.0001
Titanium	IPWQO	0.0003			< 0.0005 < 0.005	< 0.0001	< 0.0001	< 0.0001 < 0.01	<0.0001 <0.01	<0.0001
Vanadium		1		1						<0.U1
varidululli	IDMAGO	0.000				< 0.01	< 0.01			ZO 001
	IPWQO	0.006			< 0.005	< 0.01 < 0.001	< 0.001	< 0.001	<0.01	<0.001
Zinc	PWQO	0.006 0.03 0.02	0.007	0.80	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Zinc	-		0.007	0.89						<0.001
	PWQO IPWQO	0.03 0.02			< 0.005	< 0.001	< 0.001	< 0.001	<0.001	
Zinc Arsenic	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	
Arsenic	PWQO IPWQO	0.03 0.02			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02			< 0.005	< 0.001	< 0.001	< 0.001	<0.001	
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			< 0.005	< 0.001	< 0.001	< 0.001	<0.001 <0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			10	< 0.001	< 0.001 < 0.01	< 0.001 < 0.01	<0.001 <0.01 <5	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005			10	< 0.001 < 0.01 12	< 0.001 < 0.01 13 13 0.3	< 0.001 < 0.01 < 5	<0.001 <0.01 <5	<0.01 <5
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002 0.1			10 0.5 7.9	< 0.001 < 0.01 12 0.4 7.7	< 0.001 < 0.01 13 13 0.3 7.4	< 0.001 < 0.01 < 5 1 8	<0.001 <0.01 <5 1 7.9 9.4	<0.01 <5 7 8 7.1
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			0.005 0.072 10 0.5 7.9 6.75	< 0.001 < 0.01 12 0.4 7.7 5.8	< 0.001 < 0.01 13 13 0.3 7.4 6.32	< 0.001 < 0.01 < 5 1 8 11	<0.001 <0.01 <5 1 7.9	<0.01 <5 7 8

Sample Location SW-2

Sample Date Oct-19	May-20	Sep-20	Oct-20
--------------------	--------	--------	--------

PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	166	171	161	148		1
BOD	ii wqo	a			2	<1	5	<1		+
Chloride			120	180	6	5	6	6		+
Conductivity			120	180	U	,	U	U		+
DOC					1.9	1.9	1.8	1.5		+
N-NH3 (Ammonia)					0.037	0.069	0.06	<0.010		+
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.003	<0.02	<0.010		+
N-NO2 (Nitrite)	FWQO	0.02	0.6		<0.02	<0.02	<0.02	<0.02		+
N-NO3 (Nitrate)			3		<0.10	0.19	0.11	0.20		+
pH	PWQO	6.5-8.5	6.5-9		8.1	8.14	8.08	8.14		+
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001		+
Sulphate	IPWQU	0.001	0.004	0.961		12		12		
TDS					9	12	11	12		
Total phosphorous	IDIAGO	0.02			0.005	-0.000	0.007	0.004		
Turbidity	IPWQO	0.03			0.005	<0.020	0.007	0.004		
Hardness as CaCO3					1.7	1.2	4.7	1.3		
Calcium					172	175	168	139		
					54	57	54	44		
Magnesium				1	9	8	8	7		
Potassium				-	3	3	4	4	ļ	<u> </u>
Sodium				-	7	5	6	6	ļ	<u> </u>
Aluminum (dissolved)	IPWQO	0.075		-		<0.01	<0.01	<0.01	ļ	_
Aluminum total	IPWQO	0.075			<0.01					<u> </u>
Barium					0.06	0.05	0.06	0.05		
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005		
Boron	IPWQO	0.2	1.5	3.55	0.05	0.06	0.04	0.03		
Cli	PWQO	0.0002 c	based on	0.00024	<0.0001	-0.0004	.0.0004	.0.0004		
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001		
Chromium	PWQO	0.0099			< 0.001	< 0.001	< 0.001	< 0.001		
Cobalt	IPWQO	0.0009			<0.0002	<0.0002	<0.0002	<0.0002		+
CODUIT	PWQO	0.005 d			10.0002	-0.0002	10.0002	10.0002		+
Copper		0.005 u	d	0.0069						
	IPWQO				<0.001	<0.001	<0.001	<0.001		
Iron	PWQO	0.3	0.3		0.31	<0.03	0.81	0.33		
Lead	PWQO	0.025 0.005	based on	0.002						
Leau	IPWQO		hardness	0.002	< 0.001	< 0.001	< 0.001	< 0.001		
Manganese					0.32	0.02	0.27	0.3		
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005		
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005		
Silicon					7	6.4	6.2	6.8		
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001		-
Strontium		0.0001			0.148	0.135	0.14	0.119		
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	<0.0001	<0.0001		
Titanium		0.0005			<0.01	<0.01	< 0.01	<0.01		+
Vanadium	IPWQO	0.006		 	<0.001	<0.001	<0.001	<0.001		1
	PWQO	0.03 0.02		 						+
Zinc		0.03 0.02	0.007	0.89						
	IPWQO				<0.01	<0.01	<0.01	<0.01		
A	PWQO	0.1	0.005	0.15						
Arsenic	IPWQO	0.005	0.005	0.15						
COD					5	10	5	<5		1
Colour				I		-	_			1
Mercury	PWQO	0.0002								+
Selenium	PWQO	0.1		1						+
Tannin & Lignin		J.1								+
TOC										+
TKN										+
Sus. Solids										+
Field Parameters										+
Discharge L/sec				 	0.5	1	0.75	0.4		+
pH				-	8	7.7	7.4	7.3		+
DO DO	PWQO	f		 	9.5	9.8	9.7	8.8		+
Conductivity	PWQU	· ·		-	385	336	364	329		+
Temperature		mg/l		-						+
remperature		1		1	8.3	12.3	8.4	6.2		

Sample Location SW-3

					•					
Sample Date					Nov-98	Jul-99	Oct-99	Nov-99	Jun-00	Aug-00
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	170	156	l.s	144	407	200
BOD	IPWQU	а								<1
Chloride			420	400	<1	<1	<1	<1	<1	17.9
			120	180	17.0	16.6	17.9	17.2	28.6	
Conductivity					344	393	365	347	907	387
DOC										
N-NH3 (Ammonia)					< 0.01			0.04	1.23	0.1
N-NH3 (unionized)	PWQO	0.02			<0.01	<0.01	<0.01	<0.01	0.04	<0.01
N-NO2 (Nitrite)			0.6		<0.01	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.01	0.2	0.2	0.2	0.2	0.2
pH	PWQO	6.5-8.5	6.5-9		7.38	7.61	l.s.	8.26	8.17	7.81
Phenols	IPWQO	0.001	0.004	0.961	0.024	< 0.001	0.002	< 0.001	0.011	0.001
Sulphate					14					
TDS										
Total phosphorous	IPWQO	0.03			0.01	0.01	<0.01	0.02	0.08	0.02
Turbidity	ii WQO	0.03			8	1	0.9	4.8	2.7	16.4
Hardness as CaCO3					184	178	190	177	440	186
Calcium					56.80	51.60	58.70	52.40	126.00	55.3
Magnesium										11.60
		-		-	9.96	11.10	10.30	11.10	30.50	
Potassium		+		1		<0.04	0.5	4.2	11.2	7.7
Sodium		1		1	10.0	11.1	13.4	12.0	31.6	11.9
Aluminum (dissolved)	IPWQO	0.075			0.04	<0.01	0.15	0.12	0.30	0.25
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on							
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			<0.01	<0.01	0.01	<0.01	<0.01	<0.01
Cobalt	IPWQO	0.0009				<0.0005	<0.0005	< 0.0005	0.0023	0.0014
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.0037	0.0005	0.001	0.0006	0.0253	0.0011
Iron	PWQO	0.3	0.3		1.74	1.09	0.73	2.15	9.52	2.44
11011	-				1.74	1.03	0.73	2.13	3.32	2.44
Lead	PWQO	0.025 0.005	based on	0.002	0.0125	<0.0002	<0.0002	<0.0002	0.0003	<0.0002
2000	IPWQO		hardness	0.002	0.0125	10.0002	10.0002	10.0002	0.0000	10.0002
Manganese					0.53					
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	<0.02	<0.02	< 0.02	<0.02	0.02	< 0.02
Silicon		0.023		0.025	10.02	-0.02			0.02	
Silver	PWQO	0.0001			0.0009	0.0005	0.0002	<0.0001	<0.0001	<0.0001
Strontium	FWQO	0.0001			0.0003	0.0003	0.0002	<0.0001	<0.0001	10.0001
Thallium	IDMAGO	0.0002								
	IPWQO	0.0003								
Titanium		0.000		1		1	1	1	1	
Vanadium	IPWQO	0.006								
7:	PWQO	0.03 0.02	0.007	0.00	0.00	40.01	40.01	40.01	0.00	2C 01
Zinc	IPWQO		0.007	0.89	0.02	<0.01	<0.01	<0.01	0.06	<0.01
		0.4	1							
Arsenic	PWQO	0.1	0.005	0.15		< 0.001	<0.001	< 0.001	0.001	0.001
	IPWQO	0.005	5.505	0.13		-5.001	.5.551	.5.001	0.501	
COD					<3	4	13	5	32	<3
Colour					<1	6	5	5	47	6
Mercury		 			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Selenium	PWOO	0.0002		-	<0.0001	<0.0001	<0.001	<0.001	<0.0001	<0.001
	PWQ0 PWQQ	0.0002							10.001	2.001
	PWQ0 PWQ0	0.0002			<0.001	₹0.001				
Tannin & Lignin						V0.001				
TOC					3.6		0.07	0.20	2.02	0.30
TOC TKN					3.6 0.21	0.27	0.07	0.28	2.02	0.38
TOC TKN Sus. Solids					3.6		0.07	0.28 12	2.02	0.38 13
TOC TKN Sus. Solids Field Parameters					3.6 0.21	0.27				
TOC TKN Sus. Solids Field Parameters Discharge L/sec					3.6 0.21	0.27				
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH					3.6 0.21	0.27				13
TOC TKN Sus. Solids Field Parameters Discharge L/sec					3.6 0.21	0.27				
TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	0.1			3.6 0.21 7	0.27	<1	12		13

Sample Location SW-3

Sample Date					Oct-00	Sep-01	Dec-01	Jun-02	Aug-03	Oct-03
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			168	131	123	143	38	203
BOD					<1	<1	1	<1	<1	<1
Chloride			120	180	17.8	16.6		16.2	11.5	21.9
Conductivity					366	308	301	373	139	519
DOC										
N-NH3 (Ammonia)					0.15	0.02	0.02	0.21	<0.01	0.19
N-NH3 (unionized)	PWQO	0.02			<0.01				< 0.01	<0.1
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.1	0.1	0.2	0.2	0.3	0.2
pH	PWQO	6.5-8.5	6.5-9		7.94	8.32	8.40	7.80	7.29	7.97
Phenols	IPWQO	0.001	0.004	0.961	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate							11	17	6	27
TDS										
Total phosphorous	IPWQO	0.03			0.02	< 0.01	<0.01	0.02	0.01	0.02
Turbidity					2.4	3.1	4.1	9.8	1.9	37
Hardness as CaCO3					166	149	168	173	45	210
Calcium					46.80	45.40	50.40	101.00	11.5	61.3
Magnesium					12.00	8.57	10.30	21.40	3.9	13.7
Potassium					<0.4	1.6	3.8	5.6	1	5.6
Sodium					11.6	8.9	11.1	20.1	8.6	15.7
Aluminum (dissolved)	IPWQO	0.075			0.29	0.08	0.17	< 0.01	0.052	0.019
Aluminum total	IPWQO	0.075								
Barium				+			0.05	0.235	0.012	
Beryllium	PWQO	(b) 0.011		+					< 0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55					0.006	0.135
	PWQO	0.0002 c	based on							
Cadmium	IPWQO	0.0002 C		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.001
Chromium		0.0000	hardness		<0.01	<0.01	<0.01	<0.01	0.002	<0.002
Cobalt	PWQO	0.0099						<0.01		
Cobait	IPWQO	0.0009			<0.0005	0.0008	0.0021		0.0002	<0.001
Copper	PWQO	0.005 d	d	0.0069	<0.0005	0.0011	<0.0005	0.0025	<0.002	0.08
	IPWQO		ŭ	0.0003						
Iron	PWQO	0.3	0.3		0.86	0.97	1.06	10.40	0.593	3.85
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	<0.0002	<0.0002	0.0004	0.001	0.001	<0.005
Manganese			mar arress	+			0.41	2.94	0.029	
Molybdenum	IPWQO	0.04		+			02		0.0018	<0.001
Nickel	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.01	<0.01
Silicon	1 WQO	0.023		0.023	10.02	-0.02	-0.02	-0.02	-0.02	10.01
Silver	PWQO	0.0001		+	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.001
Strontium	1 WQO	0.0001		+	10.0002	10.0001	10.0001	10.0001	10.0001	10.001
Thallium	IPWQO	0.0003		+						
Titanium	ii wqo	0.0003		-						
Vanadium	IPWQO	0.006		1			 	 	 	<0.005
	PWQO	0.000		 			 	 	 	.0.003
Zinc		0.03 0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	0.02	< 0.005	<0.005
	IPWQO									
A	PWQO	0.1	0.005	0.15	-0.001	-0.001	0.001	.0.001	-0.00	0.000
Arsenic	IPWQO	0.005	0.005	0.15	<0.001	<0.001	0.001	<0.001	<0.03	0.002
COD		2.300		1	9	<3	<3	9	24	8
Colour				1	8	8	3	2		
Mercury	PWQO	0.0002		1	<0.0001	<0.0001	 	<0.0001	 	<0.0001
Selenium	PWQO	0.0002		 	<0.001	<0.001	<0.001	0.001	 	<0.001
Tannin & Lignin	1 44 40	0.1		+	-0.001	.0.002	-0.001	0.001		-0.001
TOC				1			3	3.2	 	
TKN				 	0.31	0.14	0.17	0.42	 	
Sus. Solids				1	2	4	4	29	 	
Field Parameters				+		-				
Discharge L/sec				+	+	 	+	+	+	1
pH										
DO DO	PWQO	f		1	-	9	 	 	8.1	
Conductivity	PWQU			1	1	9	1	 	0.1	
Temperature		mg/l		-						

Sample Location SW-3

Sample Date					Mar-04	Jul-04	Sept-04	May-05	Aug-05	Nov-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			190	177	189	161	145	148
BOD					1	1	1	<1	<1	<1
Chloride			120	180	22.1	24.1	20.8	21	21	19
Conductivity					462	507	461			
DOC										
N-NH3 (Ammonia)					0.23	0.28	0.13	0.09	0.09	0.14
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	< 0.01	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.3	0.2	0.2	0.1	<0.10	<0.10
pH	PWQO	6.5-8.5	6.5-9		6.95	7.76	7.72	7.98	8.07	8.15
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate					27	25				
TDS					261	245	244			
Total phosphorous	IPWQO	0.03			0.04	0.15	<0.01	0.04	0.03	0.05
Turbidity		0.05			42	92	10.1	4.9	2.4	7.1
Hardness as CaCO3					204	204	189	161	147	154
Calcium					59.2	59.9	53.6	48	44	45
Magnesium					13.6	13.2	13.4	10	9	10
Potassium					5.4	5.4	5.5	4	3	4
Sodium					14.4	14.8	13.6	12	10	11
Aluminum (dissolved)	IDMOO	0.075			0.163	0.508	0.04	0.05	0.01	<0.01
Aluminum (dissolved)	IPWQO	0.075			0.105	0.306	0.04	0.05	0.01	\U.UI
Barium	IPWQO	0.075						0.07	0.05	0.05
	511100	(1) 0.044						<0.07	<0.05	<0.05
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55				0.07	0.08	0.05
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.001	<0.0001	<0.0001	<0.0001	<0.0001
Caumum	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.0011	< 0.002	0.0004	< 0.001	0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0005	< 0.001	0.0003	0.0004	< 0.0002	< 0.0002
Copper	PWQO	0.005 d	d	0.0069	<0.002	<0.02	<0.002	<0.001	<0.001	<0.001
	PWQO IPWQO	0.005 d		0.0069	<0.002	<0.02	<0.002			
Copper Iron	PWQO IPWQO PWQO	0.005 d 0.3	0.3	0.0069				<0.001	<0.001	<0.001
Iron	PWQO IPWQO PWQO PWQO	0.005 d			<0.002 9.57	<0.02 0.515	<0.002	2.02	0.49	1.45
Iron Lead	PWQO IPWQO PWQO	0.005 d 0.3	0.3	0.0069	<0.002	<0.02	<0.002	2.02 <0.001	0.49 <0.001	1.45
Iron	PWQO IPWQO PWQO PWQO	0.005 d 0.3	0.3 based on		<0.002 9.57	<0.02 0.515	<0.002	2.02 <0.001 0.52	0.49 <0.001 0.27	1.45 <0.001 0.57
Iron Lead	PWQO IPWQO PWQO PWQO	0.005 d 0.3	0.3 based on		<0.002 9.57	<0.02 0.515	<0.002	2.02 <0.001	0.49 <0.001	1.45 <0.001 0.57 <0.005
Iron Lead Manganese Molybdenum Nickel	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on		<0.002 9.57	<0.02 0.515	<0.002 2.52 <0.0005	2.02 <0.001 0.52 <0.005 <0.005	0.49 <0.001 0.27 <0.005 <0.005	1.45 <0.001 0.57 <0.005 <0.005
Iron Lead Manganese Molybdenum	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on	0.002	<0.002 9.57 0.0016	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005	0.49 <0.001 0.27 <0.005	1.45 <0.001 0.57 <0.005
Iron Lead Manganese Molybdenum Nickel	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on	0.002	<0.002 9.57 0.0016	<0.02 0.515 <0.005	<0.002 2.52 <0.0005	2.02 <0.001 0.52 <0.005 <0.005	0.49 <0.001 0.27 <0.005 <0.005	1.45 <0.001 0.57 <0.005 <0.005
Iron Lead Manganese Molybdenum Nickel Silicon	PWQO IPWQO PWQO IPWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005	0.49 <0.001 0.27 <0.005 <0.005 13.3	1.45 <0.001 0.57 <0.005 <0.005 8.9
Iron Lead Manganese Molybdenum Nickel Silicon Silver	PWQO IPWQO PWQO IPWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005 10.5	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	<0.002 9.57 0.0016 <0.01	<0.02 0.515 <0.005 <0.01	<0.002 2.52 <0.0005 -<0.01 26	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.01 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.01 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0007 0.0001 28 5	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0001 0.007 0.001 28 5 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0007 0.0001 28 5	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0001 0.007 0.001 28 5 <0.0001	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.001 <0.0001 0.007 0.001 28 5 <0.0001 <0.0001	<0.02 0.515 <0.005 <0.001 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.001 <0.0001 0.007 0.001 28 5 <0.0001 <0.0001	<0.02 0.515 <0.005 <0.001 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 <0.01 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Toni & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 0.001 <0.5	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002 <0.01	1.45 <0.001 0.57 <0.005 8.9 <0.0001 0.119 <0.0001 <0.01 <0.01 <0.01 <55
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01 <55	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002 <0.01	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 <0.010 <0.01 <0.01 <55
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01 <55 6 8.07	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002 <1.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	1.45 <0.001 0.57 <0.005 <0.0005 8.9 <0.0001 0.119 <0.001 <0.01 <<5
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0002 0.1	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 10.5 0.167 <0.0001 <0.01 0.001 <55 6 8.07 3.55	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002 <0.01 <<5	1.45 <0.001 0.57 <0.005 <0.005 8.9 <0.0001 <0.010 <0.001 <0.01 <0.01 <55 4.5 8.37 10.32
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005	0.3 based on hardness 0.007	0.002	<0.002 9.57 0.0016 <0.01 <0.0001 0.007 0.001 28 5 <0.0001 <0.001 0.59	<0.02 0.515 <0.005 <0.01 <0.001 0.024 <0.03 21 4 <0.0001 <0.001	<0.002 2.52 <0.0005 <0.01 26 <0.0001 0.007 0.001 20 6 <0.001 0.31	2.02 <0.001 0.52 <0.005 <0.005 10.5 0.167 <0.0001 <0.01 <0.01 <55 6 8.07	0.49 <0.001 0.27 <0.005 <0.005 13.3 <0.0001 0.114 <0.0001 <0.01 0.002 <1.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	1.45 <0.001 0.57 <0.005 <0.0005 8.9 <0.0001 0.119 <0.001 <0.01 <<5

Sample Location SW-3

Sample Date					May-06	Aug-06	Oct-06	May-07	Aug-07	Oct-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	187	141	150	162	175	165
BOD	IF WQO	a			<1	<1	<1	<1	1	2
Chloride			120	180	21	21	20	20	21	21
Conductivity			120	100	454	354	364	411	439	418
DOC					6.2	2.6	3.2	3.8	4.9	4.1
N-NH3 (Ammonia)					0.25	2.0	3.2	0.12	0.24	0.18
N-NH3 (unionized)	PWQO	0.02			0.23			<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0			<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			0.6			<0.10	0.10	<0.10	<0.10	0.16
pH	DIMOO	6505	3			\0.10	0.11	7.82	8.17	7.99
Phenols	PWQO	6.5-8.5	6.5-9	0.064		<0.001	<0.001	<0.001	<0.001	<0.001
	IPWQO	0.001	0.004	0.961						
Sulphate					205	10	13	19	17	17
TDS					295	230	237	267	285	272
Total phosphorous	IPWQO	0.03			0.10	0.01	0.02	0.29	0.02	<0.02
Turbidity								8.5	8.7	2
Hardness as CaCO3						142	164	184	194	178
Calcium					55	42	49	54	58	53
Magnesium					12	9	10	12	12	11
Potassium					5	3	5	5	5	6
Sodium					14	11	13	15	15	15
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	0.07	< 0.01	<0.01	< 0.01
Aluminum total	IPWQO	0.075								
Barium	ii WQO	0.075			0.21	0.05	0.05	0.08	0.08	0.08
Beryllium	PWQO	(b) 0.011			0.22	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.11	0.05	0.06	0.11	0.18	0.13
BOTOTI				3.33	0.11	0.03	0.00	0.11	0.10	0.13
Cadmium	PWQO	0.0002 c	based on	0.00021		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	IPWQO		hardness	0.00022						
Chromium	PWQO	0.0099			0.002	<0.001	<0.001	0.001	0.002	<0.001
Cobalt	IPWQO	0.0009			0.0011	<0.0002	<0.0002	0.0003	0.0004	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		19	0.69	0.47	2.00	1.86	1.17
11011	-				13	0.03	0.47	2.00	1.00	1.17
Lead	PWQO	0.025 0.005	based on	0.002		< 0.001	<0.001	< 0.001	< 0.001	<0.001
			hardness							
	IPWQO									
Manganese					3.28	0.42	0.38	0.67	1.04	0.96
Manganese Molybdenum	IPWQO	0.04			3.28	<0.005	<0.005	<0.005	<0.005	<0.005
		0.04 0.025		0.025	3.28					
Molybdenum	IPWQO			0.025	9.3	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum Nickel	IPWQO	0.025		0.025		<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
Molybdenum Nickel Silicon Silver	IPWQO PWQO			0.025	9.3	<0.005 <0.005 9.3	<0.005 <0.005 8.1	<0.005 <0.005 9.0	<0.005 <0.005 9.5 <0.0001	<0.005 <0.005 8.7
Molybdenum Nickel Silicon	IPWQO PWQO	0.025		0.025		<0.005 <0.005 9.3 <0.0001	<0.005 <0.005 8.1 <0.0001	<0.005 <0.005 9.0 <0.0001 0.139	<0.005 <0.005 9.5 <0.0001 0.16	<0.005 <0.005 8.7 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO	0.025		0.025	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO	0.025 0.0001 0.0003		0.025	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01	<0.005 <0.005 8.7 <0.0001 0.166
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003	0.007		9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO IPWQO	0.025 0.0001 0.0003	0.007	0.025	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	IPWQO PWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003		0.89	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007		9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1		0.89	9.3	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01	<0.005 <0.005 <0.005 <0.0001 0.121 <0.0001 <0.01 <0.001 <0.01	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01	<0.005 <0.005 <0.005 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 <0.01 <
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200	<0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 0.001	<0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001	<0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002	<0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 -0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01	<0.005 <0.005 <0.005 <0.0001 0.121 <0.0001 <0.01 0.001 <0.01	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01	<0.005 <0.005 <0.005 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 <0.01 <
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01	<0.005 <0.005 <0.005 <0.0001 0.121 <0.0001 <0.01 0.001 <0.01	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01	<0.005 <0.005 <0.005 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 <0.01 <
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01	<0.005 <0.005 <0.005 <0.0001 0.121 <0.0001 <0.01 0.001 <0.01	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01 <0.01 <0.01	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01	<0.005 <0.005 <0.005 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 <0.01 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01 11	<0.005 <0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 5 0.01	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001 <5.001	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01	<0.005 <0.005 <0.005 9.5 <0.0001 0.16 <0.0001 <0.01 <0.01 <50.01	<0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.001 <0.001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002		0.89	9.3 0.200 0.01 11	<0.005 <0.005 <0.005 9.3 <0.0001 0.121 <0.0001 <0.01 5 0.01	<0.005 <0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.01 <0.001 <5 0.18	<0.005 <0.005 <0.005 <0.0001 0.139 0.0004 <0.01 0.002 <0.01 <55	<0.005 <0.005 <0.005 <0.0001 0.16 <0.0001 <0.01 0.003 <0.01 <55	<.0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.01 <0.01 <5
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	9.3 0.200 0.01 11 0.93	<0.005 <0.005 <0.005 9.3 <0.0001 0.121 <0.0001 0.001 <0.01 0.01 7 7.72	<0.005 <0.005 <0.005 8.1 <0.0001 0.118 <0.0001 <0.001 <0.001 <5 0.01 <5 0.18	<0.005 <0.005 <0.005 9.0 <0.0001 0.139 0.0004 <0.01 0.002 <0.01 <5 0.18 9 7.34	<0.005 <0.005 <0.005 9.5 <0.0001 0.16 <0.0001 0.003 <0.01 <5 0.18 10 7.5	<.0.005 <0.005 8.7 <0.0001 0.166 <0.0001 <0.001 <0.01 <5 <5

Sample Location SW-3

Sample Date					May-08	Oct-08	May-09	Jul-09	Sep-09	May-10
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	155	166	175	152	151	162
BOD	IF VVQO	a			<1	<1	<1	<1	<1	<1
Chloride			120	180	20	20	20	18	18	19
Conductivity			120	180	392	410	429	373	364	13
DOC					2.4	3.2	3.8	2.7	2.8	
N-NH3 (Ammonia)					0.05	0.08	0.13	0.06	0.04	0.17
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0		<0.10	<0.02	<0.02	<0.02	<0.02	<0.10
N-NO3 (Nitrate)			0.6		<0.10		0.19	0.10	0.10	0.10
pH	BILLOO	65.05	3			0.18				8.23
Phenols	PWQO	6.5-8.5	6.5-9	0.004	8.01	8.01	8.07	8.08	7.93	<0.001
	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					15	15	19	13	11	
TDS					255	267	279	242	237	
Total phosphorous	IPWQO	0.03			0.01	<0.01	<0.01	<0.01	0.01	0.01
Turbidity					2.8	8.7	1.3	1.4	3.8	4
Hardness as CaCO3					166	173	181	164	144	
Calcium					50	51	56	49	43	50
Magnesium					10	11	10	10	9	11
Potassium					4	5	5	5	5	5
Sodium					13	15	13	14	14	15
Aluminum (dissolved)	IPWQO	0.075			< 0.01	<0.01	<0.01	<0.01		< 0.01
Aluminum total	IPWQO	0.075						< 0.01	< 0.01	
Barium	-1-				0.06	0.07	0.07	0.05	0.05	0.06
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	0.04	0.10	0.20	0.07	0.06	0.1
201011	PWQO	0.0002 c	based on	3.33	0.04	0.10	0.20	0.07	0.00	0.1
Cadmium		0.0002 C		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.001	0.002	<0.001	<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0003	0.0003	0.0004	< 0.0002	< 0.0002	<0.0002
	PWQO	0.005 d		0.0050	0.004	0.004				
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		1.12	1.53	0.87	0.14	0.73	0.96
	PWQO	0.025 0.005			1.12	1.55	0.07	0.14	0.73	
Lead		0.025 0.005	based on	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	IPWQO		hardness							
Manganese					0.40	0.73	0.53	0.31	0.45	0.35
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon					7.7	8.3	7.4	7.6	8.0	7.0
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Strontium					0.139	0.143	0.164	0.135	0.134	0.144
Thallium	IPWQO	0.0003			< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Titanium	-,-				<0.01	<0.01	<0.05	<0.01	<0.01	< 0.01
Vanadium	IPWQO	0.006			0.003	0.003	0.001	0.002	0.002	0.001
	PWQO	0.03 0.02								
Zinc	IPWQO	0.03	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
		1	I							
A	-						1	I	l	
Arsenic	PWQO	0.1	0.005	0.45						
	PWQO		0.005	0.15						
COD	-	0.1 0.005	0.005	0.15						<5
COD Colour	PWQO		0.005	0.15						<5
Colour	PWQO IPWQO	0.005	0.005	0.15						<5
Colour Mercury	PWQO IPWQO PWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium	PWQO IPWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO	0.005	0.005	0.15						<5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO	0.005	0.005	0.15						
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005	0.005	0.15			8.0	4.6	4.2	4.0
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005	0.005	0.15			8.0	7.9	8.1	4.0
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO	0.005	0.005	0.15			8.0 9.17	7.9 7.83	8.1 8.79	4.0 8.1 6.29
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15			8.0	7.9	8.1	4.0

Sample Location SW-3

Sample Date					Aug-10	Oct-10	Jun-11	Aug-11	Oct-11	Jun-12
DADAMETED										
PARAMETER	Limit	PWQO	CWQG	APV				_		476
Alkalinity as CaCO3	IPWQO	a			154	149	177	150	150	176
BOD					<1	<1	<1	1	<1	<1
Chloride			120	180	18	18	19	17	18	19
Conductivity										
DOC										
N-NH3 (Ammonia)					0.02	0.03	0.19	0.07	0.04	0.21
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	< 0.10	0.12	<0.10
N-NO3 (Nitrate)			3		0.12	0.11	< 0.10	0.10	1.89	0.18
pH	PWQO	6.5-8.5	6.5-9		8.01	8.14	8.20	8.03	7.70	7.89
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Turbidity					6.6	4.8	8.0	1.5	1.4	1.9
Hardness as CaCO3								_		154
Calcium					45	48	49	42	44	45
Magnesium				1	9	9	10	9	9	10
Potassium					5	4	5	4	4	5
Sodium					14	13	14	13	12	15
Aluminum (dissolved)	IPWQO	0.075		1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum total	IPWQO	0.075			<0.01	₹0.01	<0.01	<0.01	<0.01	<0.01
Barium	IPWQU	0.075			0.00	0.05		0.05	0.06	0.01
Beryllium	PWQO	(b) 0.011			0.06		0.06			<0.0005
Boron			4.5	2.55	<0.001	<0.001	<0.0005	<0.0005	<0.0005	0.0003
BOTOTI	IPWQO	0.2	1.5	3.55	0.06	0.06	0.10	0.05	0.06	0.11
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cadmidin	IPWQO		hardness	0.00021	<0.0001	<0.0001	\0.0001	<0.0001	VO.0001	
Chromium	PWQO	0.0099			0.004	0.002	<0.001	0.001	<0.001	0.002
Cobalt	IPWQO	0.0009			0.0002	<0.0002	0.0002	<0.0002	< 0.0002	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iron		0.2	0.3		4.47	0.00	4.22	0.00	4.40	1.24
11011	PWQO	0.3			1.47	0.80	1.23	0.86	1.10	1.24
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Leau	IPWQO		hardness	0.002	V0.001	VO.001	<0.001	VO.001	VO.001	<0.001
Manganese					0.49	0.37	0.40	0.30	0.40	0.60
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
Silicon		0.000			7.7	7.6	7.2	7.2	7.4	8.2
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Strontium		0.0001			0.140	0.127	0.146	0.120	0.128	0.160
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	***QO	0.0003		1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium				1	~U.UI	~U.UI	~U.UI			
	I Ib/w/ch	1 0,006			0 002		0.001	0 001	0 001	0.003
	IPWQO	0.006			0.002	0.001	0.001	0.001	0.001	0.003
Zinc	PWQO	0.006 0.03 0.02	0.007	0.89		0.001				
Zinc			0.007	0.89	0.002 <0.01		0.001 <0.01	<0.01	<0.01	<0.01
	PWQO					0.001				
Zinc Arsenic	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89		0.001				
Arsenic	PWQO IPWQO	0.03 0.02			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02				0.001				
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001 <0.01	<0.01	<0.01	<0.01	<0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01	0.001	<0.01 5	<0.01	5	7
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01 8 5.0	0.001	5	<0.01 10 6.7	<0.01 5 7.5	<0.01 7 3.5
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01 8 5.0 8.0	0.001 <0.01 10 3 8.1	<0.01 5	<0.01 10 6.7 7.7	5	<0.01 7 3.5 7.7
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			<0.01 8 5.0	0.001	5	<0.01 10 6.7	<0.01 5 7.5	<0.01 7 3.5
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			<0.01 8 5.0 8.0	0.001 <0.01 10 3 8.1	<0.01 5 6.0 8.0	<0.01 10 6.7 7.7	<0.01 5 7.5 7.6	<0.01 7 3.5 7.7

Sample Location SW-3

Sample Date					Aug-12	Oct-12	Jun-13	Aug-13	Nov-13	Apr-14
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			155	158	154	160	154	168
BOD					2	1	<1	1	<1	< 3
Chloride			120	180	17	17	16	17	17	16.5
Conductivity										
DOC										
N-NH3 (Ammonia)					0.07	0.04	0.04	0.21	0.07	0.2
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	< 0.01
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
N-NO3 (Nitrate)			3		0.11	0.14	0.14	0.18	0.27	0.4
pH	PWQO	6.5-8.5	6.5-9		7.97	7.97	8.03	7.97	8.24	
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			< 0.01	< 0.01	0.02	< 0.01	0.01	0.01
Turbidity	,				5.8	1.2	1.6	3.8	2.8	5
Hardness as CaCO3					148	157	155	144	159	186
Calcium					46	48	49	41	49	56.5
Magnesium					8	9	8	10	49	10.9
Potassium					4	5	5	5	9	6.5
Sodium					12	13	11	12	13	14.9
Aluminum (dissolved)	IPWQO	0.075			<0.01	<0.01	11	<0.01	<0.01	0.02
Aluminum total			1				0.01			0.02
Barium	IPWQO	0.075			<0.01	<0.01		<0.01	<0.01	0.08
	DIMOO	(h) 0 044			0.06	0.06	0.06	0.06	0.06	< 0.002
Beryllium	PWQO	(b) 0.011		2	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Boron	IPWQO	0.2	1.5	3.55	0.07	0.08	0.07	0.1	0.07	0.175
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Caumum	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Chromium	PWQO	0.0099			< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.0002
Cobalt	IPWQO	0.0009			< 0.0001	<0.0002	<0.0002	0.0002	<0.0002	0.0002
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0004
Iron		0.2	0.3		4.00	0.43	4.25	0.7	0.52	1.57
11011	PWQO	0.3			1.09	0.43	1.25	0.7	0.52	1.57
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	< 0.001	<0.001	<0.001	<0.001	0.00022
Lead	IPWQO		hardness	0.002	10.001	40.001	40.001	40.001	10.001	0.00022
Manganese					0.43	0.35	0.28	0.35	0.25	0.436
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0002
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0014
Silicon	-				7.3	6.7	7.6	6.8	8	8.12
Silver	PWQO	0.0001			< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Strontium	-,				0.137	0.142	0.141	0.146	0.131	0.189
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00005
Titanium		0.0005			<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005
Vanadium	IPWQO	0.006		1	<0.001	<0.01	<0.01	<0.01	<0.001	< 0.005
	11 11 40			-	10.001	,0.001	70.001	10.001	10.001	
Zinc	DWOO	0.02								
	PWQO	0.03 0.02	0.007	0.89	<0.01	<0.01	<0.01	<0.01	< 0.01	0.01
	PWQO IPWQO	0.03 0.02	0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
		0.03 0.02			<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Arsenic	IPWQO PWQO	0.1	0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
	IPWQO									
COD	IPWQO PWQO	0.1			<0.01	<0.01	<0.01	<0.01	<0.01	< 5
COD Colour	IPWQO PWQO IPWQO	0.1 0.005								
COD Colour Mercury	IPWQO PWQO IPWQO PWQO	0.1 0.005								
COD Colour Mercury Selenium	IPWQO PWQO IPWQO	0.1 0.005								
COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO PWQO	0.1 0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO	0.1 0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO	0.1 0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO PWQO	0.1 0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO PWQO	0.1 0.005			<5	<5	<5	5	<5	< 5
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO PWQO	0.1 0.005			<5	<5 4.5	<5	5	<5	< 5
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO PWQO PWQO	0.1 0.005 0.0002 0.1			1.9	<5 4.5 7.2	<5 3 8.1	3.5 7.9	<5 3 8	11.3
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO IPWQO PWQO	0.1 0.005			1.9 7.6 6.76	4.5 7.2 8.46	<5	3.5 7.9 7.32	<5	11.3 8 6.94
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO PWQO PWQO	0.1 0.005 0.0002 0.1			1.9	<5 4.5 7.2	<5 3 8.1	3.5 7.9	<5 3 8	11.3

Sample Location SW-3

Sample Date					Jul-14	Oct-14	Jun-15	Aug-15	Oct-15	May-16
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			165	149	166	153	147	175
BOD					< 3	< 3	5	5	< 3	<5
Chloride			120	180	16.3	15.6	16.2	15.8	15.6	18.3
Conductivity										
DOC										3.2
N-NH3 (Ammonia)					0.37	0.19	0.34	0.1	0.06	0.39
N-NH3 (unionized)	PWQO	0.02			0.02	< 0.01	0.01	< 0.01	< 0.01	0.021
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.1	< 0.1	< 0.1	< 0.05
N-NO3 (Nitrate)			3		< 0.10	0.4	0.3	0.3	0.3	0.31
pH	PWQO	6.5-8.5	6.5-9							
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	, 0.001	< 0.001	< 0.001	< 0.001	<0.001
Sulphate						,				14.9
TDS						199				
Total phosphorous	IPWQO	0.03			0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Turbidity		0.05			19.7	9.7	6	2.6	1.9	5.8
Hardness as CaCO3					189	163	156	170	133	169
Calcium					51.7	49.4	46.6	54.1	39.4	50.5
Magnesium					10	9.61	9.62	10.9	8.37	10.3
Potassium					5.9	6	4.9	6.3	4.6	5.73
Sodium					14	13.3	12.8	16.1	11.8	12.3
Aluminum (dissolved)	IPWQO	0.075			0.08					12.3
Aluminum total			1		0.08	0.01	0.01	0.01	0.01	
Barium	IPWQO	0.075				0.000	0.067	0.004	0.055	0.070
	811100	(1) 0.011			0.09	0.069	0.067	0.081	0.055	0.073
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.191	0.061	0.168	0.158	0.094	0.181
Cadmium	PWQO	0.0002 c	based on	0.00021	0.00002	0.00004	< 0.00002	< 0.00002	< 0.00002	<0.0001
Cadmium	IPWQO		hardness	0.00021	0.00002	0.00004	< 0.00002	< 0.00002	< 0.00002	<0.0001
Chromium	PWQO	0.0099			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.003
Cobalt	IPWQO	0.0009			0.001	< 0.0001	0.0003	< 0.0001	0.0002	<0.0005
	PWQO	0.005 d			0.00		0.000		0.000	
Copper	IPWQO	0.005	d	0.0069	0.0023	0.0003	< 0.0001	0.0007	0.0003	< 0.002
Tue w			0.0		0.65	0.067				4.00
Iron	PWQO	0.3	0.3		3.65	0.867	1.22	0.812	0.646	1.22
Lead	PWQO	0.025 0.005	based on	0.002	0.00037	0.00018	0.00014	0.00032	0.00008	<0.001
Leau	IPWQO		hardness	0.002	0.00037	0.00018	0.00014	0.00032	0.00008	<0.001
Manganese					0.781	0.458	0.412	0.355	0.256	0.403
Molybdenum	IPWQO	0.04			0.008	0.0007	0.0002	0.0003	0.0003	<0.002
Nickel	PWQO	0.025		0.025	0.0285	0.001	0.0014	0.0016	0.002	< 0.003
Silicon					7.99	7.11	6.67	8.62	6.75	7.45
Silver	PWQO	0.0001			0.00002	< 0.00002		< 0.00002	0.00016	<0.0001
Strontium		0.0001			0.178	0.163	0.149	0.176	0.123	0.158
Thallium	IPWQO	0.0003			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.0003
Titanium	ii wqo	0.0003			0.008	< 0.005	< 0.005	< 0.005	< 0.005	0.002
Vanadium	IPWQO	0.006			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
variadiani	-				< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	\0.002
Zinc	PWQO	0.03 0.02	0.007	0.89	0.011	0.007	< 0.005	0.007	0.014	0.006
	IPWQO									
	PWQO	0.1		_						
Arsenic	IPWQO	0.005	0.005	0.15						
COD	IF WYQU	0.003			7	11	0			, F
Colour						11	9	< 5	< 5	<5
Mercury	DIAZOO	0.0000								
Selenium	PWQO	0.0002								
	PWQO	0.1					1			
Tannin & Lignin		1								
TOC		1								
TKN										
Sus. Solids										
Field Parameters										
Discharge L/sec					4.6	5	4.8	7.63	3.25	6
рН					8	7.8	7.8	7.5	7.9	7.9
DO	PWQO	f		1	9.83	9.62	9.12	9.29	10.18	11.08
Conductivity		mg/l			358	339	431	336	324	372
Temperature					10.6	7.9	11.2	11.5	8.7	9.9

Sample Location SW-3

Sample Date					Aug-16	Nov-16	Apr-17	Aug-17	Oct-17	May-18
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			166	143	136	131	154	174
BOD					<5	<5	< 3	< 3	< 3	< 1
Chloride			120	180	18.8	18.0	14.2	14.3	16.2	18
Conductivity										
DOC					3.0	2.7				< 0.5
N-NH3 (Ammonia)					0.45	0.16	0.1	0.07	0.27	0.75
N-NH3 (unionized)	PWQO	0.02			0.099	0.0087	< 0.01	-	0.02	0.04
N-NO2 (Nitrite)			0.6		< 0.05	< 0.05	0.2	< 0.05	< 0.05	< 0.10
N-NO3 (Nitrate)			3		0.25	0.25	0.4	0.19	0.26	0.28
pH	PWQO	6.5-8.5	6.5-9							8.14
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001
Sulphate					10.7	9.30				15
TDS										
Total phosphorous	IPWQO	0.03			0.01	0.01	< 0.01	< 0.01	0.02	0.014
Turbidity					5.8	11.8	3.2	8.3	5.9	9.1
Hardness as CaCO3					154	139	147	145	150	193
Calcium					46.7	42.1	42.1	40.1	45.2	59
Magnesium					9.08	8.31	8.75	8.56	9.01	11
Potassium				1	6.16	4.98	4.3	3.9	5.4	7
Sodium					13.7	11.7	11.4	11.4	12.5	16
Aluminum (dissolved)	IPWQO	0.075			13.7	11.7	0.03	0.01	0.03	< 0.01
Aluminum total	IPWQO	0.075	I				0.03	0.01	0.03	0.09
Barium	IPWQU	0.073			0.074	0.059	0.052	0.06	0.068	0.09
Beryllium	PWQO	(b) 0.011			<0.001					< 0.0005
Boron			4.5	2.55		<0.001	< 0.002	< 0.002	< 0.002	
ВОГОП	IPWQO	0.2	1.5	3.55	0.141	0.093	0.095	0.079	0.148	0.26
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	< 0.000020	< 0.000014	< 0.000014	< 0.0001
	IPWQO		hardness	0.00021	\0.0001	VO.0001	< 0.000020	< 0.000014	< 0.000014	< 0.0001
Chromium	PWQO	0.0099			< 0.003	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			< 0.0005	< 0.0005	0.0001	0.0002	< 0.0001	0.0005
_	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.002	<0.002	0.0018	0.0002	0.0003	< 0.001
Iron	PWQO	0.3	0.3		0.90	2.22	1.02	1.05	1.16	4.35
	PWQO	0.025 0.005			0.50	2.22	1.02	1.05	1.10	4.33
Lead	-	0.025 0.005	based on	0.002	< 0.001	< 0.001	0.00011	0.00012	0.00009	< 0.001
	IPWQO		hardness							
Manganese					0.370	0.464	0.257	0.283	0.363	0.76
Molybdenum	IPWQO	0.04			<0.002	<0.002	0.0002	0.0002	0.0002	< 0.005
Nickel	PWQO	0.025		0.025	< 0.003	<0.003	0.0015	0.001	0.001	< 0.005
Silicon					7.88	8.27	7.17	7.72	7.43	7.7
Silver	PWQO	0.0001			<0.0001	<0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.0001
Strontium					0.140	0.109	0.107	0.119	0.131	0.160
Thallium	IPWQO	0.0003			< 0.0003	< 0.0003	< 0.00005	< 0.00005	< 0.00005	< 0.0001
Titanium					< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.01
Vanadium	IPWQO	0.006			< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	0.002
	PWQO	0.03 0.02								
Zinc	IPWQO		0.007	0.89	<0.005	0.005	0.007	0.005	< 0.005	< 0.01
	-	0.4								
Arsenic	PWQO	0.1	0.005	0.15						
	IPWQO	0.005	0.003	0.13						
COD					<5	<5	< 5	6	11	12
Colour										
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin										
TOC										
TKN										
Sus. Solids										
Field Parameters										
Discharge L/sec					3.78	4.4	4.7	5.45	4.7	4.6
pH					7.5	7.9	7.5		7.9	7.6
DO	PWQO	f		1	9.46	10.6	11.71	5.06	6.85	6.2
Conductivity		mg/l		1	403	348	338		351	373
Temperature		8/ '		1	12.1	5.7	6		10.6	9.8
		1	L	1	1			L		

Sample Location SW-3

Sample Date					Jul-18	Oct-18	May-19	Aug-19	Oct-19	May-20
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	185	160	164	152	156	160
BOD	IPWQU	d			1	< 1	3	<1	2	<1
Chloride			120	180	21	19	<u>3</u> 17	18	17	17
Conductivity			120	100	21	19	1/	10	1/	1/
DOC					4.3	7.1	2.1	3.1	2.4	2.6
N-NH3 (Ammonia)					0.95	0.21	0.276	0.287	0.253	0.401
N-NH3 (unionized)	PWQO	0.02			0.95	< 0.02	0.276	<0.02	<0.02	<0.02
N-NO2 (Nitrite)	PWQU	0.02	0.0							
N-NO3 (Nitrate)			0.6		< 0.10	< 0.10	<0.1	<0.10	<0.10	<0.10
pH	DIMOO	65.05	3		0.32	0.29	0.45	0.29	0.32	0.51
Phenols	PWQO	6.5-8.5	6.5-9	0.064	8.03	8.02	8.47	8.14	8.12	8.1
	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					17	9	10	8	9	12
TDS										
Total phosphorous	IPWQO	0.03			0.01	0.015	0.006	0.006	0.004	<0.020
Turbidity					9.2	2.2	3.8	3.3	1.9	7.3
Hardness as CaCO3					174	139	174	149	157	162
Calcium					53	41	53	45	48	50
Magnesium					10	9	10	9	9	9
Potassium					6	5	4	4	5	4
Sodium					19	13	11	12	12	12
Aluminum (dissolved)	IPWQO	0.075			< 0.01	0.03				<0.01
Aluminum total	IPWQO	0.075					0.01	<0.01	0.01	
Barium					0.1	0.08	0.1	0.07	0.07	0.07
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.29	0.1	0.06	0.11	0.14	0.17
	PWQO	0.0002 c	based on	5.55	0.23	0.1	0.00		V	0.17
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
01 .	IPWQO		hardness						0.004	0.004
Chromium	PWQO	0.0099			< 0.001	< 0.001		<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0003	0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Caman	PWQO	0.005 d		0.0069	< 0.001	< 0.001	۲0 OO1			
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Iron	PWQO	0.3	0.3		2.42	2.77	0.89	0.88	0.44	1.08
	PWQO	0.025 0.005	based on			2.77	0.03			
Lead		0.023 0.003		0.002	< 0.001	< 0.001	< 0.001	<0.001	-0.004	-0.004
	IPWQO		hardness			_			<0.001	<0.001
Manganese					0.67	0.55	0.24	0.3	0.3	0.28
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon										
Silver	PWQO				7.7	7.6	7.1	7.2	7.4	7.2
Strontium	FWQU	0.0001			< 0.0001	7.6 < 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	FWQO	0.0001						<0.0001 0.131	<0.0001 0.153	<0.0001 0.14
Thallium	IPWQO	0.0001			< 0.0001 0.179 < 0.0001	< 0.0001 0.132 < 0.0001	<0.0001 0.132 <0.0001	<0.0001 0.131 <0.0001	<0.0001 0.153 <0.0001	<0.0001 0.14 <0.0001
Titanium	IPWQO	0.0003			<0.0001 0.179 <0.0001 <0.01	< 0.0001 0.132 < 0.0001 < 0.01	<0.0001 0.132 <0.0001 <0.01	<0.0001 0.131 <0.0001 <0.01	<0.0001 0.153 <0.0001 <0.01	<0.0001 0.14 <0.0001 <0.01
					< 0.0001 0.179 < 0.0001	< 0.0001 0.132 < 0.0001	<0.0001 0.132 <0.0001	<0.0001 0.131 <0.0001	<0.0001 0.153 <0.0001	<0.0001 0.14 <0.0001
Titanium Vanadium	IPWQO	0.0003			< 0.0001 0.179 < 0.0001 < 0.001 < 0.001	< 0.0001 0.132 < 0.0001 < 0.01 0.001	<0.0001 0.132 <0.0001 <0.01 <0.001	<0.0001 0.131 <0.0001 <0.01	<0.0001 0.153 <0.0001 <0.01	<0.0001 0.14 <0.0001 <0.01
Titanium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	<0.0001 0.179 <0.0001 <0.01	< 0.0001 0.132 < 0.0001 < 0.01	<0.0001 0.132 <0.0001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001
Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89	< 0.0001 0.179 < 0.0001 < 0.001 < 0.001	< 0.0001 0.132 < 0.0001 < 0.01 0.001	<0.0001 0.132 <0.0001 <0.01 <0.001	<0.0001 0.131 <0.0001 <0.01	<0.0001 0.153 <0.0001 <0.01	<0.0001 0.14 <0.0001 <0.01
Titanium Vanadium Zinc	IPWQO IPWQO PWQO	0.0003			< 0.0001 0.179 < 0.0001 < 0.001 < 0.001	< 0.0001 0.132 < 0.0001 < 0.01 0.001	<0.0001 0.132 <0.0001 <0.01 <0.001	<0.0001 0.131 <0.0001 <0.01 <0.001	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001
Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89	< 0.0001 0.179 < 0.0001 < 0.001 < 0.001	< 0.0001 0.132 < 0.0001 < 0.01 0.001	<0.0001 0.132 <0.0001 <0.01 <0.001	<0.0001 0.131 <0.0001 <0.01 <0.001	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001
Titanium Vanadium Zinc	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02			< 0.0001 0.179 < 0.0001 < 0.001 < 0.001	< 0.0001 0.132 < 0.0001 < 0.01 0.001	<0.0001 0.132 <0.0001 <0.01 <0.001	<0.0001 0.131 <0.0001 <0.01 <0.001	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.153 <0.0001 <0.01 <0.001	<0.0001 0.14 <0.0001 <0.01 <0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.001 <0.001 <0.001	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.131 <0.0001 <0.001 <0.001 <0.001	<0.0001 0.153 <0.0001 <0.001 <0.001 <0.01	<0.0001 0.14 <0.0001 <0.01 <0.001 <1.001 <1.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.0001 0.179 <0.0001 <0.001 <0.001 <0.01 17	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01	<0.0001 0.132 <0.0001 <0.01 <0.001 <0.01 7	<0.0001 0.131 <0.0001 <0.001 <0.001 <0.01 <5	<0.0001 0.153 <0.0001 <0.001 <0.001 <0.01 9	<0.0001 0.14 <0.0001 <0.001 <0.001 <1.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			<0.0001 0.179 <0.0001 <0.001 <0.001 <0.001 17 17 5.3 7.5	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01 <55	<0.0001 0.132 <0.0001 <0.001 <0.001 <0.001 7	<0.0001 0.131 <0.0001 <0.001 <0.001 <0.01 <5	<0.0001 0.153 <0.0001 <0.01 <0.01 <0.01 9 6 8.1	<0.0001 0.14 <0.0001 <0.01 <0.01 <0.01 12 12 5 7.5
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			<pre>< 0.0001 0.179 < 0.0001 < 0.001 < 0.001 < 0.01 17 17 5.3 7.5 11.78</pre>	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01 <5 5 4.2 7.8 11	<pre><0.0001 0.132 <0.0001 <0.01 <0.001 <0.001 7 4.7 8.1 11.7</pre>	<0.0001 0.131 <0.0001 <0.001 <0.001 <5	 <0.0001 0.153 <0.0001 <0.01 <0.001 <0.01 <0.01 <0.01 	<0.0001 0.14 <0.0001 <0.001 <0.001 12 12 5 7.5 10.8
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			<0.0001 0.179 <0.0001 <0.001 <0.001 <0.001 17 17 5.3 7.5	<0.0001 0.132 <0.0001 <0.01 0.001 <0.01 <55	<0.0001 0.132 <0.0001 <0.001 <0.001 <0.001 7	<0.0001 0.131 <0.0001 <0.001 <0.001 <0.01 <5	<0.0001 0.153 <0.0001 <0.01 <0.01 <0.01 9 6 8.1	<0.0001 0.14 <0.0001 <0.01 <0.01 <0.01 12 12 5 7.5

Sample Location SW-3

Sample Date Sep-20 Oct-20

Akalainty as CacO3	PARAMETER	Limit	PWQO	CWQG	APV					
BOD				CWQG	7 •	166	152			
Conductivity										
DOC No.NH3 (Ammonia)	Chloride			120	180					
N-NH3 (Jamponia)	Conductivity									
NN-NO2 (Nitrotte)						2.9	2.2			
N.NO2 (Nivite)						0.7				
NNO3 (Nirate) PH		PWQO	0.02							
PH										
Phenols PWQO 0.001 0.004 0.961 <0.001 <0.001										
Sulphate TOS										
TOS		IPWQO	0.001	0.004	0.961					
Total phosphorous Turbidity 0.03 1.8 0.007 0.004 1.8						8	10			
Turbidity		IDIMOO	0.00			0.007	0.004			
Hardness as CaCO3 Calcilum Magneseum PWQO Copper PWQO Copper PWQO IPWQO Copper PWQO IPWQO IPWQO Copper PWQO IPWQO IPWQO Copper PWQO IPWQO IPWQO Copper PWQO IPWQO IPWQO IPWQO Copper IPWQO IPWQO IPWQO Copper IPWQO IPW		IPWQU	0.03							
Calcium										
Magnesium Potassium Sodium 9 8 Potassium Sodium 7 5 S Potassium Sodium 7 5 S S Potassium Sodium 13 12 S										+ -
Potassium Sodium										
Sodium Aluminum (dissolved) IPWQO 0.075 0.01 0.001										
Aluminum (dissolved) IPWQO 0.075 0.001 0.001 0.007 0.0005 0										
Aluminum total PWQO O.075		IPWOO	0.075							
Barium						10.01	10.01			
Beryllium	Barium					0.09	0.07			
Cadmium PWQO IPWQO IPWQO 0.0002 c IPWQO based on hardness 0.00021 <0.0001 <0.0001 Chromium PWQO 0.0099 0.0009 <0.0001	Beryllium	PWQO	(b) 0.011							
Cadmium	Boron	IPWQO	0.2	1.5	3.55	0.21	0.11			
Cadmium		PWQO	0.0002 c	based on						
Chromium	Cadmium				0.00021	<0.0001	<0.0001			
Cobalt IPWQO 0.0009 0.00002 <0.0002 Copper IPWQO 0.005 d 0.0069 <0.001	Chromium		0.0099			< 0.001	< 0.001			
Copper										
Copper IPWQO										
Iron	Copper		0.003	d	0.0069	<0.001	<0.001			
Lead	Iron		0.2	0.2						
Lead						1.22	0.57			
Manganese 0.41 0.27 0.005 Molybdenum IPWQO 0.04 <0.005	Lead		0.025 0.005		0.002	r0 001	r0 001			
Molybdenum	Managanaga	IPWQO		naraness						
Nickel		IDWOO	0.04							
Silicon Silver PWQ0 0.0001					0.025					+ -
Silver		FWQO	0.023		0.023					
Strontium		PWOO	0.0001							
Thallium IPWQO 0.0003 <0.0001 <0.0001 Titanium (0.01 <0.01		· wqo	0.0001							
Titanium		IPWOO	0.0003							
Zinc	Titanium		0.0000				<0.01			
PWQO	Vanadium	IPWQO	0.006			< 0.001	< 0.001			
PWQO		PWQO	0.03 0.02							
Arsenic	Zinc			0.007	0.89	<0.01	<0.01			
Arsenic IPWQO 0.005 0.15 COD 7 <5			0.1			VO.01	VO.01			
COD 7 <5	Arsenic			0.005	0.15					
Colour PWQO 0.0002 Selenium PWQO 0.1 Selenium PWQO 0.1 Selenium PWQO 0.1 Selenium PWQO 0.1 Selenium	000	IPWQO	0.005			_				
Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin Image: Conference of the confe						/	<5			
Selenium		21100	0.0000							
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec Di 7.5 DO PWQO f 10.4 Conductivity PWQO f 395 TOC TN									+	+
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO f Conductivity PWQO f Sug/I Sug/		PWQU	0.1						-	+
TKN Sus. Solids Field Parameters Field Parameters									+	+ -
Sus. Solids Field Parameters Discharge L/sec 5.2 3.5 pH 7.5 7.4 DO PWQO f 10.4 7.8 Conductivity mg/l 395 370									+	+
Field Parameters 5.2 3.5 Discharge L/sec 5.2 3.5 pH 7.5 7.4 DO PWQO f 10.4 7.8 Conductivity mg/l 395 370									+	+ -
Discharge L/sec									+	+
pH 7.5 7.4 DO PWQO f 10.4 7.8 Conductivity mg/l 395 370						5.2	3.5		1	
DO PWQO f 10.4 7.8 Conductivity mg/l 395 370										
Conductivity mg/l 395 370	DO	PWQO	f							
			mg/l							
	Temperature					8.5	6.1			

Sample Location SW-4

					•					
Sample Date					Nov-98	Jul-99	Oct-99	Nov-99	Jun-00	Aug-00
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	Limit		CWQG	APV	230	194	141	180	204	183
BOD	IPWQO	а								
Chloride			420	400	<1	<1	<1	<1	<1	<1
			120	180	21.9	18.7	18.3	19.2	16.7	17.3
Conductivity					497	486	474	416	463	397
DOC										
N-NH3 (Ammonia)					0.05			0.06	0.08	0.05
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
N-NO2 (Nitrite)			0.6		< 0.01	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
N-NO3 (Nitrate)			3		0.01	0.2	0.2	0.2	0.2	0.2
pH	PWQO	6.5-8.5	6.5-9		7.31	7.66	7.76	8.16	8.29	7.78
Phenols	IPWQO	0.001	0.004	0.961	<.001	< 0.001	0.027	< 0.001	0.006	0.004
Sulphate					33					
TDS										
Total phosphorous	IPWQO	0.03			0.09	0.02	<0.01	0.01	0.02	0.1
Turbidity	ii waa	0.03			94	2.1	3.9	3.8	8.2	96
Hardness as CaCO3					283	228	217	224	216	189
Calcium										
					84	65.3	62.7	64.1	63	55.4
Magnesium					17.6	15.5	14.5	15.4	14.3	12.4
Potassium						0.6	0.4	5.1	3.5	7.1
Sodium					14.8	14.3	14.5	14.7	13.8	12.2
Aluminum (dissolved)	IPWQO	0.075			0.12	0.04	0.12	0.05	0.14	0.37
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on	5.55						
Cadmium		0.0002 C		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01
Cobalt	IPWQO	0.0009				0.0006	0.0008	0.0006	0.0006	0.002
_	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.0038	0.0013	0.0005	0.0006	<0.0005	0.0026
Iron	PWQO	0.3	0.3		19.7	3.02	1.14	3.22	2.07	19.8
11011					19.7	3.02	1.14	3.22	2.07	19.0
Lead	PWQO	0.025 0.005	based on	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0009
Lead	IPWQO		hardness	0.002	10.0002	10.0002	10.0002	10.0002	10.0002	0.0003
Manganese					2.63					
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon	11140	0.023		0.023	10.02	10.02			10.02	10.02
Silver	PWQO	0.0001			0.0009	0.0003	0.0002	<0.0001	<0.0001	0.0001
Strontium	PWQU	0.0001			0.0009	0.0003	0.0002	<0.0001	<0.0001	0.0001
Thallium	1011100	0.0000								
	IPWQO	0.0003								
Titanium				1	1					
Vanadium	IPWQO	0.006								
	PWQO	0.03 0.02	0.007	0.00			0.04	0.04	0.00	0.04
Zinc	IPWQO		0.007	0.89	<.01	<0.01	<0.01	<0.01	0.03	0.01
Arsenic	PWQO	0.1	0.005	0.15	1	<0.001	<0.001	<0.001	<0.001	<0.001
, a serific	IPWQO	0.005	0.003	0.13	1	\0.001	\0.001	\0.001	\0.001	\0.001
COD		1			<3	15	10	6	10	4
Colour							12	12	14	12
					<1	10	12			
Mercury	PW/OO	0.0002			<0.0001	10 <0.0001				<0.0001
Mercury Selenium	PWQ0	0.0002			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Selenium	PWQ0 PWQ0	0.0002 0.1								<0.0001 <0.001
Selenium Tannin & Lignin					<0.0001 <0.001	<0.0001	<0.0001	<0.0001	<0.0001	
Selenium Tannin & Lignin TOC					<0.0001 <0.001 7	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.001
Selenium Tannin & Lignin TOC TKN					<0.0001 <0.001 7 0.63	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001 0.35	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids					<0.0001 <0.001 7	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters					<0.0001 <0.001 7 0.63	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001 0.35	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec					<0.0001 <0.001 7 0.63	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001 0.35	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH					<0.0001 <0.001 7 0.63	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001 0.35	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec					<0.0001 <0.001 7 0.63	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001	<0.0001 <0.001 0.35	<0.001
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO	0.1			<0.0001 <0.001 7 0.63 66	<0.0001 <0.001 0.33 18	<0.0001 <0.001 0.19 2	<0.0001 <0.001 0.3 7	<0.0001 <0.001 0.35	<0.001 0.66 86

Sample Location SW-4

Sample Date										
					Oct-00	Sep-01	Dec-01	Jun-02	Aug-03	Oct-03
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	200	180	167	164	32	180
BOD	IF WQO	a			<1	<1	1	<1	<1	<1
Chloride			120	180	19.2	18.2	1	17.3	11.9	17.2
Conductivity		+	120	100	427	422	414	432	140	446
DOC					427	422	414	432	140	440
N-NH3 (Ammonia)		+			0.1	0.11	0.11	0.2	<0.01	<0.005
N-NH3 (unionized)	PWQO	0.02			<0.01	0.11	0.11	0.2	<0.01	\0.003
N-NO2 (Nitrite)	PWQU	0.02	0.6		<0.01	<0.1	<0.1	<0.1	<0.01	<0.1
N-NO3 (Nitrate)		+			0.2	0.1	0.2	0.2	0.3	0.2
pH	PWQO	C F O F	3					7.72	7.42	7.91
Phenols		6.5-8.5	6.5-9	0.004	7.77	8.4 <0.001	8.5		<0.001	0.02
Sulphate	IPWQO	0.001	0.004	0.961	0.053	<0.001	<0.001	<0.001	6	25
TDS							26	26	О	25
									0.04	-0.04
Total phosphorous	IPWQO	0.03			0.02	<0.01	0.02	0.08	0.01	<0.01
Turbidity					5.1	7.1	23	17.7	1.8	22
Hardness as CaCO3					200	210	252	198	45	185
Calcium					54.5	61.7	72.5	61	11.6	53.6
Magnesium					15.6	13.5	17.2	13.1	3.9	12.3
Potassium		<u> </u>			<0.4	5.7	3.3	5.8	1	5
Sodium					13.7	13.4	17.1	12.7	8.5	13.2
Aluminum (dissolved)	IPWQO	0.075			0.42	0.04	0.26	0.11	0.129	0.025
Aluminum total	IPWQO	0.075								
Barium	-						0.11	0.095	0.015	
Beryllium	PWQO	(b) 0.011							< 0.001	0.081
Boron	IPWQO	0.2	1.5	3.55					0.006	0.109
	PWQO	0.0002 c	based on							
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001	< 0.001
Characteristics	IPWQO		hardness						0.000	-0.000
Chromium	PWQO	0.0099			0.01	<0.01	<0.01	<0.01	0.003	<0.002
Cobalt	IPWQO	0.0009			<0.0005	0.0011	0.0027		0.0005	<0.001
Copper	PWQO	0.005 d	d	0.0069	<0.0005	0.0005	0.0006	0.0033	<0.002	0.05
Соррег	IPWQO		u	0.0069	<0.0003	0.0003	0.0006	0.0055	<0.002	0.05
Iron	PWQO	0.3	0.3		4.68	2.11	4.51	4.58	0.985	3.56
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.023 0.003		0.002	< 0.0002	< 0.0002	0.0009	0.0009	0.0011	< 0.005
Managanasa	IPWQU		hardness				2.1.1	4.50	0.117	
Manganese							2.14	1.68	0.117	0.004
Molybdenum	IPWQO	0.04							0.0000	
Nickel									0.0022	<0.001
	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	0.0022 <0.01	<0.001
Silicon				0.025					<0.01	<0.01
Silver	PWQ0	0.025		0.025	<0.02	<0.02	<0.02	<0.02		
Silver Strontium	PWQO	0.0001		0.025					<0.01	<0.01
Silver Strontium Thallium				0.025					<0.01	<0.01
Silver Strontium Thallium Titanium	PWQO	0.0001		0.025					<0.01	<0.01
Silver Strontium Thallium	PWQO	0.0001		0.025					<0.01	<0.01
Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO	0.0001			<0.0001	<0.0001	0.0001	<0.0001	<0.01	<0.01 <0.001 <0.005
Silver Strontium Thallium Titanium	PWQO IPWQO IPWQO PWQO	0.0001 0.0003 0.006	0.007	0.025					<0.01	<0.01
Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02	0.007		<0.0001	<0.0001	0.0001	<0.0001	<0.01	<0.01 <0.001 <0.005
Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO IPWQO PWQO	0.0001 0.0003 0.006		0.89	<0.001	<0.001	<0.01	<0.0001	<0.001 <0.0001 0.005	<0.001 <0.001 <0.005 <0.005
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02	0.007		<0.0001	<0.0001	0.0001	<0.0001	<0.01 <0.0001 0.005 <0.03	<0.01 <0.001 <0.005
Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.0001 0.0003 0.006 0.03 0.02		0.89	<0.001	<0.001	<0.01	<0.0001	<0.001 <0.0001 0.005	<0.001 <0.001 <0.005 <0.005
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.0001 0.0003 0.006 0.03 0.02		0.89	<0.0001 <0.001 <0.001	<0.0001 <0.01 0.001	0.0001 <0.01 <0.001	<0.0001 0.01 0.001	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 <3 16	<0.0001 <0.001 0.001 5 17	<0.001 <0.001 <0.001 6	<0.0001 0.01 0.001 14 4	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 <3 16 <0.0001	<0.0001 <0.01 0.001 5 17 <0.0001	<0.001 <0.001 <0.001 6 4	0.01 0.01 0.001 14 4 <0.0001	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 <3 16	<0.0001 <0.001 0.001 5 17	<0.001 <0.001 <0.001 6	<0.0001 0.01 0.001 14 4	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 <0.001 <0.001 <3 16 <0.0001	<0.0001 <0.01 0.001 5 17 <0.0001	0.0001 <0.001 <0.001 6 4 <0.001	0.01 0.001 14 4 <0.0001 0.001	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.0001	<0.001 <0.01 0.001 5 17 <0.0001 <0.001	0.0001 <0.001 <0.001 6 4 <0.001 7	<0.0001 0.001 14 4 <0.0001 0.001 5.2	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.001 <0.01 0.001 5 17 <0.0001 <0.001 0.36	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.0001	<0.001 <0.01 0.001 5 17 <0.0001 <0.001	0.0001 <0.001 <0.001 6 4 <0.001 7	<0.0001 0.001 14 4 <0.0001 0.001 5.2	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.001 <0.01 0.001 5 17 <0.0001 <0.001 0.36	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Tranium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.001 <0.01 0.001 5 17 <0.0001 <0.001 0.36	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Trhallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO IPWQO IPWQO PWQO IPWQO PWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.0001 <0.001 0.001 5 17 <0.0001 <0.001 0.36 7	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03 26	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005 0.0002 0.1		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.001 <0.01 0.001 5 17 <0.0001 <0.001 0.36	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001
Silver Strontium Trhallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO IPWQO IPWQO PWQO IPWQO PWQO	0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	<0.001 <0.001 <0.001 <3 16 <0.0001 <0.001 0.003	<0.0001 <0.001 0.001 5 17 <0.0001 <0.001 0.36 7	0.0001 <0.001 <0.001 6 4 <0.001 7 0.38	<0.0001 0.001 14 4 <0.0001 0.001 5.2 0.48	<0.01 <0.0001 0.005 <0.03 26	<0.001 <0.001 <0.005 <0.005 0.002 8 <0.0001

Sample Location SW-4

Sample Date					Mar-04	Jul-04	Sept-04	May-05	Aug-05	Nov-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CVVQG	AI V	156	170	189	187	186	184
BOD	II WQO	a			1	<1	1	<1	<1	<1
Chloride			120	180	16	21.7	20.7	22	22	21
Conductivity			120	100	389	495	463			
DOC					363	433	403			
N-NH3 (Ammonia)					0.13	0.22	0.1	0.16	0.32	
N-NH3 (unionized)	DIMOO	0.00			<0.01	<0.01	<0.01	<0.02	<0.02	
	PWQO	0.02			<0.01	<0.01	<0.01	<0.10		
N-NO2 (Nitrite)			0.6		0.3	0.2	0.1	0.10	<0.10	
N-NO3 (Nitrate)			3						0.15	8.09
pH	PWQO	6.5-8.5	6.5-9		7.03	7.65	8.31	7.96	7.9	
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<<0.001
Sulphate					24		26			
TDS					216		246			
Total phosphorous	IPWQO	0.03			0.06	0.11	0.02	0.03	0.06	0.07
Turbidity					36	62	13	14.3	10	14.2
Hardness as CaCO3					174	205	193	193	189	198
Calcium					49.7	60.1	54.6	56	56	58
Magnesium					12.1	13.4	13.7	13	12	13
Potassium					4.6	4.9	5.5	5	5	5
Sodium					11.8	13.9	13.7	15	15	15
Aluminum (dissolved)	IPWQO	0.075			0.456	0.329	0.088	0.06	0.01	< 0.01
Aluminum total	IPWQO	0.075		1						,
Barium	11 11 40	0.075						0.1	0.09	0.08
Beryllium	PWQO	(b) 0.011						<0.001	<0.001	<0.001
Boron	IPWQO	0.2	1.5	2.55				0.12	0.22	0.14
BOTOTI				3.55				0.12	0.22	0.14
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	< 0.001	<0.0001	<0.0001	<0.0001	<0.0001
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.0016	<0.002	0.0003	<0.001	0.002	0.001
Cobalt	IPWQO	0.0009			0.0005	<0.001	0.0003	0.0005	0.0003	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.002	<0.02	<0.002	0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		7.51	0.534	3.11	3.05	1.59	2.5
11011	-				7.51	0.554	5.11	3.03	1.55	2.5
Lead	PWQO	0.025 0.005	based on	0.002	0.0015	< 0.005	<0.0005	< 0.001	< 0.001	< 0.001
	IPWQO		hardness		0.000					
Manganese								1.37	1.01	1.49
Molybdenum	IPWQO	0.04						< 0.005		< 0.005
Nickel		0.04							< 0.005	
	PWQO	0.025		0.025	<0.01	<0.01	<0.01	<0.005	<0.005 <0.05	<0.005
Silicon				0.025	<0.01	<0.01	<0.01			
Silicon Silver	PWQO			0.025	<0.01		<0.001		<0.05	<0.005
Silver		0.025		0.025		30			<0.05 14.3 <0.0001	<0.005 9.8 <0.0001
Silver Strontium	PWQO	0.025		0.025		30			<0.05 14.3 <0.0001 0.138	<0.005 9.8 <0.0001 0.198
Silver Strontium Thallium	PWQO	0.025		0.025		30			<0.05 14.3 <0.0001 0.138 <0.0001	<0.005 9.8 <0.0001 0.198 <0.0001
Silver Strontium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025		30			<0.05 14.3 <0.0001 0.138 <0.0001 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01
Silver Strontium Thallium Titanium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025		30			<0.05 14.3 <0.0001 0.138 <0.0001	<0.005 9.8 <0.0001 0.198 <0.0001
Silver Strontium Thallium Titanium	PWQO PWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.025		30			<0.05 14.3 <0.0001 0.138 <0.0001 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01
Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO	0.025 0.0001 0.0003	0.007		<0.0001	30 <0.001	<0.0001		<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002
Silver Strontium Thallium Titanium Vanadium Zinc	PWQO PWQO IPWQO PWQO	0.025 0.0001 0.0003		0.89	<0.0001 0.007	30 <0.001 0.011	<0.0001		<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002
Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007		<0.0001	30 <0.001	<0.0001		<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	<0.0001 0.007 0.001	30 <0.001 0.011 <0.03	<0.0001 <0.005 0.001	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1		0.89	<0.0001 0.007 0.001 22	30 <0.001 0.011 <0.03	<0.0001 <0.005 0.001		<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6	30 <0.001 0.011 <0.03 19 13	<0.0001 <0.005 0.001	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001	30 <0.001 0.011 <0.03 19 13 <0.0001	<0.0001 <0.005 0.001 12 5	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6	30 <0.001 0.011 <0.03 19 13	<0.0001 <0.005 0.001	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001	30 <0.001 0.011 <0.03 19 13 <0.0001	<0.0001 <0.005 0.001 12 5	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 13 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 13 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001 0.29	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001 0.29	<0.005	<0.05 14.3 <0.0001 0.138 <0.0001 0.001 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.01 0.002 <0.01
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001 0.29	8	<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003 <0.01	<0.005 9.8 <0.0001 0.198 <0.0001 <0.010 0.002 <0.01 12
Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001 0.29	<0.005 8	<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003 <0.01	<.0.005 9.8 <.0.0001 0.198 <0.0001 <0.01 0.002 <0.01 12
Silver Strontium Trhallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.007 0.001 22 6 <0.0001 <0.001	30 <0.001 0.011 <0.03 19 <0.0001 <0.01	<0.0001 <0.005 0.001 12 5 0.001 0.29	8 8 7 7.91	<0.05 14.3 <0.0001 0.138 <0.0001 <0.01 0.003 <0.01 8 6.9 11.2	<0.005 9.8 <0.0001 0.198 <0.0001 0.002 <0.01 12 10 8.31

Sample Location SW-4

Sample Date					May-06	Aug-06	Oct-06	May-07	Aug-07	Oct-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	188	177	179	187	198	187
BOD	IF WVQO	a			<1	<1	<1	<1	<1	3
Chloride			120	100	21	21	20	21	22	22
			120	180	474	462	464	487		
Conductivity									511	516
DOC					5.2	5.3	7	6.3	6.9	7.3
N-NH3 (Ammonia)					0.29			0.32	0.42	0.38
N-NH3 (unionized)	PWQO	0.02						<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6			<0.10	< 0.10	<0.10	<0.10	< 0.10
N-NO3 (Nitrate)			3			0.13	0.12	0.12	0.1	0.19
На	PWQO	6.5-8.5	6.5-9					7.77	8.06	7.86
Phenols	IPWQO	0.001	0.004	0.961		<0.001	<0.001	<0.001	<0.001	0.001
Sulphate	ii WQO	0.001	0.004	0.501		29	26	34	34	34
TDS					200	300	302	317	332	335
					308					
Total phosphorous	IPWQO	0.03			0.02	0.02	0.03	0.29	0.03	<0.02
Turbidity								21.1	16.6	11.5
Hardness as CaCO3						179	205	212	222	220
Calcium					57	52	59	62	66	65
Magnesium					14	12	14	14	14	14
Potassium				1	5	5	6	6	6	7
Sodium		1		1	16	15	16	17	18	19
	IDMAGG	0.075	I	1		<0.01	<0.01		<0.01	<0.01
Aluminum (dissolved)	IPWQO	0.075	1	1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum total	IPWQO	0.075								
Barium					0.07	0.09	0.08	0.1	0.1	0.11
Beryllium	PWQO	(b) 0.011				<0.001	<0.001	<0.001	<0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	0.16	0.15	0.15	0.21	0.28	0.27
	PWQO	0.0002 c	based on							
Cadmium		0.0002		0.00021		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.001	<0.001	<0.001	0.002	0.002	0.001
Cobalt	IPWQO	0.0009			0.0004	0.0003	0.0003	0.0004	0.0004	0.0004
	PWQO	0.005 d								
Copper		0.005 u	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	IPWQO									
Iron	PWQO	0.3	0.3		1.26	2.26	1.58	4.11	2.93	3.26
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002		<0.001	<0.001	<0.001	<0.001	<0.001
Manganoso	ii vvqo		naruness		4.20	4.22	1.10	4.5	4.65	4.05
Manganese					1.39	1.33	1.46	1.5	1.65	1.85
Molybdenum	IPWQO	0.04				<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025		<0.005	<0.005	<0.005	<0.005	<0.005
Silicon					8.3	9.9	8.6	9.9	9.8	9.1
Silver	PWQO	0.0001				< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
Strontium					0.138	0.187	0.158	0.204	0.169	0.186
Thallium	IPWQO	0.0003			0.200	<0.0001	<0.0001	0.0006	<0.0001	<0.0001
Titanium	•• • •	5.5005		1		<0.001	<0.001	<0.00	<0.001	<0.001
Vanadium	IDMOC	0.000		1		0.002	0.002	0.004	0.004	0.003
vanaululli	IPWQO	0.006		1		0.002	0.002	0.004	0.004	0.003
7inc	PWQO	0.03 0.02	0.007	0.00	<0.01	-O O1	-O O1	-O O1	-O O1	ZO 01
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	-	0.4	I	1						
Arsenic	PWQO	0.1	0.005	0.15						
, a serific			0.005	0.13						
COD	IPWQO	0.005								4.3
COD	IPWQO	0.005			8	14	7	13	13	13
	IPWQO	0.005			8	14	7	13	13	13
Colour					8	14	7	13	13	13
Colour Mercury	PWQO	0.0002			8	14	7	13	13	13
Colour Mercury Selenium					8	14	7	13	13	13
Colour Mercury Selenium Tannin & Lignin	PWQO	0.0002			8	14	7	13	13	13
Colour Mercury Selenium Tannin & Lignin TOC	PWQO	0.0002								
Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO	0.0002			0.5	0.36	0.4	0.39	0.39	0.39
Colour Mercury Selenium Tannin & Lignin TOC	PWQO	0.0002								
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO	0.0002								
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO	0.0002			0.5	0.36	0.4	0.39	0.39	0.39
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO	0.0002			0.5	0.36	0.4	0.39	0.39	0.39
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO	0.0002			0.5 5.2 6.87	0.36 10 7.63	0.4 6 7.55	0.39 11 7.32	0.39 11 7.41	0.39 8 7.28
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO	0.0002 0.1			0.5 5.2 6.87 7.63	0.36 10 7.63 8.85	0.4 6 7.55 12.11	0.39 11 7.32 8.37	0.39 11 7.41 9.3	0.39 8 7.28 6.99
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO	0.0002			0.5 5.2 6.87	0.36 10 7.63	0.4 6 7.55	0.39 11 7.32	0.39 11 7.41	0.39 8 7.28

Sample Location SW-4

Sample Date					May-08	Oct-08	May-09	Jul-09	Sep-09	May-10
PARAMETER	Limit	PWQO	CMUC	APV						
Alkalinity as CaCO3	Limit		CWQG	APV	202	191	187	196	200	197
BOD	IPWQO	a					_			
			400	400	<1	<1	<1	2	2	<1
Chloride			120	180	21	20	20	18	19	20
Conductivity					507	491	499	497	494	
DOC					6.3	5.4	5.8	5.7	6.1	
N-NH3 (Ammonia)					0.46	0.36	0.35	0.4	0.38	0.49
N-NH3 (unionized)	PWQO	0.02			<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
N-NO2 (Nitrite)			0.6		<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
N-NO3 (Nitrate)			3		0.13	0.18	0.21	0.19	0.16	0.19
pH	PWQO	6.5-8.5	6.5-9		7.93	7.87	7.95	8.01	7.85	8.16
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	-1-				37	32	35	35	31	
TDS					330	319	324	323	321	
Total phosphorous	IPWQO	0.03			0.02	<0.01	0.02	0.01	0.01	0.01
Turbidity	ii wqo	0.03			10.9	11.9	7.6	7.9	11.9	15.4
Hardness as CaCO3					233	210	222	217		13.4
Calcium									196	62
					67	61	69	64	57	63
Magnesium					16	14	12	14	13	14
Potassium					6	6	5	7	7	7
Sodium					18	18	15	18	17	18
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	< 0.01	0.01	0.01	< 0.01
Aluminum total	IPWQO	0.075						< 0.01		
Barium					0.11	0.09	0.09	0.1	0.09	0.09
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.23	0.22	0.34	0.24	0.2	0.24
	PWQO	0.0002 c	based on	5.55	0.23	O.LL	0.5 .	0.2.	0.2	0.2.
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.002	0.002	0.001	0.001	0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0007	0.0003	0.0005	0.0004	0.0003	0.0004
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Iron	PWQO	0.3	0.3		3.09	1.79	2.2	3.73	2.25	2.9
11011	-				3.09	1.79	2.2	3.73	2.23	2.9
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
LCuu			hardness	0.002	10.001	10.001	10.001	10.001	10.001	10.001
	IPWQO									
Manganese	IPWQO		naraness		1.69	1.44	1.29	1.31	1.35	1.29
		0.04	naraness		1.69 <0.005				1.35	
Molybdenum	IPWQO	0.04	Haraness	0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum Nickel		0.04 0.025	naraness	0.025	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
Molybdenum Nickel Silicon	IPWQO PWQO	0.025	Tidi diless	0.025	<0.005 <0.005 9	<0.005 <0.005 8.8	<0.005 <0.005 7.7	<0.005 <0.005 8.2	<0.005 <0.005 8.6	<0.005 <0.005 8.3
Molybdenum Nickel Silicon Silver	IPWQO		Tidi diless	0.025	<0.005 <0.005 9 <0.0001	<0.005 <0.005 8.8 <0.0001	<0.005 <0.005 7.7 <0.0001	<0.005 <0.005 8.2 <0.0001	<0.005 <0.005 8.6 <0.0001	<0.005 <0.005 8.3 <0.0001
Molybdenum Nickel Silicon Silver Strontium	IPWQO PWQO	0.025	naraness	0.025	<0.005 <0.005 9 <0.0001 0.16	<0.005 <0.005 8.8 <0.0001 0.176	<0.005 <0.005 7.7 <0.0001 0.206	<0.005 <0.005 8.2 <0.0001 0.209	<0.005 <0.005 8.6 <0.0001 0.207	<0.005 <0.005 8.3 <0.0001 0.207
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO	0.025	naraness	0.025	<0.005 <0.005 9 <0.0001 0.16 <0.0001	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO	0.025 0.0001 0.0003	naraness	0.025	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO	0.025	THU GITCS	0.025	<0.005 <0.005 9 <0.0001 0.16 <0.0001	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO PWQO	0.025 0.0001 0.0003			<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.025	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02			<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02			<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 <0.01 0.003	<0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.005 0.002 <0.01	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 0.003 <0.01	<0.005 <0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002	<0.005 <0.005 <0.005 8.2 <0.0001 0.209 <0.0001 0.003 <0.01	<0.005 <0.005 <0.005 8.6 <0.0001 0.207 <0.0001 0.003 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.005 0.002 <0.01	<0.005 <0.005 8.2 <0.0001 0.209 <0.0001 0.003 <0.01	<0.005 <0.005 <0.005 8.6 <0.0001 0.207 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 <0.01 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 <0.005 7.7 <0.0001 0.206 <0.0001 <0.05 0.002 <0.01	<0.005 <0.005 <0.005 8.2 <0.0001 0.209 <0.0001 0.003 <0.01 7.9 7.9 7.8	<0.005 <0.005 <0.005 8.6 <0.0001 0.207 <0.0001 0.003 <0.01 7.55 7.9	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 0.0001 <0.001 13 13 7.3 7.9
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.005 <0.005 9 <0.0001 0.16 <0.0001 <0.01 0.004	<0.005 <0.005 8.8 <0.0001 0.176 <0.0001 <0.01 0.004	<0.005 <0.005 <0.005 <0.005 <0.001 0.206 <0.0001 <0.05 0.002 <0.01	<0.005 <0.005 <0.005 8.2 <0.0001 0.209 <0.0001 0.003 <0.01	<0.005 <0.005 <0.005 8.6 <0.0001 0.207 <0.0001 0.003 <0.01	<0.005 <0.005 8.3 <0.0001 0.207 <0.0001 0.002 <0.01

Sample Location SW-4

Sample Date											
Akalinity as GaCO3	Sample Date					Aug-10	Oct-10	Jun-11	Aug-11	Oct-11	Jun-12
Alkalinity as CaCO3 IPWQO PWQO PWQO PWQO 120 180 192 187 188 202 202 20 180 21 21 21 21 21 21 21 2											
BOD			PWQO	CWQG	APV						
Chloride		IPWQO	a								
Conductivity											
DOC No.NH3 (Ammonia)				120	180	20	20	20	18	20	21
N.NH3 (Jamonia) PWQ0											
N-N-NOZ (Nitrite)											
N-NO2 (Nitrite)											
N-NO3 (Nitrate) PH PH PH PH PH PWQ0 0.001 0.001 0.004 0.961 0.001 0.0001		PWQO	0.02				< 0.02	< 0.02	< 0.02	< 0.02	0.02
PH				0.6			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenols PhwQO O.001 O.004 O.961 O.001 O.000 O.0005 O.0	N-NO3 (Nitrate)			3		0.15	0.14	<0.10	0.2	0.18	0.19
Phenols Phycol 0.001 0.004 0.961 0.0001 0.0001	pH	PWQO	6.5-8.5	6.5-9		7.9	8.04	8.01	7.99	7.66	7.81
TOS	Phenols				0.961	< 0.001			< 0.001		
Total phosphorous IPWQQ	Sulphate										
Turbidity	TDS										
Turbidity	Total phosphorous	IPWOO	0.03			<0.01	<0.001	<0.01	<0.01	<0.01	0.01
Hardness as CaCO3		ii waa	0.03								
Calcium						10.7	13.4	7.2	0.5	3.3	
Magnesium						60	62	57	E2	57	
Potassium			1		+						
Sodium			1		+						
Aluminum (dissolved) IPWQO 0.075					1						
Aluminum total IPWQO 0.075		IDIMOC	0.075		1						
Barlum					1	<0.01	<0.01		<0.01		
Beryllium		IPWQO	0.075		1	0.00	2.22				
Boron IPWQO 0.02 1.5 3.55 0.19 0.2 0.17 0.16 0.16 0.23											
Cadmium PWQO IPWQO IPWQO 0.0002 c 0.0099 c based on hardness 0.00021 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0003 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001											
Cadmium	Boron				3.55	0.19	0.2	0.17	0.16	0.16	0.23
Chromium PWQO 0.0099 0.005 0.002 <0.001 0.002 <0.001 0.002 <0.001 0.002 <0.001 0.002 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	Cadasium	PWQO	0.0002 c	based on	0.00021	-0.0001	z0 0001	z0 0001	z0 0001	z0 0001	-0.0001
Cobalt IPWQO 0.0009 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 </td <td>Cadmium</td> <td>IPWQO</td> <td></td> <td>hardness</td> <td>0.00021</td> <td><0.0001</td> <td><0.0001</td> <td><0.0001</td> <td><0.0001</td> <td><0.0001</td> <td><0.0001</td>	Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt IPWQO 0.0009 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 </td <td>Chromium</td> <td>PWOO</td> <td>0.0099</td> <td></td> <td></td> <td>0.005</td> <td>0.002</td> <td><0.001</td> <td>0.002</td> <td><0.001</td> <td>0.002</td>	Chromium	PWOO	0.0099			0.005	0.002	<0.001	0.002	<0.001	0.002
Copper											
Copper IPWQO						0.0003	0.0003	0.0003	0.0003	0.0003	0.0004
PWQO	Copper		0.005 u	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Lead											
Lead IPWQO hardness 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 <0.0001 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Iron	PWQO	0.3	0.3		2.45	2.26	2	1.83	1.59	2.61
Nanganese	Lond	PWQO	0.025 0.005	based on	0.000	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Manganese	Lead	IPWOO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum IPWQO 0.04 0.025 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	Manganese					1 29	1 16	0.87	0.94	1 03	13
Nickel		IPWOO	0.04								
Silicon					0.025						
Silver		FWQU	0.023		0.023						
Strontium		DWOO	0.0001								
Thallium		PWQU	0.0001								
Titanium		IBMAGO	0.0000								
Vanadium IPWQO 0.006 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		IPWQU	0.0003		1						
PWQO		IDMAGO	0.000		1						
Zinc IPWQO 0.007 0.89 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	vaildululli				1	0.003	0.002	0.002	0.003	0.002	0.004
Arsenic PWQO 0.1 0.005 0.15	Zinc	PWQO	0.03 0.02	0.007	0.00	<0.01	<0.01	<0.01	<0.01	<0.01	∠0 01
Arsenic IPWQO 0.005 0.005 0.15	ZIIIC	IPWQO		0.007	0.03	\U.U1	\U.U1	\U.U1	\U.U1	\U.U1	\U.U1
Arsenic IPWQO 0.005 0.005 0.15		PWOO	0.1	1							
COD	Arsenic			0.005	0.15	1					
Colour Mercury PWQO 0.0002		IPWQO	0.005		1		22	4.0	4-	4.0	
Mercury						8	20	10	15	10	15
Selenium PWQO 0.1 Tannin & Lignin						1					
Tannin & Lignin TOC TIKN Sus. Solids Field Parameters Discharge L/sec PH DO DO PWQO F Supply DO											
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO DO PWQO f Sus. Solids 7 5.8 8.1 7.9 7.6 7.7 7.7		PWQO	0.1								
TKN Sus. Solids Field Parameters Field Parameters Discharge L/sec 7 5.8 5.5 7.71 9.11 4 pH 7.8 8.1 7.9 7.6 7.7 7.6 DO PWQO f 3.72 12.3 3.49 8.63 8.93 9.82 Conductivity mg/l 357 352 368 355 447 432											
Sus. Solids Field Parameters 7 5.8 5.5 7.71 9.11 4 Discharge L/sec 7 5.8 8.1 7.9 7.6 7.7 7.6 DO PWQO f 3.72 12.3 3.49 8.63 8.93 9.82 Conductivity mg/l 357 352 368 355 447 432						l					
Field Parameters 7 5.8 5.5 7.71 9.11 4 Discharge L/sec 7 5.8 5.5 7.71 9.11 4 pH 7.8 8.1 7.9 7.6 7.7 7.6 DO PWQO f 3.72 12.3 3.49 8.63 8.93 9.82 Conductivity mg/l 357 352 368 355 447 432											
Discharge L/sec	Sus. Solids										
Discharge L/sec	Field Parameters										
pH 7.8 8.1 7.9 7.6 7.7 7.6 DO PWQO f 3.72 12.3 3.49 8.63 8.93 9.82 Conductivity mg/l 357 352 368 355 447 432						7	5.8	5.5	7.71	9.11	4
DO PWQO f 3.72 12.3 3.49 8.63 8.93 9.82 Conductivity mg/l 357 352 368 355 447 432					1	7.8	8.1				7.6
Conductivity mg/l 357 352 368 355 447 432		PW∩∩	f								
,	-	1 44 40			+						
	Temperature		IIIg/I		+	10.3	7.4	10.3	10.6	9.4	9.1

Sample Location SW-4

Sample Date					Aug-12	Oct-12	Jun-13	Aug-13	Nov-13	Apr-14
DADAMETED										
PARAMETER	Limit	PWQO	CWQG	APV	204					
Alkalinity as CaCO3	IPWQO	a				197	181	178	183	179
BOD					2	1	<1	2	<1	< 3
Chloride			120	180	21	20	16	18	17	16.4
Conductivity										
DOC					0.6					
N-NH3 (Ammonia)					0.6	0.55	0.43	0.47	0.49	0.57
N-NH3 (unionized)	PWQO	0.02			0.02	0.02	<0.02	<0.02	<0.02	< 0.01
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
N-NO3 (Nitrate)			3		0.2	0.18	0.19	0.22	0.28	0.3
pH	PWQO	6.5-8.5	6.5-9		7.83	7.85	7.91	7.86	8.16	
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			0.01	< 0.01	0.02	0.01	0.01	0.03
Turbidity					15.3	5.3	6.3	11.3	10.1	19.8
Hardness as CaCO3					197	204	190	167	197	206
Calcium					59	62	58	47	59	61.7
Magnesium					12	12	11	12	12	12.5
Potassium					6	7	7	6	7	7
Sodium					18	18	14	15	18	17.3
Aluminum (dissolved)	IPWQO	0.075	1		<0.01	<0.01	4-7	<0.01	<0.01	0.03
Aluminum total	IPWQO	0.075			<0.01	<0.01	0.01	<0.01	0.01	0.03
Barium	IF WQO	0.073			0.1	0.1	0.01	0.09	0.01	0.112
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.002
Boron			1.5	2.55						
BOTOTI	IPWQO	0.2		3.55	0.25	0.27	0.2	0.22	0.18	0.267
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.00002
	IPWQO		hardness	0.00021	10.0001	10.0001	10.0001	10.0001	10.0001	10.00002
Chromium	PWQO	0.0099			0.002	< 0.001	0.002	< 0.001	< 0.001	0.0003
Cobalt	IPWQO	0.0009			0.0004	0.0004	0.0003	0.0003	0.0003	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	<0.001	<0.001	0.002
Iron	PWQO	0.3	0.3		2.98	1.33	1.73	1.92	1.48	5.46
11011	-				2.98	1.33	1./3	1.92	1.48	5.46
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0135
2000	IPWQO		hardness	0.002	10.001	-0.001	-0.001	-0.001	10.001	0.0105
Manganese					1.27	1.19	0.79	0.9	0.79	1.1
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	<0.005	< 0.005	< 0.005	0.0003
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	0.0019
Silicon					8.7	7.2	8.3	7.3	8.7	8.6
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Strontium		0.000			0.204	0.203	0.182	0.181	0.172	0.225
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00005
Titanium		0.0003		1	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.005
Vanadium	IPWQO	0.006			0.002	0.002	0.001	0.002	0.001	< 0.005
		0.000		1	0.002	0.002	0.001	0.002	0.001	. 0.003
Zinc	PWQO	0.05 0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.014
	IPWQO									
	PWQO	0.1		0 :-						
Arsenic		1	0.005	0.15						
	IPW/OO	0.005			1					
COD	IPWQO	0.005			12	9	<5	۵	Q	۵
COD	IPWQO	0.005			12	8	<5	9	8	9
Colour					12	8	<5	9	8	9
Colour Mercury	PWQO	0.0002			12	8	<5	9	8	9
Colour Mercury Selenium					12	8	<5	9	8	9
Colour Mercury Selenium Tannin & Lignin	PWQO	0.0002			12	8	<5	9	8	9
Colour Mercury Selenium Tannin & Lignin TOC	PWQO	0.0002			12	8	<5	9	8	9
Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO	0.0002			12	8	<5	9	8	9
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO	0.0002			12	8	<5	9	8	9
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO	0.0002								
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO	0.0002			8.6	6.5	7.7	7.8	7.1	8.3
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			8.6 7.4	6.5	7.7	7.8	7.1	8.3
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO	0.0002			8.6	6.5	7.7	7.8	7.1	8.3
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			8.6 7.4	6.5	7.7	7.8	7.1	8.3

Sample Location SW-4

Sample Date					Jul-14	Oct-14	Jun-15	Aug-15	Oct-15	May-16
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			175	177	190	186	185	178
BOD					< 3	< 3	7	< 3	< 3	<5
Chloride			120	180	16.2	16.8	17.4	17.4	17.5	19.2
Conductivity										
DOC										4.7
N-NH3 (Ammonia)					0.65	0.61	0.77	0.62	0.7	0.72
N-NH3 (unionized)	PWQO	0.02			0.04	0.03	0.02	< 0.01	< 0.01	0.036
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.1	< 0.1	< 0.1	< 0.05
N-NO3 (Nitrate)			3		0.3	0.3	0.3	0.3	0.3	0.31
рН	PWQO	6.5-8.5	6.5-9							
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Sulphate										25.1
TDS						240				
Total phosphorous	IPWQO	0.03			0.05	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Turbidity	ii WQO	0.03			19.8	10.2	12.4	10.8	5	6.8
Hardness as CaCO3					201	184	186	211	169	186
Calcium					60.5	54.8	54.5	63.9	49.5	55
Magnesium					12.7	11.3	12	13.6	49.5	11.7
Potassium				-	7					6.65
Sodium						6.6	6	7.7	6.1	
					16.6	15.5	16	20	15.6	14.3
Aluminum (dissolved) Aluminum total	IPWQO	0.075			0.02	0.02	0.02	0.02	0.02	
	IPWQO	0.075								
Barium					0.109	0.086	0.087	0.108	0.089	0.082
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.294	0.165	0.296	0.321	0.258	0.255
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	0.00002	< 0.00002	< 0.00002	0.00003	< 0.00002	<0.0001
Chromium	PWQO	0.0099	naraness		0.006	< 0.002	< 0.002	< 0.002	< 0.002	<0.003
Cobalt	IPWQO	0.0009			0.0007	< 0.002	0.0004	0.0002	0.0003	<0.005
Cobait					0.0007	< 0.0001	0.0004	0.0002	0.0003	<0.0003
Copper	PWQO	0.005 d	d	0.0069	0.0048	0.0004	< 0.0001	0.0097	0.0004	< 0.002
	IPWQO		,							
Iron	PWQO	0.3	0.3		4.24	1.55	2.22	2.42	1.41	1.80
	PWQO	0.025 0.005	based on		0.00050					
Lead	IPWQO		hardness	0.002	0.00053	0.00003	0.00008	0.00065	0.00002	<0.001
Manganese	11 11 40		naraness		1.05	0.948	0.938	1.09	0.878	0.744
Molybdenum	IPWQO	0.04			0.0004	0.0004	0.0003	0.0003	0.0004	<0.002
Nickel	PWQO	0.025		0.025	0.0004	0.0004	0.0003	0.0003	0.0004	<0.002
Silicon	PWQU	0.025		0.025	10	7.32	7.34	9.17		7.73
Silver	PWQO	0.0001				< 0.00002		< 0.00002	7.45 0.00014	<0.0001
Strontium	PWQU	0.0001			0.00003		< 0.00002			
		0.0000			0.218	0.196	0.19	0.234	0.177	0.186
Thallium	IPWQO	0.0003			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	<0.0003
Titanium					0.051	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Vanadium	IPWQO	0.006			0.01	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Zinc										
	PWQO	0.03 0.02	0.007	0.00	0.044	0.000	. 0.005	0.047	. 0 005	-0.005
ZIIIC		0.03 0.02	0.007	0.89	0.011	0.006	< 0.005	0.017	< 0.005	<0.005
ZIIIC	IPWQO		0.007	0.89	0.011	0.006	< 0.005	0.017	< 0.005	<0.005
	IPWQO PWQO	0.1			0.011	0.006	< 0.005	0.017	< 0.005	<0.005
Arsenic	IPWQO		0.007	0.89						
Arsenic COD	IPWQO PWQO	0.1			0.011	0.006	< 0.005	0.017	< 0.005	<0.005
Arsenic COD Colour	IPWQO PWQO IPWQO	0.1 0.005								
Arsenic COD Colour Mercury	IPWQO PWQO	0.1								
Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO	0.1 0.005								
Arsenic COD Colour Mercury	IPWQO PWQO IPWQO PWQO	0.1 0.005								
Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO	0.1 0.005								
Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO PWQO	0.1 0.005								
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO	0.1 0.005								
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO	0.1 0.005								
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO PWQO	0.1 0.005			13	13	12	< 5	10	<5
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO PWQO	0.1 0.005			7.99	7.2	12	< 5 17.91	5.7	9.3
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO PWQO PWQO	0.1 0.005 0.0002 0.1			7.99	7.2 7.6	12 8.7 7.4	17.91 7.2	10 5.7 7.5	9.3
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	IPWQO PWQO IPWQO PWQO	0.1 0.005 0.0002 0.1			7.99 8.1 10.71	7.2 7.6 9.4	8.7 7.4 9.32	17.91 7.2 9.42	5.7 7.5 9.89	9.3 7.4 11.08
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO PWQO PWQO	0.1 0.005 0.0002 0.1			7.99	7.2 7.6	12 8.7 7.4	17.91 7.2	10 5.7 7.5	9.3

Sample Location SW-4

Sample Date					Aug-16	Nov-16	Apr-17	Aug-17	Oct-17	May-18
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			170	181	203	195	176	194
BOD					<5	<5	3	< 3	< 3	1
Chloride			120	180	18.6	20.0	15.2	14.2	15.4	18
Conductivity										
DOC					4.5	4.7				4.9
N-NH3 (Ammonia)					0.82	0.76	0.89	0.86	0.72	1.12
N-NH3 (unionized)	PWQO	0.02			0.079	0.055	0.05	-	0.04	0.05
N-NO2 (Nitrite)			0.6		< 0.05	<0.05	< 0.1	< 0.05	< 0.05	< 0.10
N-NO3 (Nitrate)			3		0.31	0.32	0.6	0.34	0.4	0.36
pH	PWQO	6.5-8.5	6.5-9							8.06
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001
Sulphate					25.9	21.4				25
TDS										
Total phosphorous	IPWQO	0.03			0.01	0.01	0.01	< 0.01	0.02	0.013
Turbidity					10.5	20.4	11.5	13.8	13.3	12.5
Hardness as CaCO3					175	179	200	192	176	221
Calcium					52.2	53.4	57.1	49.6	52.1	67
Magnesium					10.9	11.0	12.3	11.1	11.1	13
Potassium					6.71	6.89	7.2	6.7	6.9	8
Sodium					15.6	15.7	17.7	15.1	14.7	20
Aluminum (dissolved)	IPWQO	0.075		1	23.0	23.7	0.04	0.02	0.04	< 0.01
Aluminum total	IPWQO	0.075					0.04	0.02	0.04	0.03
Barium	ii wqo	0.073			0.089	0.080	0.098	0.088	0.089	0.10
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	< 0.002	< 0.002	< 0.002	< 0.0005
Boron	IPWQO	0.2	1.5	2 5 5	0.225	0.246	0.383	0.305	0.278	0.36
Вогоп		-		3.55	0.225	0.246	0.383	0.305	0.278	0.36
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	< 0.000020	< 0.000014	< 0.000014	< 0.0001
	IPWQO		hardness	0.00021			10.000020	. 0.00001	. 0.00001	. 0.0001
Chromium	PWQO	0.0099			< 0.003	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			< 0.0005	< 0.0005	0.0005	0.0003	< 0.0001	0.0005
	PWQO	0.005 d	_							
Copper	IPWQO		d	0.0069	<0.002	<0.002	0.0005	0.0002	0.0004	< 0.001
Iron	PWQO	0.3	0.3		1.81	2.86	4.71	1.59	2.33	2.32
					1.01	2.80	4.71	1.59	2.55	2.32
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	< 0.001	0.00034	0.00028	0.00008	< 0.001
	IPWQO		hardness							
Manganese					0.732	0.903	1.05	0.704	0.738	0.88
Molybdenum	IPWQO	0.04			< 0.002	< 0.002	0.0003	0.0003	0.0003	< 0.005
Nickel	PWQO	0.025		0.025	< 0.003	< 0.003	0.0024	0.0016	0.0014	< 0.005
Silicon					8.04	8.76	8.62	8.24	8.17	8.3
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.0001
Strontium					0.171	0.161	0.176	0.174	0.167	0.192
Thallium	IPWQO	0.0003			< 0.0003	< 0.0003	< 0.00005	< 0.00005	< 0.00005	< 0.0001
Titanium					<0.002	<0.002	0.006	< 0.005	< 0.005	< 0.01
Vanadium	IPWQO	0.006			<0.002	<0.002	< 0.005	< 0.005	< 0.005	0.002
	PWQO	0.03 0.02			.0.002	-0.002	10.005	. 0.003	. 0.003	0.002
Zinc	-	0.03 0.02	0.007	0.89	< 0.005	<0.005	0.009	< 0.005	< 0.005	< 0.01
	IPWQO									
A	PWQO	0.1	0.005	0.45			_			
Arsenic	IPWQO	0.005	0.005	0.15			1			
COD		0.000		1	8	<5	12	13	15	14
Colour					0	\)	12	13	13	14
Mercury	PWQO	0.0002		1			 			
Selenium				1			 			
Tannin & Lignin	PWQO	0.1					-			
				1			1			
TOC				1			1			
TKN Suc Solide				1			I			
Sus. Solids										
Field Parameters										
Discharge L/sec					7.5	7.5	9.09	9.41	8.8	8.5
pH					7.2	7.7	7.2		7.7	7.3
DO	PWQO	f			9.43	9.73	10.89	4.85	6.9	5.79
Conductivity		mg/l			461	440	472		389	416
Temperature					11.1	6	6.2		10.3	8.9

Sample Location SW-4

Sample Date					Jul-18	Oct-18	May-19	May-19	Oct-19	May-20
PARAMETER	Limit	PWQO	CMOC	APV						
Alkalinity as CaCO3	Limit IPWQO		CWQG	APV	198	192	188	172	185	199
BOD	irwqo	a			2	192	4	<1	2	<1
Chloride			120	180	20	18	17	17	16	17
Conductivity			120	160	20	10	1/	1/	10	17
DOC					5.6	10.2	4.5	3.9	4.1	4.4
N-NH3 (Ammonia)					1.15	0.36	0.87	0.833	0.809	1.03
N-NH3 (unionized)	PWQO	0.02			0.03		0.87	0.04	0.03	0.04
N-NO2 (Nitrite)	PWQU	0.02	0.6			< 0.02				
N-NO3 (Nitrate)			0.6		< 0.10	< 0.10	<0.1	<0.10 0.44	<0.10 0.4	<0.10 0.42
pH	BIALOO	6505	3		0.35	< 0.37	0.6			
Phenols	PWQO	6.5-8.5	6.5-9	0.064	7.88	7.94	8.35	8.05	8.05	8.01
	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					29	23	24	23	22	23
TDS										
Total phosphorous	IPWQO	0.03			0.013	0.007	0.011	0.009	0.006	<0.020
Turbidity					12.1	7.3	17.8	8.6	3.8	10.4
Hardness as CaCO3					188	182	209	185	188	193
Calcium					57	53		56	57	59
Magnesium					11	12	0.8	11	11	11
Potassium					6	7	6	6	6	6
Sodium					18	16	14	13	15	15
Aluminum (dissolved)	IPWQO	0.075			0.01					< 0.01
Aluminum total	IPWQO	0.075			0.00	< 0.01	0.03	<0.01	< 0.01	
Barium		0.075			0.11	0.1	1	0.09	0.09	0.09
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.41	0.31	0.34	0.32	0.33	0.34
BOTOTI		0.0002 c	based on	3.33	0.41	0.31	0.34	0.32	0.55	0.34
Cadmium	PWQO	0.0002 C		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			< 0.001	< 0.001	0.001	<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0004	0.0003	0.0004	0.0003	0.0002	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		2.8	1.6	3.25	1.62	1.02	2.16
11011	-				2.0	1.0	3.23	1.02	1.02	2.10
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	< 0.001	< 0.001			
	IPWQO		hardness					<0.001	< 0.001	<0.001
Manganese					0.99	0.9		0.75	0.78	0.74
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon					8.1	8.3	8.1	7.9	8.1	7.9
Silver	PWQO	0.0001			< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium										
Thallium					0 204	0 207	0 189	0.193	0.212	0.183
Titanium	IPWOO	0.0003			0.204 < 0.0001	0.207	0.189 <0.0001	0.193 <0.0001	0.212 <0.0001	0.183 <0.0001
Vanadium	IPWQO	0.0003			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
					< 0.0001 < 0.01	< 0.0001 < 0.01	<0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01
Variation	IPWQO	0.006			< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
	IPWQO PWQO		0.007	0.89	< 0.0001 < 0.01 0.001	< 0.0001 < 0.01 0.001	<0.0001 <0.01 0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 0.001
Zinc	IPWQO	0.006	0.007	0.89	< 0.0001 < 0.01	< 0.0001 < 0.01	<0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01	<0.0001 <0.01
Zinc	IPWQO PWQO	0.006			< 0.0001 < 0.01 0.001	< 0.0001 < 0.01 0.001	<0.0001 <0.01 0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 0.001
	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	< 0.0001 < 0.01 0.001	< 0.0001 < 0.01 0.001	<0.0001 <0.01 0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 0.001
Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			<0.0001 <0.01 0.001 <0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			< 0.0001 < 0.01 0.001	< 0.0001 < 0.01 0.001	<0.0001 <0.01 0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 <0.001	<0.0001 <0.01 0.001
Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01	< 0.0001 < 0.01 0.001 < 0.01	<0.0001 <0.01 0.001 <0.01	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 <0.001 <0.001	<0.0001 <0.01 0.001 <0.01
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			< 0.0001 < 0.01 0.001 < 0.01 21	< 0.0001 < 0.01 0.001 < 0.01 < 5	<0.0001 <0.01 0.001 <0.01 6	<0.0001 <0.01 <0.001 <0.001 <5	<0.0001 <0.01 <0.001 <0.001 12	<0.0001 <0.01 0.001 <0.01 20
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.0001 <0.01 0.001 <0.01 21 21 8.1 7.4	< 0.0001 < 0.01 0.001 < 0.01 < 5 7.27 7.8	<0.0001 <0.01 0.001 <0.01 6	<0.0001 <0.01 <0.001 <0.001 <5 9 7.9	<0.0001 <0.01 <0.001 <0.001 12 10 8	<0.0001 <0.01 0.001 <0.01 20 20 6 7.5
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002 0.1			<0.0001 <0.01 0.001 <0.01 21 21 8.1 7.4 12.32	<0.0001 <0.01 0.001 <0.01 <5 7.27 7.8 11.9	<0.0001 <0.01 0.001 <0.01 6 6 8 7.8 11.8	<0.0001 <0.01 <0.001 <0.001 <5 9 7.9 7.7	<0.0001 <0.01 <0.001 <0.001 12 10 8 8.9	<0.0001 <0.01 0.001 <0.01 20 20 6 7.5 12.1
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.0001 <0.01 0.001 <0.01 21 21 8.1 7.4	< 0.0001 < 0.01 0.001 < 0.01 < 5 7.27 7.8	<0.0001 <0.01 0.001 <0.01 6	<0.0001 <0.01 <0.001 <0.001 <5 9 7.9	<0.0001 <0.01 <0.001 <0.001 12 10 8	<0.0001 <0.01 0.001 <0.01 20 20 6 7.5

Sample Location SW-4

Sample Date Sep-20 Oct-20

Alkalinity sac 6403	PARAMETER	Limit	PWQO	CWQG	APV					
BOD				CVVQO	Alv	174	181			
Chloride										
Conductivity	Chloride			120	180					
N.N.H3 (Janonia) N.N.H3 (Janonia) N.H3 (Janonia)	Conductivity			-						
N-N-104 (unionized) PWQQ	DOC					4	4.1			
NNO2 (Nirate)	N-NH3 (Ammonia)					0.98	0.966			
NNO2 (Nirate)	N-NH3 (unionized)	PWQO	0.02			0.04	0.05			
N.NO3 (Nirate) PHO	N-NO2 (Nitrite)			0.6						
Phenols PWQO 0.001 0.004 0.961 <0.001 <0.001	N-NO3 (Nitrate)					0.46	0.51			
Sulphate TOS		PWQO	6.5-8.5	6.5-9		7.99	8.1			
TOS TOTAII phosphorous TOTAII phosphorous Total		IPWQO	0.001	0.004	0.961	< 0.001	< 0.001			
Total plosphorous IPWQO 0.03 7,8 5.8						22	21			
Turbidity										
Hardness as CaCO3		IPWQO	0.03			0.007	0.005			
Calcium						7.8	5.8			
Magnesium	Hardness as CaCO3					184	169			
Potassium Sodium						57	51			
Sodium	Magnesium					10	10			
Aluminum (dissolved) IPWQO 0.075 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.0005						7	7			
Aluminum total IPWQO 0.075						15	14			
Barlum		IPWQO	0.075			< 0.01	< 0.01			
Beryllium		IPWQO	0.075							
Boron IPWQO 0.02 1.5 3.55 0.31 0.32						0.09	0.08			
Cadmium PWQQ IPWQQ 0.0002 c IPWQQ based on hardness 0.00021 <0.0001 <0.0001 Chromium PWQQ 0.0099 <0.0002		PWQO	(b) 0.011			< 0.0005	< 0.0005			
Cadmium	Boron	IPWQO	0.2	1.5	3.55	0.31	0.32			
Chromium PWQO 0.0099 0.0001 0		PWQO	0.0002 c	based on						
Chromium	Cadmium	IPWOO		hardness	0.00021	<0.0001	<0.0001			
Cobalt IPWQO 0.0009 0.0002 0.0002 Copper IPWQO 0.005 d 0.0069 <0.001	Chromium		0.0099	Tial arress		< 0.001	< 0.001			
Copper										
Copper IPWQO	Cobuit					0.0002	0.0002			
Involution	Copper		0.005 u	d	0.0069					
Lead	1 1									
Lead	Iron					1.45	1.24			
Manganese	Load	PWQO	0.025 0.005	based on	0.002					
Molybdenum IPWQO 0.04 0.025 0.005 0.188 0.189 0.189 0.189 0.189 0.189 0.189 0.005 0.001	Leau	IPWQO		hardness	0.002	< 0.001	< 0.001			
Nickel	Manganese					0.75	0.72			
Silicon	Molybdenum	IPWQO	0.04			< 0.005	<0.005			
Silver PWQ0 0.0001 <0.0001 <0.0001 Strontium 0.198 0.189 0.189 Thallium IPWQ0 0.0003 <0.0001	Nickel	PWQO	0.025		0.025	< 0.005	<0.005			
Strontium	Silicon					7.4	8.8			
Thallium	Silver	PWQO	0.0001			< 0.0001	< 0.0001			
Titanium Vanadium IPWQO O.006 Vanadium IPWQO O.03 O.02 O.007 O.89 VO.01 VO.001 VO.001 IPWQO O.03 O.007 O.89 VO.01 VO.001 Arsenic IPWQO O.005 O.005 O.005 O.15 COD Colour Mercury PWQO O.0002 Selenium PWQO O.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH O PWQO Field Parameters Discharge L/sec										
Vanadium IPWQO 0.006 <0.001 <0.001 Zinc PWQO 0.03 0.02 0.007 0.89 <0.01	Thallium	IPWQO	0.0003			< 0.0001	< 0.0001			
PWQO	Titanium									
Zinc IPWQO 0.007 0.89 <0.01 <0.01	Vanadium	IPWQO	0.006			<0.001	<0.001			
PWQO		PWQO	0.03 0.02							
Arsenic	Zinc			0.007	0.89	<0.01	<0.01			
Arsenic IPWQO 0.005 0.05 0.15						<0.01	<0.01			
IPWQO 0.005	Arsenic			0.005	0.15					
Colour Mercury PWQO 0.0002		IPWQO	0.005							
Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Signity Discharge L/sec 6.8 9.1 PH 7.2 7.3 DO PWQO f 11.1 6.6 Conductivity mg/l 458 450						13	7			
Selenium										
Tannin & Lignin TOC TIKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F Conductivity PWQO F TOC TILL TOC TILL TOC TOC TOC TOC TOC TOC TOC TO					1	1				
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO f Conductivity mg/l TKN Sus. Solids Sus. Sus. Sus. Sus. Sus. Sus. Sus. Sus.		PWQO	0.1		1	1				
TKN Sus. Solids Field Parameters Bischarge L/sec Discharge L/sec 6.8 9.1 pH 7.2 7.3 DO PWQO f 11.1 6.6 Conductivity mg/l 458 450										
Sus. Solids Field Parameters Discharge L/sec 6.8 9.1 PH 7.2 7.3 DO PWQO f 11.1 6.6 Conductivity mg/l 458 450										
Field Parameters 6.8 9.1 Discharge L/sec 6.8 9.1 PH 7.2 7.3 DO PWQO f 11.1 6.6 Conductivity mg/l 458 450										
Discharge L/sec									1	
pH 7.2 7.3 DO PWQO f 11.1 6.6 Conductivity mg/l 458 450										
DO PWQO f 11.1 6.6 Conductivity mg/l 458 450					1					
Conductivity mg/l 458 450										
,		PWQO								
lemperature 8.3 6.3			mg/l							
	remperature				l	8.3	6.3			

Sample Location SW-5

Sample Date					Nov-98	Jul-99	Oct-99	Nov-99	Jun-00	Aug-00
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	Limit IPWQO		CWQG	APV	230	182	213	170	199	191
BOD	IPWQU	a			9	<1	<1	<1	<1	<1
Chloride			120	180	21.3	17.2	20.3	19.2	16.8	16.6
Conductivity			120	100	490		479	406		
DOC					490	485	4/9	406	459	384
N-NH3 (Ammonia)					0.09			0.04	0.08	0.03
N-NH3 (unionized)	PWQO	0.02			<0.09	<0.01	<0.01	<0.04	<0.08	< 0.03
N-NO2 (Nitrite)	PWQU	0.02	0.6							
N-NO3 (Nitrate)			0.6		<0.01	<0.1	<0.1	<0.1	<0.1	<0.1
pH	511100		3		0.01	0.2	0.2	0.2	0.2	0.2
Phenols	PWQO	6.5-8.5	6.5-9	0.064	7.6	7.7	7.61	8.26	8.23	7.64
	IPWQO	0.001	0.004	0.961	0.037	0.003	0.002	<0.001	0.005	0.005
Sulphate					34					
TDS										
Total phosphorous	IPWQO	0.03			<0.01	0.03	<0.01	0.01	0.02	0.1
Turbidity					11.4	1.9	1.2	2.2	5.1	143
Hardness as CaCO3					276	220	214	217	218	182
Calcium					81.9	62.5	61.6	61.9	63.8	53.2
Magnesium					17.2	15.2	14.3	14.9	14.3	11.9
Potassium						1.6	0.9	5.3	3.4	4.3
Sodium					14.6	14	14.2	14.4	13.9	11.7
Aluminum (dissolved)	IPWQO	0.075			0.04	0.06	0.02	0.04	0.15	0.33
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on							
Cadmium	IPWQO	0.0002	hardness	0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0001
Charamairma	-	0.0000	naruness		<0.01		<0.01	<0.01		
Chromium	PWQO	0.0099			<0.01	<0.01			<0.01	<0.01
Cobalt	IPWQO	0.0009				0.001	0.0005	0.0005	0.0006	0.0026
Copper	PWQO	0.005 d	d	0.0069	0.0033	<0.0005	<0.0005	<0.0005	<0.0005	0.0043
Сорреі	IPWQO		u	0.0003	0.0033	<0.0003	<0.0003	<0.0003	<0.0003	0.0043
Iron	PWQO	0.3	0.3		2.2	2.58	0.59	1.25	2.38	14.9
	PWQO	0.025 0.005	based on							
Lead	IPWQO	0.025 0.005	hardness	0.002	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	0.0027
Manganese	IPWQU		Haruness		4.64					
Molybdenum	IPWQO	0.04			1.61					
Nickel				0.025	-0.02	.0.02	<0.02	<0.02	.0.02	.0.02
	PWQO	0.025		0.025	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Silicon	511100	0.0004			0.0040		0.0000	0.0004	0.0004	0.0000
Silver	PWQO	0.0001			0.0013	0.0004	0.0002	<0.0001	<0.0001	0.0002
Strontium										
Thallium	IPWQO	0.0003								
Titanium		0.0003								
	•									
Vanadium	IPWQO	0.006								
	•		0.007	0.00	0.04	40.04	40.04	40.04	0.03	40.04
Zinc	IPWQO	0.006	0.007	0.89	0.01	<0.01	<0.01	<0.01	0.03	<0.01
	IPWQO PWQO IPWQO	0.006 0.03 0.02	0.007	0.89	0.01	<0.01	<0.01	<0.01	0.03	<0.01
Zinc	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	0.01	<0.01	<0.01	<0.01	0.03	<0.01
Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02				<0.001	<0.001	<0.001	0.001	<0.001
Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			11	<0.001	<0.001	<0.001	0.001	<0.001
Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			11 <1	<0.001 17 10	<0.001 13 5	<0.001 10 8	0.001 10 11	<0.001 8 14
Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001	<0.001 17 10 <0.0001	<0.001 13 5 <0.0001	<0.001 10 8 <0.0001	0.001 10 11 <0.0001	<0.001 8 14 <0.0001
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			11 <1	<0.001 17 10	<0.001 13 5	<0.001 10 8	0.001 10 11	<0.001 8 14
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001	<0.001 17 10 <0.0001	<0.001 13 5 <0.0001	<0.001 10 8 <0.0001	0.001 10 11 <0.0001	<0.001 8 14 <0.0001
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001	<0.001 17 10 <0.0001	<0.001 13 5 <0.0001	<0.001 10 8 <0.0001	0.001 10 11 <0.0001	<0.001 8 14 <0.0001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001	<0.001 17 10 <0.0001	<0.001 13 5 <0.0001	<0.001 10 8 <0.0001	0.001 10 11 <0.0001	<0.001 8 14 <0.0001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001	<0.001 17 10 <0.0001 <0.001	<0.001 13 5 <0.0001 <0.001	<0.001 10 8 <0.0001 <0.001	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001 5.9 0.34	<0.001 17 10 <0.0001 <0.001	<0.001 13 5 <0.0001 <0.001	<0.001 10 8 <0.0001 <0.001	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001 5.9 0.34	<0.001 17 10 <0.0001 <0.001	<0.001 13 5 <0.0001 <0.001	<0.001 10 8 <0.0001 <0.001	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001 5.9 0.34	<0.001 17 10 <0.0001 <0.001	<0.001 13 5 <0.0001 <0.001	<0.001 10 8 <0.0001 <0.001	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			11 <1 <0.0001 <0.001 5.9 0.34 2	<0.001 17 10 <0.0001 <0.001 0.33 32	<0.001 13 5 <0.0001 <0.001 0.07 <1	<0.001 10 8 <0.0001 <0.001 0.26 6	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001 0.75 19
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			11 <1 <0.0001 <0.001 5.9 0.34	<0.001 17 10 <0.0001 <0.001	<0.001 13 5 <0.0001 <0.001	<0.001 10 8 <0.0001 <0.001	0.001 10 11 <0.0001 <0.001	<0.001 8 14 <0.0001 <0.001

Sample Location SW-5

Sample Date					Oct-00	Sep-01	Dec-01	Jun-02	Aug-03	Oct-03
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	- AIV	200	177	169	167	38	176
BOD	ii wac	ŭ			<1	1	1	<1	<1	<1
Chloride			120	180	19.1	17.9	-	17	12	17.2
Conductivity			120	100	426	409	412	421	139	439
DOC					420	403	712	721		
N-NH3 (Ammonia)					0.06	0.09	0.09	0.16	<0.01	0.03
N-NH3 (unionized)	PWQO	0.02			<0.01	0.03	0.03	0.10	<0.01	<0.01
N-NO2 (Nitrite)	1 11 40	0.02	0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.2	0.2	0.2	0.2	0.3	0.2
pH	PWQO	6.5-8.5	6.5-9		7.97	8.43	8.54	7.92	7.47	8
Phenols	IPWQO	0.001	0.004	0.961	0.002	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	ii wqo	0.001	0.004	0.501	0.002	₹0.001	26	26	6	25
TDS							20	20	-	23
Total phosphorous	IPWQO	0.03			0.01	0.01	0.03	0.11	0.01	0.04
Turbidity	IPWQU	0.03			2.9	7.8	30	17.8	1.9	4.3
Hardness as CaCO3					195	210	228	197	44	187
Calcium									11.4	54.1
					53.5	61.6	65.4	60.7	3.81	12.5
Magnesium					15	13.6	15.6	13.2		
Potassium Sodium		1		1	1.1	3.9	4	6	1 8.5	5 13.3
					13.2	13.3	15.6	13		
Aluminum (dissolved)	IPWQO	0.075	ı		0.32	0.04	0.34	0.03	0.061	0.013
Aluminum total	IPWQO	0.075		1		ļ			0.010	
Barium							0.095	0.09	0.012	
Beryllium	PWQO	(b) 0.011							<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55					0.006	0.108
Cadasissas	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	r0 0001
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099			< 0.01	< 0.01	< 0.01	<0.01	0.003	< 0.0002
Cobalt	IPWQO	0.0009			<0.0005	0.0012	0.0031		0.0001	0.0002
	PWQO	0.005 d								
Copper	IPWQO	0.005 u	d	0.0069	< 0.0005	0.005	0.0007	0.003	< 0.002	0.014
luon		0.0			0.04		6.67	2.72	0.613	0.819
Iron	PWQO	0.3	0.3		0.81	1.55	6.67	3.73	0.613	0.819
Lead	PWQO	0.025 0.005	based on	0.002	<0.0002	0.0002	0.0003	0.0007	0.0008	<0.0005
Lead	IPWQO		hardness	0.002	<0.000Z	0.0002	0.0003	0.0007	0.0008	<0.0003
Manganese							1.67	1.56	0.029	
Molybdenum	IPWQO	0.04							0.0014	0.0001
Nickel	PWQO	0.025		0.025	<0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.01
Silicon	-									
Silver	PWQO	0.0001			< 0.0001	0.0001	0.0001	0.0001	< 0.0001	< 0.0001
Strontium	-									
Thallium	IPWQO	0.0003								
Titanium										
Vanadium	IPWQO	0.006								<0.005
	PWQO	0.03 0.02								
Zinc	IPWQO	0.02	0.007	0.89	<0.01	< 0.01	< 0.01	0.01	< 0.005	<0.005
				1		ļ	ļ			
Arconic	PWQO	0.1	0.005	0.15	<0.001	<0.001	0.001	0.002	<0.03	0.002
Arsenic	IPWQO	0.005	0.005	0.15	<0.001	<0.001	0.001	0.002	<0.03	0.002
COD				1	3	3	12	14	29	7
Colour				1	12	12	4	4		
Mercury	PWQO	0.0002		1	<0.0001	<0.0001		<0.0001	1	<0.0001
Selenium	PWQO	0.0002		1	<0.0001	<0.0001	<0.001	0.003	1	<0.001
Tannin & Lignin		J.1				-5.001	.0.001	5.505		
TOC				1		1	7	4.9	1	
TKN				 	0.3	0.31	0.41	0.38		
Sus. Solids				 	<1	7	20	36		
Field Parameters							20	30		
Discharge L/sec				+		 	 			
pH				1		 	 			
DO DO	DWOC	f		1		11	-	-	8.4	
Conductivity	PWQO			1		11	-		0.4	
Temperature		mg/l		1		1	1	1	1	
		1	ĺ	1	1	1	1	1	1	1

Sample Location SW-5

Sample Date					Mar-04	Jul-04	Sept-04	May-05	Aug-05	Nov-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	147	165	183	185	184	181
BOD	IF WVQO	а			3	1	6	<1	<1	<1
Chloride			120	400	15	21	20.5	22	22	20
			120	180		492	448	22	22	20
Conductivity					382	492	448			
DOC										
N-NH3 (Ammonia)					0.12	0.2	0.12	0.14	0.16	0.17
N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	< 0.01	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	< 0.10	< 0.10
N-NO3 (Nitrate)			3		0.3	0.2	0.3	< 0.10	0.18	0.16
На	PWQO	6.5-8.5	6.5-9		7.16	7.7	7.7	8.03	8.09	8.15
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate	IF WVQO	0.001	0.004	0.301	23	10.001	26	10.001	10.001	10.001
						222				
TDS					201	238	242			
Total phosphorous	IPWQO	0.03			0.2	0.09	0.68	0.02	0.05	0.09
Turbidity					120	88	136	10.7	7.2	6.5
Hardness as CaCO3					174	203	195	188	192	196
Calcium					49.8	59.3	54.6	54	57	57
Magnesium		1			12	13.3	14.3	13	12	13
Potassium					4.5	4.8	5.4	5	5	5
Sodium					11.2	13.8	14.6	14	15	15
Aluminum (dissolved)	IPWQO	0.075			1.24	0.281	2.17	0.1	0.01	0.02
Aluminum total	IPWQO	0.075		<u> </u>	<u> </u>	<u> </u>				
Barium								0.1	0.08	0.07
Beryllium	PWQO	(b) 0.011						< 0.001	< 0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55				0.12	0.21	0.14
20.0		0.0002 c		3.33				0.12	0.22	0.1.
Cadmium	PWQO	0.0002	based on	0.00021	< 0.0001	< 0.001	< 0.001	< 0.0001		<0.0001
Caaman	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.0027	< 0.002	<0.002	0.002	0.002	0.001
Cobalt	IPWQO	0.0009			0.0007	< 0.001	< 0.001	0.0005	0.0003	0.0003
	PWQO	0.005 d								
Copper	PWQU	0.005 u	d	0.0069	< 0.002	< 0.02	0.038	< 0.001	< 0.001	< 0.001
				0.0009		<0.02				
	IPWQO			0.0069						
Iron	IPWQO PWQO	0.3	0.3	0.0069	28.2	0.446	0.845	2.27	1.05	1.38
Iron	PWQO		0.3		28.2	0.446	0.845	2.27		1.38
	PWQO PWQO	0.3 0.025 0.005	0.3 based on	0.0069						
Iron Lead	PWQO		0.3		28.2	0.446	0.845	2.27 <0.001	1.05	1.38
Iron Lead Manganese	PWQO PWQO IPWQO	0.025 0.005	0.3 based on		28.2	0.446	0.845	2.27 <0.001 1.17	1.05 0.86	1.38 <0.001 1.28
Iron Lead Manganese Molybdenum	PWQO PWQO		0.3 based on		0.0044	0.446 <0.005	0.845	2.27 <0.001 1.17 <0.005	0.86 <0.005	1.38 <0.001 1.28 <0.005
Iron Lead Manganese	PWQO PWQO IPWQO	0.025 0.005	0.3 based on		28.2	0.446	0.845	2.27 <0.001 1.17	1.05 0.86	1.38 <0.001 1.28
Iron Lead Manganese Molybdenum Nickel	PWQO PWQO IPWQO	0.025 0.005	0.3 based on	0.002	0.0044	0.446 <0.005 <0.01	0.845	2.27 <0.001 1.17 <0.005 <0.005	0.86 <0.005 <0.005	1.38 <0.001 1.28 <0.005 <0.005
Iron Lead Manganese Molybdenum Nickel Silicon	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7	0.86 <0.005 <0.005 13.7	1.38 <0.001 1.28 <0.005 <0.005 9.4
Iron Lead Manganese Molybdenum Nickel Silicon Silver	PWQO PWQO IPWQO	0.025 0.005	0.3 based on	0.002	0.0044	0.446 <0.005 <0.01	0.845	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001	0.86 <0.005 <0.005 13.7 <0.0001	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197	0.86 <0.005 <0.005 13.7 <0.0001 0.145	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO IPWQO PWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.001	1.05 0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO IPWQO PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on hardness	0.002	28.2 0.0044 <0.01 <0.0001	0.446 <0.005 <0.01 30 <0.001	0.845 <0.005 <0.01 <0.0001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 0.002	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	28.2 0.0044 <0.01	0.446 <0.005 <0.01 30	0.845 <0.005 <0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.001	1.05 0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	28.2 0.0044 <0.01 <0.0001	0.446 <0.005 <0.01 30 <0.001	0.845 <0.005 <0.01 <0.0001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 0.002	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.01 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01	0.845 <0.005 <0.01 <0.0001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 0.002	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO PWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	28.2 0.0044 <0.01 <0.0001	0.446 <0.005 <0.01 30 <0.001	0.845 <0.005 <0.01 <0.0001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 0.002	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO PWQO IPWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.01 <0.0001 0.021	0.446 <0.005 <0.01 30 <0.001 0.01	0.845 <0.005 <0.01 <0.0001 0.081	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.010 <0.011 <0.010 <0.010 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO PWQO IPWQO PWQO PWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.01 <0.0001 0.021 0.003	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03	0.845 <0.005 <0.01 <0.0001 0.081 0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 0.002	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01	1.38 <0.001 1.28 <0.005 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.01 <0.0001 0.021 0.003 55 7	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6	0.845 <0.005 <0.01 <0.0001 0.081	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.001 <0.01 <0.01 <0.01
Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7	0.446 <0.005 -(0.01 30 -(0.001 -(0.03) 19 -(0.0001)	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.010 <0.011 <0.010 <0.010 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.01 <0.0001 0.021 0.003 55 7	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6	0.845 <0.005 <0.01 <0.0001 0.081 0.01	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7	0.446 <0.005 -(0.01 30 -(0.001 -(0.03) 19 -(0.0001)	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.010 <0.011 <0.010 <0.010 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7	0.446 <0.005 -(0.01 30 -(0.001 -(0.03) 19 -(0.0001)	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.010 <0.011 <0.010 <0.010 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.001	0.845 <0.005 <0.01 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.001	0.845 <0.005 <0.01 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.197 <0.0001 <0.01 <0.01 <0.01	1.05 0.86 <0.005 <0.005 13.7 <0.0001 <0.015 <0.001 <0.01 <0.01 <0.01	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 9	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01 9	1.38 <0.001 1.28 <0.005 9.4 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01 10 10
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.01 0.002 <0.01	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.001 <0.01 9 6.5	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01 10 10 110
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 9	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01 9	1.38 <0.001 1.28 <0.005 9.4 <0.0005 9.4 <0.0001 0.005 <0.001 0.002 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005 0.0002 0.1	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 6.7 <0.0001 0.197 <0.0001 <0.01 9 7.5 7.85	1.05 0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.0001 <0.01 9 6.5 7.6	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.010 10.002 <0.01 10 11 8.28
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO PWQO IPWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness 0.007	0.002	28.2 0.0044 <0.001 <0.0001 0.021 0.003 55 7 <0.0001 <0.0001	0.446 <0.005 <0.01 30 <0.001 0.01 <0.03 19 6 <0.0001 <0.01 0.72	0.845 <0.005 <0.001 <0.0001 0.081 0.01 94 42 0.001	2.27 <0.001 1.17 <0.005 <0.005 6.7 <0.0001 <0.01 0.002 <0.01	0.86 <0.005 <0.005 13.7 <0.0001 0.145 <0.001 <0.01 9 6.5	1.38 <0.001 1.28 <0.005 9.4 <0.0001 0.188 <0.0001 <0.01 10 10 110

Sample Location SW-5

					•					
Sample Date					May-06	Aug-06	Oct-06	May-07	Aug-07	Oct-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CVVQG	AIV	185	175	176	184	196	195
BOD	IF WQO	a			<1	<1	<1	<1	<1	2
Chloride			120	180	21	21	20	20	22	22
Conductivity			120	180	468	456	451	482	504	509
DOC					5.6	5.5	6.1	6.2	6.9	7.3
N-NH3 (Ammonia)					0.22			0.32	0.23	0.32
N-NH3 (unionized)	PWQO	0.02						<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6			<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3			0.16	0.17	0.14	0.13	0.22
pH	PWQO	6.5-8.5	6.5-9					7.91	8.14	8.02
Phenols	IPWQO	0.001	0.004	0.961		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate						29	29	33	34	34
TDS					304	296	293	313	328	331
Total phosphorous	IPWQO	0.02			0.04	0.03	0.03	0.18	0.12	<0.02
Turbidity	IPWQU	0.03			0.04	0.03	0.03	15.2	14.5	10.1
Hardness as CaCO3						184	207	210	222	27
Calcium					55	54	60	61	66	66
Magnesium					13	12	14	14	14	15
Potassium					5	5	6	6	6	7
Sodium					15	15	16	17	18	19
Aluminum (dissolved)	IPWQO	0.075	1	<u> </u>	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum total					₹0.01	\0.01	\0.01	₹0.01	\0.01	\0.01
	IPWQO	0.075		-	0.00	0.00	0.07	0.00	0.00	
Barium		0.1.6.1			0.09	0.08	0.07	0.09	0.09	0.1
Beryllium	PWQO	(b) 0.011				<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.16	0.15	0.15	0.2	0.27	0.27
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium		0.0000	Haruness		0.001	<0.001	<0.001	0.001	0.002	0.001
	PWQO	0.0099								
Cobalt	IPWQO	0.0009			0.0004	0.0003	0.0003	0.0004	0.0004	0.0004
	PWQO	0.005 d		0.0000	0.004	0.004		0.004		
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	0.003	<0.001
Iron	PWQO	0.3	0.3		2.71	1.87	0.72	2.95	0.51	2.04
11011	-				2.71	1.07	0.72	2.55	0.51	2.04
Lead	PWQO	0.025 0.005	based on	0.002		< 0.001	<0.001	< 0.001	<0.001	<0.001
Lead	IPWQO		hardness	0.002		10.001	10.001	10.001	10.001	10.001
Manganese					1.45	1.18	1.18	0.33	1.49	1.66
Molybdenum	IPWQO	0.04				<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025		<0.005	<0.005	<0.005	<0.005	<0.005
Silicon	FWQU	0.023		0.023	8.2	9.7	8.3	9.5	9.4	9
	D) 1 (O O	0.0004			8.2					
Silver	PWQO	0.0001		1		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium					0.192	0.151	0.159	0.1387	0.202	0.191
Thallium	IPWQO	0.0003		1		< 0.0001	< 0.0001	0.0006	< 0.0001	<0.0001
Titanium	1	1			1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Vanadium									\U.UI	
	IPWQO	0.006				0.002	0.001	0.003	0.002	0.003
	IPWQO	0.006							0.002	
Zinc	PWQO	0.006 0.03 0.02	0.007	0.89	<0.01				0.002	
Zinc			0.007	0.89	<0.01	0.002	0.001	0.003	0.002	0.003
	PWQ0 IPWQ0	0.03 0.02			<0.01	0.002	0.001	0.003	0.002	0.003
Zinc	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89	<0.01	0.002	0.001	0.003	0.002	0.003
Arsenic	PWQ0 IPWQ0	0.03 0.02				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02			<0.01	0.002	0.001	0.003	0.002	0.003
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			9	0.002	0.001	0.003	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002				0.002 <0.01	0.001 <0.01	0.003 <0.01	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			9	0.002	0.001	0.003	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.44	0.002	0.001	0.003	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.44	0.002	0.001 <0.01 13 0.39	0.003 <0.01 13 0.39	0.002 0.01 13 0.39	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.44	0.002	0.001	0.003	0.002	0.003
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			9 0.44 5.5 6.87	0.002 <0.01 13 0.32 10 7.7	0.001 <0.01 13 0.39 7 7.63	0.003 <0.01 13 0.39	0.002 0.01 13 0.39	0.003 <0.01 13 0.39
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002 0.1			9 0.44 5.5 6.87 8.42	0.002 <0.01 13 0.32 10 7.7 9.39	0.001 <0.01 13 0.39 7 7.63 12.91	0.003 <0.01 13 0.39 11 7.21 8.85	0.002 0.01 13 0.39 11 7.46 9.75	0.003 <0.01 13 0.39 8 7.34 7.67
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			9 0.44 5.5 6.87	0.002 <0.01 13 0.32 10 7.7	0.001 <0.01 13 0.39 7 7.63	0.003 <0.01 13 0.39	0.002 0.01 13 0.39	0.003 <0.01 13 0.39

Sample Location SW-5

Sample Date					May-08	Oct-08	May-09	Jul-09	Sep-09	May-10
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			200	189	194	193	198	193
BOD					<1	<1	2	2	2	2
Chloride			120	180	21	20	20	18	19	20
Conductivity					502	485	493	490	485	
DOC					6.2	5.2	5.7	5.6	6.2	
N-NH3 (Ammonia)					0.4	0.3	0.3	0.33	0.34	0.42
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.19	0.21	0.26	0.23	0.21	0.31
pH	PWQO	6.5-8.5	6.5-9		8.05	8.02	8.09	8.12	7.99	8.22
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					37	32	34	34	31	
TDS					326	315	320	319	315	
Total phosphorous	IPWQO	0.03			0.03	0.01	0.01	<0.01	<0.01	0.08
Turbidity					9.6	6.6	10	6.7	8.1	20.9
Hardness as CaCO3					233	207	216	217	187	
Calcium					67	60	65	64	55	57
Magnesium					16	14	13	14	12	13
Potassium					6	6	5	7	6	6
Sodium					19	17	17	18	17	17
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	< 0.01	< 0.01		<0.01
Aluminum total	IPWQO	0.075						< 0.01	< 0.01	
Barium					0.11	0.08	0.08	0.08	0.08	0.1
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	0.2	0.23	0.32	0.24	0.19	0.24
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001
Chromium	PWQO	0.0099	mar arress		0.002	0.002	0.001	0.001	0.001	<0.001
Cobalt	IPWQO	0.0009			0.0006	0.0003	0.0005	0.0003	0.0003	0.0004
	PWQO	0.005 d			0.0000	0.0003	0.0005	0.0003	0.0003	
Copper		0.005 u	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
I.e.	IPWQO									E 42
Iron	PWQO	0.3	0.3		2.97	1.28	1.72	1.57	1.89	5.13
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Leau	IPWQO		hardness	0.002	<0.001	VO.001	VO.001	VO.001	VO.001	₹0.001
Manganese					1.54	1.3	1.13	1.28	1.31	1.34
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Silicon					8.5	8.9	7.4	8.2	8.4	8.3
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Strontium					0.15	0.178	0.196	0.212	0.205	0.204
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Titanium					< 0.01	< 0.01	< 0.05	< 0.01	< 0.01	< 0.01
Vanadium	IPWQO	0.006			0.004	0.003	0.002	0.002	0.003	0.003
	PWQO	0.03 0.02		_			_			
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	-									
Arsenic	PWQO	0.1	0.005	0.15	1	1	1			
	IPWQO	0.005	5.565	5.15			<u> </u>			
COD										13
Colour										
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin										
TOC										
TKN										
Sus. Solids										
Field Parameters										
Discharge L/sec							8	8	8.8	8
pH							8	8	8.2	8.1
DO	PWQO	f					10.4	8.77	9.63	7.38
Conductivity	-,-	mg/l					523	423	425	471
Temperature		- U					9.5	11.4	8.9	8.6

Sample Location SW-5

Sample Date					Aug-10	Oct-10	Jun-11	Aug-11	Oct-11	May-12
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			193	187	188	184	187	199
BOD					<1	<1	1	3	<1	1
Chloride			120	180	20	20	19	18	20	21
Conductivity										
DOC										
N-NH3 (Ammonia)					0.31	0.38	0.34	0.34	0.31	0.49
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02
N-NO2 (Nitrite)			0.6		< 0.10	<0.10	< 0.10	< 0.10	< 0.10	<0.10
N-NO3 (Nitrate)			3		0.19	0.17	< 0.10	0.27	0.23	0.24
pH	PWQO	6.5-8.5	6.5-9		8.05	8.17	8.09	8.11	7.89	7.98
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			< 0.01	0.01	<0.01	<0.01	0.01	0.01
Turbidity		0.05			11.1	6.5	10.8	7.4	2.4	4.6
Hardness as CaCO3							10.0	7	2	170
Calcium					62	65	55	54	56	50
Magnesium				1	14	13	12	12	12	11
Potassium				1	7	6	6	6	6	6
Sodium				1	18	17	15	16	15	18
Aluminum (dissolved)	IPWQO	0.075		1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum total					<0.01	VU.U1		<0.01		0.02
Barium	IPWQO	0.075			0.00	0.00	0.01	0.00	<0.01	
	511100	(1) 0.044			0.09 <0.001	0.08 <0.001	0.08	0.08	0.07	0.1
Beryllium	PWQO	(b) 0.011					<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.18	0.2	0.17	0.16	0.15	0.23
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Caumum	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099			0.002	0.002	< 0.001	0.002	< 0.001	0.002
Cobalt	IPWQO	0.0009			0.0003	0.0003	0.0003	0.0003	0.0002	0.0004
	PWQO	0.005 d								
Copper	IPWQO	0.003	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
luen			0.0		2.02	1.21		4.00	0.00	2.50
Iron	PWQO	0.3	0.3		2.02	1.21	1.54	1.83	0.82	2.56
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Lead	IPWQO		hardness	0.002	\0.001	VO.001	VO.001	VO.001	VO.001	VO.001
Manganese					1.22	1.07	0.81	0.86	0.82	1.23
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Silicon		0.000			9.4	8.5	7.5	8	7.5	8.9
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium		0.0001			0.212	0.208	0.186	0.177	0.179	0.199
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium	***QO	0.0003		1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	IPWQO	0.006			0.002	0.002	0.002	0.002	0.002	0.004
		0.000		1	5.502	2.302	0.002	0.002	0.002	2.30
Zinc	PWQO	0.05 0.02	0.007	0.89	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
	IPWQO		0.007	0.03	₹0.01	V0.01	VO.01			
	IPWQO PWQO	0.1			10.01	V0.01	10.01			
Arsenic	PWQO		0.007	0.15	V0.01	V0.01	V0.01			
	-	0.1 0.005								
COD	PWQO				8	25	10	10	8	17
COD Colour	PWQO IPWQO	0.005								
COD Colour Mercury	PWQO IPWQO PWQO	0.005								
COD Colour Mercury Selenium	PWQO IPWQO	0.005								
COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO	0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO	0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO	0.005								
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO	0.005			8	25	10	10	8	17
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005			8	25	10	7.9	7.83	17
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1			7 8.1	25 4.1 8.3	8.02 8.1	7.9	7.83	4.5 7.9
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO	0.005 0.0002 0.1			7 8.1 3.45	4.1 8.3 13.05	8.02 8.1 3.44	7.9 7.9 9.31	7.83 7.7 9.77	4.5 7.9 10.24
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1			7 8.1	25 4.1 8.3	8.02 8.1	7.9	7.83	4.5 7.9

Sample Location SW-5

Sample Date PARAMETER Limit PWQQ CWQG APV APV						•					
Akalinity as GaCO3	Sample Date					Aug-12	Oct-12	Jun-13	Aug-13	Nov-13	Apr-14
Akalinity as GaCO3											
SOP			PWQO	CWQG	APV						
Chloride		IPWQO	a				-0.				
Conductivity											
DOC N-NH3 (Ammonis)				120	180	20	19	17	17	17	16.1
N.NH3 (Jamonia)											
N-N-NOZ (Nitrite)											
N-NO2 (Nitrite) N-NO3 (Nitrite) PWQ0											
N-NO3 (Nitrate) PH PH PH PWQ0 0.001 0.004 0.961 0.001		PWQO	0.02					< 0.02	< 0.02	< 0.02	
Phenois				0.6				<0.10	< 0.10	< 0.10	
Phenols IPWGO 0.001 0.004 0.961 0.001 0.	N-NO3 (Nitrate)			3		0.29	0.25	0.26	0.3	0.35	0.4
Phenols Phycol 0.001 0.004 0.961 0.0001 0.0001	pH	PWQO	6.5-8.5			8.01	8.05	8.03			
Sulphate	Phenols				0.961	< 0.001	< 0.001				< 0.001
Total phosphorous IPWQQ	Sulphate										
Turbidity	TDS										
Turbidity	Total phosphorous	IPWOO	0.03			0.03	< 0.01	0.01	0.01	<0.01	0.01
Hardness as CaCQ3		ii waa	0.03								
Calcium											-
Magnesium											
Potassium											
Sodium											
Aluminum (dissolved) IPWQO 0.075			1		1						
Aluminum total IPWQO 0.075 0.03 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0								13			
Barlum					1						0.03
Beryllium		IPWQO	0.075								
Description IPWQQ 0.002 1.5 3.55 0.24 0.26 0.2 0.21 0.18 0.342						0.12					
Cadmium											
Cadmium	Boron	IPWQO	0.2	1.5	3.55	0.24	0.26	0.2	0.21	0.18	0.342
Chromium PWQO 0.0099 0.001 0.001 0.002 0.0003 0.0001 0.00		PWQO	0.0002 c	based on	0.00004	0.0004	0.0004		0.0004	0.0004	
Chromium	Cadmium	IPWOO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
Cobalt	Chromium		0.0000	mar arress		0.001	<0.001	0.002	<0.001	<0.001	< 0.0002
Copper											
Copper	Cobait					0.0004	0.0004	0.0003	0.0003	0.0003	0.0003
Iron	Copper		0.005 d	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0008
Lead											
Lead IPWQO	Iron	PWQO	0.3	0.3		7.19	0.67	1.58	1.32	0.89	3.1
Manganese		PWQO	0.025 0.005	based on	0.000		0.004		0.004	0.004	0.00047
Manganese	Lead	IPWOO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.00017
Molybdenum IPWQO 0.04 0.025 0.005 <0.005 <0.005 <0.005 0.0005 0.0005 0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	Manganese					1 28	1 02	0.73	0.75	0.66	1 1 2
Nickel		IDW/OO	0.04								
Silicon					0.025						
Silver		FWQU	0.023		0.023						
Strontium		DWOO	0.0001		-						
Thallium		PWQU	0.0001								
Titanium		IBMAGO	0.0000								
Vanadium		IPWQU	0.0003		1						
PWQO		1014100	0.000		1						
Zinc IPWQO 0.007 0.89 <0.01 <0.01 <0.01 <0.01 <0.01 0.011 Arsenic PWQO 0.1 IPWQO 0.005 0.005 0.15 COD	variduluffi					0.003	0.002	0.001	0.002	0.001	< 0.005
Arsenic PWQO 0.1	Zinc	PWQO	0.03 0.02	0.007	0.80	<0.01	<0.01	<0.01	<0.01	<0.01	0.011
Arsenic PWQO 0.1	ZIIIC	IPWQO		0.007	0.03	\U.U1	~U.UI	~U.UI	~U.UI	\U.U1	0.011
Arsenic IPWQO 0.005 0.15 COD 17 11 <5			0.1	1						 	
PWQ0 0.005 17 11 <5 10 7 7	Arsenic			0.005	0.15	1				1	
Colour Mercury PWQO 0.0002		IPWQO	0.005							<u> </u>	_
Mercury						17	11	<5	10	7	7
Selenium											
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	/										
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO DO PWQO F TKN Sus. Solids Field Parameters Discharge L/sec PH TRIP Sus. Solids Field Parameters TRIP Sus. Solids Sus. Solids Field Parameters TRIP Sus. Solids TRIP Sus. Sus. Sus. Sus. Sus. Sus. Sus. Sus.		PWQO	0.1								
TKN Sus. Solids Field Parameters Field Parameters Discharge L/sec 7.5 8.1 9.1 8.6 8.8 7.7 pH 7.8 7.2 8 8 8 8 DO PWQO f 7.15 9.09 2.46 8.11 10.23 7.49 Conductivity mg/l 418 471 434 411 457 408											
Sus. Solids Field Parameters 7.5 8.1 9.1 8.6 8.8 7.7 Discharge L/sec 7.5 8.1 9.1 8.6 8.8 7.7 PH 7.8 7.2 8 8 8 8 DO PWQO f 7.15 9.09 2.46 8.11 10.23 7.49 Conductivity mg/l 418 471 434 411 457 408					1						
Field Parameters Discharge L/sec 7.5 8.1 9.1 8.6 8.8 7.7 pH 7.8 7.2 8 8 8 8 DO PWQO f 7.15 9.09 2.46 8.11 10.23 7.49 Conductivity mg/l 418 471 434 411 457 408											
Discharge L/sec	Sus. Solids										
Discharge L/sec	Field Parameters										
pH 7.8 7.2 8 8 8 DO PWQO f 7.15 9.09 2.46 8.11 10.23 7.49 Conductivity mg/l 418 471 434 411 457 408						7.5	8.1	9.1	8.6	8.8	7.7
DO PWQO f 7.15 9.09 2.46 8.11 10.23 7.49 Conductivity mg/l 418 471 434 411 457 408					1	7.8	7.2	8	8	8	8
Conductivity mg/l 418 471 434 411 457 408		PW∩∩	f		1						
	-	1 44 40			+						
	Temperature		1118/1		+	10.7	9.1	11.8	10	7.2	9.8

Sample Location SW-5

Sample Date					Jul-14	Oct-14	Jun-15	Aug-15	Oct-15	May-16
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			176	175	186	182	181	174
BOD					< 3	5	5	< 3	< 3	<5
Chloride			120	180	16.1	16.6	17.3	17.1	17.2	18.7
Conductivity										
DOC										4.6
N-NH3 (Ammonia)					0.53	0.47	0.65	0.47	0.56	0.62
N-NH3 (unionized)	PWQO	0.02			0.03	0.02	0.03	< 0.01	< 0.01	0.032
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.1	< 0.1	< 0.1	<0.05
N-NO3 (Nitrate)			3		0.3	0.4	0.4	0.4	0.4	0.44
pH	PWQO	6.5-8.5	6.5-9							
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate										24.9
TDS						243				
Total phosphorous	IPWQO	0.03			0.02	< 0.01	< 0.01	< 0.01	< 0.01	0.02
Turbidity					19.1	3.8	11.3	10.4	3.3	6.4
Hardness as CaCO3					203	194	172	210	177	184
Calcium					62.2	57.9	50.4	64	51.7	54.7
Magnesium					12.9	12	11.1	13.6	11.6	11.6
Potassium					7.1	6.9	5.5	7.6	6.4	6.60
Sodium					17.1	16.3	14.8	19.9	16.3	14.1
Aluminum (dissolved)	IPWQO	0.075	l'	1	0.02	0.02	0.01	0.02	0.02	27.2
Aluminum total	IPWQO	0.075			0.02	0.02	0.01	0.02	0.02	
Barium	ii wqo	0.073			0.099	0.083	0.077	0.106	0.083	0.079
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.001
Boron	IPWQO	0.2	1.5	2 55	0.302	0.175	0.271	0.318	0.267	0.252
Вогоп		-		3.55	0.302	0.175	0.2/1	0.318	0.267	0.252
Cadmium	PWQO	0.0002 c	based on	0.00021	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	<0.0001
	IPWQO		hardness	0.00022			10.00002	10.00002	10.00002	
Chromium	PWQO	0.0099			< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.003
Cobalt	IPWQO	0.0009			0.0004	< 0.0001	0.0004	0.0002	0.0003	< 0.0005
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.0018	0.0003	< 0.0001	0.0008	0.0004	<0.002
Iron	PWQO	0.3	0.3		2.72	0.823	1.72	2.52	0.929	1.72
					2.72	0.823	1.72	2.52	0.929	1.72
Lead	PWQO	0.025 0.005	based on	0.002	0.00025	0.00003	0.00011	0.00032	0.00003	< 0.001
	IPWQO		hardness							
Manganese					0.937	0.811	0.782	0.982	0.779	0.675
Molybdenum	IPWQO	0.04			0.0003	0.0004	0.0003	0.0003	0.0004	< 0.002
Nickel	PWQO	0.025		0.025	0.0026	0.0013	0.002	0.0014	0.0027	< 0.003
Silicon					9.43	7.69	6.73	9.15	7.77	7.66
Silver	PWQO	0.0001			< 0.00002	< 0.00002	< 0.00002	< 0.00002	0.00017	< 0.0001
Strontium					0.224	0.206	0.175	0.234	0.18	0.179
Thallium	IPWQO	0.0003			< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.0003
Titanium					0.017	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
Vanadium	IPWQO	0.006			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.002
	PWQO	0.03 0.02			10.005	. 0.005	. 0.003	. 0.005	. 0.005	.0.002
Zinc		0.03 0.02	0.007	0.89	0.009	0.006	< 0.005	0.006	< 0.005	< 0.005
	IPWQO									
	PWQO	0.1	0.005	0.45						
Arsenic	IPWQO	0.005	0.005	0.15						
COD		0.005		1	11	17	14	< 5	9	<5
Colour							14	\)	3	\)
Mercury	PWQO	0.0002		1						
Selenium				1						
Tannin & Lignin	PWQO	0.1								
				1						
TOC		-		1						
TKN		ļ								
Sus. Solids				1						
Field Parameters										
Discharge L/sec					7.99	8.7	8.74	8.13	4.4	9.1
pH					8.1	7.8	7.6	7.5	7.7	7.9
DO	PWQO	f			10.71	10.48	10.17	10.45	10.93	11.53
Conductivity		mg/l			420	423	499	412	404	406
Temperature					9.8	7.4	9.7	10.8	8.2	7.6

Sample Location SW-5

Sample Date					Aug-16	Nov-16	Apr-17	Aug-17	Oct-17	May-18
·					Aug-10	1404-10	Apr-17	Aug-17	Oct-17	IVIAY-10
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			171	181	179	170	170	188
BOD					<5	<5	< 3	< 3	3	4
Chloride			120	180	18.4	19.9	14.9	14	15	18
Conductivity										
DOC					4.5	4.5				5.0
N-NH3 (Ammonia)					0.62	0.64	0.79	0.74	0.49	0.94
N-NH3 (unionized)	PWQO	0.02			0.058	0.043	< 0.01	0.74	0.03	0.05
N-NO2 (Nitrite)	1 WQO	0.02	0.6		<0.05	<0.05	< 0.01	< 0.05	< 0.05	< 0.10
N-NO3 (Nitrate)				-		0.44				
	D14400		3		0.43	0.44	0.7	0.45	0.61	0.5
pH	PWQO	6.5-8.5	6.5-9							8.14
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	< 0.001	< 0.001	< 0.001	0.001
Sulphate					25.8	21.4				24
TDS										
Total phosphorous	IPWQO	0.03			0.02	< 0.01	< 0.01	< 0.01	0.03	0.003
Turbidity	•				8.3	6.6	5.2	9.4	20.6	9.6
Hardness as CaCO3					174	178	198	190	197	216
Calcium					51.9	53.4	57.3	51.4	58.7	65
Magnesium		l		+	10.8	10.9	12.2	11.4	12.3	13
Potassium		 		+						
				1	6.76	6.77	7.1	6.9	7.2	8
Sodium					15.6	15.7	17.3	15.4	15.9	19
Aluminum (dissolved)	IPWQO	0.075					0.04	0.02	0.03	< 0.01
Aluminum total	IPWQO	0.075			<u> </u>		<u> </u>		<u> </u>	0.04
Barium		-			0.085	0.070	0.085	0.088	0.106	0.10
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.0005
Boron	IPWQO	0.2	1.5	3.55	0.223	0.241	0.373	0.309	0.282	0.35
	PWQO	0.0002 c	based on	3.33	0.223	0.241	0.575	0.505	0.202	0.55
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.000020	< 0.000014	< 0.000014	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			< 0.003	< 0.003	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			< 0.0005	< 0.0005	0.0004	0.0003	< 0.0001	0.0004
	PWQO	0.005 d								
Copper		0.005	d	0.0069	< 0.002	< 0.002	0.0003	0.0003	0.0004	< 0.001
	IPWQO									
Iron	PWQO	0.3	0.3		1.83	0.86	2.13	1.39	3.53	2.29
	PWQO	0.025 0.005	based on	0.000					0.00040	
Lead	IPWQO		hardness	0.002	<0.001	<0.001	0.00009	0.00003	0.00013	< 0.001
Manganese	II WQO		naraness		0.672	0.686	0.761	0.627	0.677	0.76
	IBMAGO	0.04								
Molybdenum	IPWQO	0.04			<0.002	<0.002	0.0003	0.0003	0.0003	< 0.005
Nickel	PWQO	0.025		0.025	<0.003	<0.003	0.0024	0.0016	0.0012	< 0.005
Silicon					8.21	8.52	8.36	8.42	8.35	8.1
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.00002	< 0.00002	< 0.00002	< 0.0001
Strontium	<u></u>			1	0.168	0.157	0.171	0.178	0.205	0.188
Thallium	IPWQO	0.0003			< 0.0003	< 0.0003	< 0.00005	< 0.00005	< 0.00005	< 0.0001
Titanium	. ~-			1	<0.002	<0.002	< 0.005	< 0.005	< 0.005	< 0.01
Vanadium	IPWQO	0.006		1	<0.002	<0.002	< 0.005	< 0.005	< 0.005	0.001
				1	₹0.002	\0.00Z	₹ 0.003	. 0.003	₹ 0.003	0.001
Zinc	PWQO	0.03 0.02	0.007	0.89	< 0.005	<0.005	0.013	0.005	0.028	< 0.01
	IPWQO	1	0.007	0.05	30.003	-0.003	0.013	0.005	0.020	. 0.01
	PWQO	0.1	1	1						
Arsenic			0.005	0.15	1		1		1	
	IPWQO	0.005								
COD					8	<5	6	14	15	6
Colour	-				l		l			
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin				1	 		 			
TOC				+						
TKN		 		1	1		1		1	
		1		+	+		+		+	
Sus. Solids										
Field Parameters										
Discharge L/sec					6.57	6.45	9.06	7.98	8.0	8.8
pH					7.3	7.9	7.3		8.0	7.5
DO	PWQO	f			10.33	10.52	12.35	5.23	7.2	5.99
Conductivity		mg/l		1	455	435	459	J.2J	380	405
Temperature		111g/1		+	11.4	5.7	6.3		10.7	9.0
remperature		l		1	11.4	5./	0.5	ı	10./	9.0

Sample Location SW-5

Sample Date					Jul-18	Oct-18	May-19	Aug-19	Oct-19	May-20
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	APV	192	188	194	169	190	184
BOD	IF WQO	a			5	< 1	4	<1	3	<1
Chloride			120	180	20	18	16	16	16	17
Conductivity			120	180	20	10	10	10	10	1/
DOC					5.6	11.1	4.4	21.7	4.2	4.3
N-NH3 (Ammonia)					5.0	0.39	0.85	0.658	0.602	0.908
N-NH3 (unionized)	PWQO	0.02			1	< 0.02	0.09	0.038	0.002	0.908
N-NO2 (Nitrite)	PWQU	0.02	0.6		< 0.10	< 0.02	<0.1	<0.10	<0.10	<0.10
N-NO3 (Nitrate)							0.7	0.64		
pH	DIAGO	6505	3		0.83	0.52			0.56	0.53
Phenols	PWQO	6.5-8.5	6.5-9	0.004	7.88	8.04	8.49	8.14	8.17	8.13
	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Sulphate					29	23	24	23	22	22
TDS										
Total phosphorous	IPWQO	0.03			0.013	0.008	0.007	0.008	0.004	0.025
Turbidity					28.5	5.9	9.1	5.7	3	8.7
Hardness as CaCO3					188	178	204	183	185	190
Calcium					57	53	62	55	56	58
Magnesium					11	11	12	11	11	11
Potassium					6	7	6	6	6	5
Sodium					19	16	14	15	15	15
Aluminum (dissolved)	IPWQO	0.075	I		0.02					<0.01
Aluminum total	IPWQO	0.075			0.02	0.01	0.03	<0.01	<0.01	10.02
Barium	11 11 40	0.075			0.11	0.1	0.08	0.08	0.09	0.09
Beryllium	PWQO	(b) 0.011			< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	2 5 5	0.0003		0.32	0.31	0.32	
DOTOTI		-		3.55	0.4	0.3	0.52	0.51	0.32	0.34
Cadmium	PWQO	0.0002 c	based on	0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			< 0.001	< 0.001	0.001	<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0004	0.0003	0.0003	0.0002	0.0002	0.0003
					0.0004	0.0003				
Copper	PWQO		d	0.0069	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
	PWQ0 IPWQ0	0.005 d		0.0069	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Copper	PWQO IPWQO PWQO	0.005 d 0.3	0.3	0.0069				<0.001 1.32	<0.001	<0.001
Iron	PWQO IPWQO PWQO PWQO	0.005 d	0.3 based on		< 0.001	< 0.001	<0.001	1.32	0.39	2.04
	PWQO IPWQO PWQO	0.005 d 0.3	0.3	0.0069	< 0.001	< 0.001	<0.001	1.32 <0.001	0.39 <0.001	<0.001
Iron	PWQO IPWQO PWQO PWQO	0.005 d 0.3	0.3 based on		< 0.001	< 0.001	<0.001	1.32	0.39	2.04
Iron Lead	PWQO IPWQO PWQO PWQO	0.005 d 0.3	0.3 based on		< 0.001 2.89 < 0.001 0.9	< 0.001 1.81 0.009 0.81	<0.001 1.48 <0.001 0.62	1.32 <0.001	0.39 <0.001	<0.001
Iron Lead Manganese Molybdenum	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on	0.002	< 0.001 2.89 < 0.001 0.9 < 0.005	< 0.001 1.81 0.009 0.81 < 0.005	<0.001 1.48 <0.001 0.62 <0.005	<0.001 0.62 <0.005	<0.001 0.54 <0.005	<0.001 0.66
Iron Lead Manganese Molybdenum Nickel	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on		< 0.001 2.89 < 0.001 0.9 < 0.005 < 0.005	< 0.001 1.81 0.009 0.81 < 0.005 < 0.005	<0.001 1.48 <0.001 0.62 <0.005 <0.005	<0.001 0.62	0.39 <0.001 0.54	<0.001 0.66 <0.005
Iron Lead Manganese Molybdenum Nickel Silicon	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025	0.3 based on	0.002	< 0.001 2.89 < 0.001 0.9 < 0.005 < 0.005 8	< 0.001 1.81 0.009 0.81 < 0.005 < 0.005 8.3	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8	<0.001 0.62 <0.005 <0.005 7.9	0.39 <0.001 0.54 <0.005 <0.005 8.1	<0.001 0.66 <0.005 <0.005 7.8
Iron Lead Manganese Molybdenum Nickel Silicon Silver	PWQO IPWQO PWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001	 1.32 <0.001 0.62 <0.005 <0.005 <0.0001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001	 2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183	1.32 <0.001 0.62 <0.005 <0.005 7.9 <0.0001 0.191	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203	2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.005 d 0.3 0.025 0.005 0.04 0.025	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 <0.0001 0.205 <0.0001	< 0.001 1.81 0.009 0.81 < 0.005 < 0.005 8.3 < 0.0001 0.204 < 0.0001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 <0.0001 0.183 <0.0001	 <0.001 0.62 <0.005 <0.005 <0.0001 0.191 <0.0001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001	 2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 <0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01	 <0.001 0.62 <0.005 <0.005 <0.0001 0.191 <0.0001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 <0.0001 0.205 <0.0001	< 0.001 1.81 0.009 0.81 < 0.005 < 0.005 8.3 < 0.0001 0.204 < 0.0001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 <0.0001 0.183 <0.0001	 <0.001 0.62 <0.005 <0.005 <0.0001 0.191 <0.0001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001	 2.04 <0.001 0.66 <0.005 <0.005 <0.0001 0.184 <0.0001
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01	 <0.001 0.62 <0.005 <0.005 <0.0001 0.191 <0.0001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 <0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01	 <0.001 0.62 <0.005 <0.005 <0.0001 0.191 <0.0001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.001 <0.01	<pre><0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 0.001</pre>
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.001 <0.01	<pre><0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 0.001</pre>
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 <0.005 8 <0.0001 0.205 <0.0001 0.001	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.01 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.001 <0.01	<pre><.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 0.001</pre>
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.01 <0.001 <0.001	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <0.001	 <0.001 0.62 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.01 <0.001 <0.01	 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 <0.01 <0.01 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.001 <1.001 <0.001 <1.001 <0.01 <0.01 <0.01	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.001 <0.001 <0.001 <<5	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 6	1.32 <0.001 0.62 <0.005 <0.005 7.9 <0.0001 <0.0001 <0.001 <0.001 <5.001	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001 <13	2.04 <0.001 0.66 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 18
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.001 <0.01 18 7.4 7.4	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.001 <0.001 <<5 4.35 7.9	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <6.001 6 8 7.8	1.32 <0.001 0.62 <0.005 <0.005 7.9 <0.0001 0.191 <0.001 <0.001 <0.001 5 8.5 7.6	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001 <0.001 7 8.1	2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 0.001 18 8 7.3
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0002 0.1	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.001 <0.01 7.4 7.4 12.58	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.0001 <0.001 <0.001 <5	<0.001 1.48 <0.001 0.62 <0.005 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 6 8 7.8 11.9	1.32 <0.001 0.62 <0.005 <0.005 7.9 <0.0001 0.191 <0.001 <0.001 <0.01 5 8.5 7.6 8.1	0.39 <0.001 0.54 <0.005 <0.005 <0.0001 0.203 <0.0001 <0.001 <0.001 13 7 8.1 9.9	2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO IPWQO	0.005 d 0.3 0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.0005	0.3 based on hardness	0.002	<0.001 2.89 <0.001 0.9 <0.005 8 <0.0001 0.205 <0.0001 <0.001 <0.01 18 7.4 7.4	<0.001 1.81 0.009 0.81 <0.005 <0.005 8.3 <0.0001 0.204 <0.001 <0.001 <<5 4.35 7.9	<0.001 1.48 <0.001 0.62 <0.005 8 <0.0001 0.183 <0.001 <0.001 <0.001 <6.001 6 8 7.8	1.32 <0.001 0.62 <0.005 <0.005 7.9 <0.0001 0.191 <0.001 <0.001 <0.001 5 8.5 7.6	0.39 <0.001 0.54 <0.005 <0.005 8.1 <0.0001 0.203 <0.0001 <0.001 <0.001 7 8.1	2.04 <0.001 0.66 <0.005 <0.005 7.8 <0.0001 0.184 <0.0001 <0.01 <0.01 18 8 7.3

Sample Location SW-5

Sample Date Sep-20 Oct-20

Alkalinity as CaCO3	PARAMETER	Limit	PWQO	CWQG	APV				
BOD				CVVQO	Alv	172	180		
Conductivity									
Conductivity	Chloride			120	180				
N.NH3 (Jamonia) N.NH3 (Jamonia) N.NH3 (Jamonia) N.ND3 (Nitrite) 0.6 <0.10 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	Conductivity								
N-N-NO2 (Nirtrite) N-NO2 (Nirtrite) N-NO2 (Nirtrite) N-NO3 (Nirtrite) N-NO	DOC					4	4.2		
N-NO2 (Nitrate) PM	N-NH3 (Ammonia)					0.83	0.776		
N-NO3 (Nirate) PH	N-NH3 (unionized)	PWQO	0.02			0.04	0.04		
N-NO3 (Nivate) PH PH PWQ0	N-NO2 (Nitrite)			0.6					
Phenols PWQO 0.001 0.004 0.961 <0.001 <0.001	N-NO3 (Nitrate)					0.6	0.66		
Sulphate TOS TOS TOTAL Phosphorous PWQQ 0.03 0.006 0.004 0.004 0.004 0.005 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.004 0.006 0.0		PWQO	6.5-8.5	6.5-9		8.12	8.18		
TOS TOTAI phosphorous Tyrbidily Tyrb		IPWQO	0.001	0.004	0.961	< 0.001	< 0.001		
Total phosphorous IPWQO						22	21		
Turbidity									
Hardness as CaCO3		IPWQO	0.03			0.006	0.004		
Calcium						7	3.2		
Magnesium						181	169		
Potassium Sodium 15						56	51		
Sodium Aluminum (dissolved) IPWQO 0.075 0.001 0.00	Magnesium					10	10		
Aluminum (dissolved) IPWQO 0.075 0.001 0.001 0.001 0.005						7	6		
Aluminum total IPWQO						15	14		
Barlum		IPWQO	0.075			< 0.01	< 0.01		
Beryllium		IPWQO	0.075						
Boron IPWQO 0.02 1.5 3.55 0.3 0.31						0.09	0.08		
Cadmium PWQQ IPWQQ 0.0002 c IPWQQ based on hardness 0.00021 <0.0001 <0.0001 Chromium PWQQ 0.0099 <0.0001		PWQO	(b) 0.011			< 0.0005	< 0.0005		
Cadmium	Boron	IPWQO	0.2	1.5	3.55	0.3	0.31		
Chromium PWQO 0.0099 0.0001 0		PWQO	0.0002 c	based on					
Chromium	Cadmium	IPWOO		hardness	0.00021	<0.0001	<0.0001		
Cobalt	Chromium		0.0099	Tial arress		< 0.001	0.001		
Copper									
Copper IPWQO	Cobuit					0.0002	0.0002		
In	Copper		0.005 u	d	0.0069				
Lead	1 1								
Lead	Iron					1.26	0.83		
Nanganese Nang	Load	PWQO	0.025 0.005	based on	0.002				
Molybdenum IPWQO 0.04 0.025 0.005 0.187 0.005 0.005 0.005 0.005 0.001 0.0001 0.0001 0.0001 0.005	Leau	IPWQO		hardness	0.002	< 0.001	< 0.001		
Nickel	Manganese					0.66	0.61		
Silicon Silver PWQO 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	Molybdenum	IPWQO	0.04			< 0.005	< 0.005		
Silver	Nickel	PWQO	0.025		0.025	< 0.005	<0.005		
Strontium IPWQO 0.0003 0.187 0.187 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001	Silicon					7.3	8.7		
Thallium	Silver	PWQO	0.0001			<0.0001	< 0.0001		
Titanium Vanadium IPWQO 0.006 Vanadium IPWQO 0.006 VO.001									
Vanadium IPWQO 0.006 <0.001 <0.001 Zinc PWQO 0.03 0.02 0.007 0.89 <0.01	Thallium	IPWQO	0.0003			<0.0001	< 0.0001		
PWQO	Titanium								
PWQO	Vanadium	IPWQO	0.006			< 0.001	<0.001		
PWQO		PWQO	0.03 0.02						
Arsenic	Zinc			0.007	0.89	<0.01	<0.01		
Arsenic IPWQO 0.005 0.15 0.15 0.005 0.15 0.005 0.15 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.1 0.0000 0.1 0.1						<0.01	VU.U1		
PWQO 0.005 6 <5	Arsenic			0.005	0.15				
Colour		IPWQO	0.005						
Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin Image: Constant of the constant of t						6	<5		
Selenium									
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F Conductivity TG TX									
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO f Conductivity PMQI D D D D D D D D D D D D D D D D D D D		PWQO	0.1						
TKN Sus. Solids Field Parameters Discharge L/sec Discharge L/sec 7.3 6.2 pH 7.7 7.3 DO PWQO f 10.7 7.5 Conductivity mg/l 452 446									
Sus. Solids Field Parameters Discharge L/sec 7.3 6.2 pH 7.7 7.3 DO PWQO f 10.7 7.5 Conductivity mg/l 452 446									
Field Parameters 7.3 6.2 Discharge L/sec 7.3 6.2 pH 7.7 7.3 DO PWQO f 10.7 7.5 Conductivity mg/l 452 446									
Discharge L/sec									
pH 7.7 7.3 DO PWQO f 10.7 7.5 Conductivity mg/l 452 446									
DO PWQO f 10.7 7.5 Conductivity mg/l 452 446									
Conductivity mg/l 452 446									
,		PWQO							
Temperature 8.3 6.0			mg/l						
	Temperature					8.3	6.0		

Sample Location SW-6

Sample Date					Nov-98	Jul-99	Oct-99	Nov-99	Jun-00	Aug-00
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	Limit IPWQO		CWQG	APV	220	114	181	166	197	166
BOD	IPWQU	a			<1	<1	<1	<1	<1	<1
Chloride			120	180	19.9	23.3	20.2	18.9	16.2	15.7
Conductivity			120	100	481		461	421		
DOC					481	338	461	421	456	366
N-NH3 (Ammonia)					0.05			0.02	0.05	0.03
N-NH3 (unionized)	PWQO	0.02			<0.05	<0.01	<0.01	<0.02	<0.05	< 0.03
N-NO2 (Nitrite)	PWQU	0.02	0.6							
N-NO3 (Nitrate)			0.6		<0.01	0.6	<0.1	<0.1	<0.1	<0.1
			3		0.01	0.3	0.2	0.2	0.2	0.3
pH	PWQO	6.5-8.5	6.5-9		7.71	7.6	7.71	8.4	8.32	7.7
Phenols	IPWQO	0.001	0.004	0.961	0.178	<0.001	0.006	<0.001	0.005	0.013
Sulphate					35					
TDS										
Total phosphorous	IPWQO	0.03			0.03	0.02	<0.01	0.01	0.06	0.15
Turbidity					16.4	2.5	0.8	1.4	8.1	146
Hardness as CaCO3					282	141	213	222	218	174
Calcium					81.6	39.3	61.1	63.1	64	51.1
Magnesium					17.2	10.2	14.2	15.3	14.2	11.2
Potassium						<0.04	2.4	4.6	4.3	5.5
Sodium					14.5	12.4	13.8	14.6	13.5	11.2
Aluminum (dissolved)	IPWQO	0.075			0.1	0.06	0.05	0.05	0.39	0.41
Aluminum total	IPWQO	0.075			0.2	0.00	0.00	0.00	0.00	V. 12
Barium	ii WQO	0.075								
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	2 55						
BOIOII				3.55						
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0001
	IPWQO		hardness	0.00022						
Chromium	PWQO	0.0099			< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Cobalt	IPWQO	0.0009				0.0006	0.0005	0.0005	0.0011	0.0027
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	0.0019	0.0026	<0.0005	0.0006	0.0013	0.0043
Iron	PWQO	0.3	0.3		3	0.88	0.25	1.3	9.56	19
11011	-				3	0.00	0.25	1.5	9.30	19
Lead	PWQO	0.025 0.005	based on	0.002	<0.0002	< 0.0002	<0.0002	<0.0002	0.0009	0.0025
	IPWQO		hardness							0.0000
Manganese					1.27					
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02
Silicon										
Silver	PWQO	0.0001			0.001	0.0005	0.0002	< 0.0001	< 0.0001	0.0002
Strontium	-``									
Thallium	IPWQO	0.0000								
Titanium		0.0003								
Vanadium	IPVVQO	0.0003								
	-									
	IPWQO	0.006								
Zinc	IPWQO PWQO		0.007	0.89	<0.01	0.01	<0.01	<0.01	0.03	<0.01
Zinc	IPWQO	0.006	0.007	0.89	<0.01	0.01	<0.01	<0.01	0.03	<0.01
	IPWQO PWQO	0.006			<0.01					
Zinc Arsenic	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	<0.01	0.01	<0.01	<0.01	0.03	<0.01
Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02				<0.001	<0.001	<0.001	0.001	0.004
Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			<3	<0.001	<0.001	<0.001	0.001	0.004
Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1	<0.001 30 50	<0.001 18 5	<0.001 9 5	0.001 17 11	0.004 13 19
Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001	<0.001 30 50 <0.0001	<0.001 18 5 <0.0001	<0.001 9 5 <0.0001	0.001 17 11 <0.0001	0.004 13 19 <0.0001
Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1	<0.001 30 50	<0.001 18 5	<0.001 9 5	0.001 17 11	0.004 13 19
Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001	<0.001 30 50 <0.0001	<0.001 18 5 <0.0001	<0.001 9 5 <0.0001	0.001 17 11 <0.0001	0.004 13 19 <0.0001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4	<0.001 30 50 <0.0001	<0.001 18 5 <0.0001	<0.001 9 5 <0.0001	0.001 17 11 <0.0001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.0001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.0001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.0001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4 15	<0.001 30 50 <0.0001 <0.001 0.51 10	<0.001 18 5 <0.0001 <0.001 0.05 2	<0.001 9 5 <0.0001 <0.001 0.23 3	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001 1.11 136
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<3 1.1 <0.0001 <0.001 6.3 0.4	<0.001 30 50 <0.0001 <0.001	<0.001 18 5 <0.0001 <0.0001	<0.001 9 5 <0.0001 <0.001	0.001 17 11 <0.0001 <0.001	0.004 13 19 <0.0001 <0.001

Sample Location SW-6

Sample Date					Oct-00	Sep-01	Dec-01	Jun-02	Aug-03	Oct-03
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	cwqo		193	176	172	164	39	175
BOD	ii WQO				<1	1	1	<1	<1	<1
Chloride		_	120	180	18.8	17.6		16.8	11.5	17.2
Conductivity		+	120	100	420	412	399	426	138	430
DOC		+			420	412	399	420	130	430
N-NH3 (Ammonia)		+		+	0.04	0.06	0.06	0.12	<0.01	0.06
N-NH3 (unionized)	PWQO	0.02		+	<0.04	0.00	0.00	0.12	<0.01	<0.01
N-NO2 (Nitrite)	1 WQO	0.02	0.6		<0.01	<0.1	<0.1	0.1	<0.1	<0.1
N-NO3 (Nitrate)		+	3	+	0.2	0.2	0.2	0.1	0.2	0.2
pH	PWQO	6.5-8.5	6.5-9	+	7.99	8.45	8.53	8.02	7.52	8.04
Phenols	IPWQO	0.001	0.004	0.961	0.002	<0.001	< 0.001	<0.001	<0.001	<0.001
Sulphate	IF WQO	0.001	0.004	0.501	0.002	<0.001	26	26	6	25
TDS		+		+			20	20	U	23
Total phosphorous	IPWQO	0.02	-		0.03	40 O1	0.03	0.04	0.01	0.01
Turbidity	IPWQO	0.03	-		0.02	<0.01	0.02	0.04	1.7	2.3
Hardness as CaCO3			-		1.7	3.8	10.8	16.8	45	181
			-	+	192	203	231	197		
Calcium					52.3	59.3	66.4	59.6	11.6	52.5 12.2
Magnesium			-	+	15	13.4	15.8	13.2	3.91	
Potassium					<0.4	2.9	3.1	4.6	1	4.9
Sodium			L		13.1	13.3	15.5	12.7	8.7	12.8
Aluminum (dissolved)	IPWQO	0.075			0.34	0.04	0.24	0.09	0.061	0.013
Aluminum total	IPWQO	0.075							0.0	
Barium							0.08	0.09	0.012	
Beryllium	PWQO	(b) 0.011							<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55					0.006	0.105
Cadasium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099		1	0.01	< 0.01	< 0.01	< 0.01	0.002	0.0002
Cobalt	IPWQO	0.0009		+	<0.0005	0.0013	0.0019		0.0001	0.0003
	PWQO	0.005 d		1						
Copper	IPWQO	0.005	d	0.0069	<0.0005	0.0005	0.0005	0.0031	<0.002	0.024
Iron		0.2		-	0.6	4.22	2.42	2.00	0.578	0.389
11011	PWQO	0.3	0.3		0.6	1.22	3.13	3.88	0.576	0.569
Lead	PWQO	0.025 0.005	based on	0.002	<0.0002	<0.0002	<0.0002	0.0009	0.0008	0.0006
2000	IPWQO		hardness	0.002	10.0002	10.0002	-0.0002	0.0003		0.0000
Manganese							1.29	1.47	0.018	
Molybdenum	IPWQO	0.04							0.0014	0.0003
Nickel	PWQO	0.025		0.025	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	<0.01
Silicon										
Silver			ļ							
Strontium	PWQO	0.0001			<0.0001	0.0001	0.0002	<0.0001	<0.0001	<0.0001
	PWQO	0.0001			<0.0001	0.0001	0.0002	<0.0001	<0.0001 0.051	<0.0001
Thallium	IPWQO	0.0001			<0.0001	0.0001	0.0002	<0.0001		<0.0001
					<0.0001	0.0001	0.0002	<0.0001		
Thallium					<0.0001	0.0001	0.0002	<0.0001		<0.0001
Thallium Titanium Vanadium	IPWQO	0.0003							0.051	<0.005
Thallium Titanium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	<0.001	<0.001	<0.001	<0.0001		
Thallium Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89					0.051	<0.005
Thallium Titanium Vanadium Zinc	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			<0.01	<0.01	<0.01	0.01	<0.005	<0.005
Thallium Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89					<0.005 <0.005 <0.03	<0.005
Thallium Titanium Vanadium Zinc Arsenic COD	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			<0.01	<0.01	<0.01	0.01	<0.005	<0.005
Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			<0.01	<0.01	<0.01	0.01	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			<0.01 <0.001 <3	<0.01 <0.001 3	<0.01 0.001 <3	0.01 0.001 15	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10	<0.01 <0.001 3 5	<0.01 0.001 <3	0.01 0.001 15 4	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001	<0.01 <0.001 3 5 <0.0001	<0.01 0.001 <3 4	0.01 0.001 15 4 <0.0001	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001	<0.01 <0.001 3 5 <0.0001	<0.01 0.001 <3 4	0.01 0.001 15 4 <0.0001	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001 <0.0001	<0.01 <0.001 3 5 <0.0001 <0.001	<0.01 0.001 <3 4 <0.001	0.01 0.001 15 4 <0.0001 0.001	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001	<0.01 <0.001 3 5 <0.0001	<0.01 0.001 <3 4 <0.001	0.01 0.001 15 4 <0.0001 0.001	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001 <0.0001 0.29	<0.01 <0.001 3 5 <0.0001 <0.001	<0.01 0.001 <p>3 4 <0.001</p> 7 0.33	0.01 0.001 15 4 <0.0001 0.001 5.1 0.39	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001 <0.0001 0.29	<0.01 <0.001 3 5 <0.0001 <0.001	<0.01 0.001 <p>3 4 <0.001</p> 7 0.33	0.01 0.001 15 4 <0.0001 0.001 5.1 0.39	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001 <0.0001 0.29	<0.01 <0.001 3 5 <0.0001 <0.001	<0.01 0.001 <p>3 4 <0.001</p> 7 0.33	0.01 0.001 15 4 <0.0001 0.001 5.1 0.39	<0.005 <0.005 <0.03	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			<0.01 <0.001 <3 10 <0.0001 <0.0001 0.29	<0.01 <0.001 3 5 <0.0001 <0.0001 0.34 5	<0.01 0.001 <p>3 4 <0.001</p> 7 0.33	0.01 0.001 15 4 <0.0001 0.001 5.1 0.39	<0.005 <0.005 <0.03 25	<0.005 <0.005 0.002
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.0005 0.0002 0.1			<0.01 <0.001 <3 10 <0.0001 <0.0001 0.29	<0.01 <0.001 3 5 <0.0001 <0.001	<0.01 0.001 <p>3 4 <0.001</p> 7 0.33	0.01 0.001 15 4 <0.0001 0.001 5.1 0.39	<0.005 <0.005 <0.03	<0.005 <0.005 0.002

Sample Location SW-6

Sample Date										
Sample Date					Mar-04	Jul-04	Sept-04	May-05	Aug-05	Nov-05
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	142	162	184	181	183	178
BOD	IF WQO	а			2	1	1	<1	<1	<1
Chloride			120	100	16	20.9	20.1	21	21	21
Conductivity			120	180	367	477	453	21	21	21
					307	4//	453			
DOC					0.00	0.15	0.05		0.40	0.45
N-NH3 (Ammonia)					0.09	0.15	0.05	0.1	0.43	0.15
N-NH3 (unionized)	PWQO	0.02			<0.01	<0.01	<0.01	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	0.1	<0.10
N-NO3 (Nitrate)			3		0.3	0.2	0.3	<0.1	0.21	0.18
pH	PWQO	6.5-8.5	6.5-9		7.25	7.91	8.37	8.04	8.18	8.16
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate					24	29	26			
TDS					198	231	244			
Total phosphorous	IPWQO	0.03			0.12	0.11	0.02	0.03	0.04	0.04
Turbidity	IFVVQO	0.03			91	91	6.4	0.03	7.1	7.7
Hardness as CaCO3					167	194	191	191	189	196
						-				
Calcium					47.9	56	54	55	56	57
Magnesium					11.5	13.1	13.5	13	12	13
Potassium					4.5	4.7	5.5	5	5	5
Sodium					10.9	13.5	13.4	15	15	15
Aluminum (dissolved)	IPWQO	0.075			0.842	0.426	0.14	0.06	0.02	< 0.01
Aluminum total	IPWQO	0.075								
Barium								0.09	0.07	0.07
Beryllium	PWQO	(b) 0.011						<0.001	<0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55				0.11	0.21	0.14
20.0	PWQO	0.0002 c	based on	3.33				0.11	0.22	0.1.
Cadmium	-	0.0002 C		0.00021	< 0.0001	< 0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.0022	<0.002	0.0002	0.002	0.001	0.001
Cobalt	IPWQO	0.0009			0.0006	<0.001	0.0002	0.0004	0.0002	0.003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.002	<0.02	<0.002	<0.001	< 0.001	< 0.001
Iron		0.0	0.2		15.8	0.498	5.22	2.53	1.09	1.13
11011	PWQO	0.3	0.3		15.0	0.496	5.22	2.33	1.09	1.15
Lead	PWQO	0.025 0.005	based on	0.002	0.0027	<0.005	<0.0005	<0.001	<0.001	
Leau				0.002	0.0027	<0.003	VO.0003	V0.001	\0.00I	
	IPWQO		hardness							
Manganese	IPWQO		hardness					0.96	0.67	1.05
Manganese Molyhdenum		0.04	hardness					0.96	0.67	1.05
Molybdenum	IPWQO	0.04	hardness	0.025	<0.01	<0.01	<0.01	< 0.005	< 0.005	<0.005
Molybdenum Nickel		0.04 0.025	hardness	0.025	<0.01	<0.01	<0.01		<0.005 <0.005	<0.005 <0.005
Molybdenum Nickel Silicon	IPWQO PWQO	0.025	hardness	0.025				<0.005 <0.005	<0.005 <0.005 13	<0.005 <0.005 9.1
Molybdenum Nickel Silicon Silver	IPWQO		hardness	0.025	<0.01	<0.01	<0.001	<0.005 <0.005 <0.0001	<0.005 <0.005 13 <0.0001	<0.005 <0.005 9.1 <0.0001
Molybdenum Nickel Silicon Silver Strontium	IPWQO PWQO	0.025	hardness	0.025				<0.005 <0.005	<0.005 <0.005 13 <0.0001 0.144	<0.005 <0.005 9.1 <0.0001 0.161
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO	0.025	hardness	0.025				<0.005 <0.005 <0.0001	<0.005 <0.005 13 <0.0001 0.144 <0.0001	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO	0.025 0.0001 0.0003	hardness	0.025				<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO	0.025	hardness	0.025				<0.005 <0.005 <0.0001	<0.005 <0.005 13 <0.0001 0.144 <0.0001	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO PWQO IPWQO	0.025 0.0001 0.0003			<0.0001	<0.001	<0.0001	<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium	IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.025				<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02			<0.0001	<0.001	<0.0001	<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007	0.89	<0.0001 0.015	<0.001 0.013	<0.0001	<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02			<0.0001	<0.001	<0.0001	<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007	0.89	<0.0001 0.015 0.002	<0.001 0.013 <0.03	<0.0001 <0.005 0.001	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007	0.89	<0.0001 0.015 0.002 42	<0.001 0.013 <0.03 16	<0.0001 <0.005 0.001	<0.005 <0.005 <0.0001 0.189	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.01 0.002
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7	<0.001 0.013 <0.03 16 12	<0.0001 <0.005 0.001	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001	<0.001 0.013 <0.03 16 12 <0.0001	<0.0001 <0.005 0.001 14 8	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7	<0.001 0.013 <0.03 16 12	<0.0001 <0.005 0.001	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001	<0.001 0.013 <0.03 16 12 <0.0001	<0.0001 <0.005 0.001 14 8	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 <0.01 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01	<0.005 <0.005 13 <0.0001 0.144 <0.0001 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01 11 11.5	<0.005 <0.005 13 <0.0001 0.144 <0.0001 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01 11 11.5	<0.005 <0.005 13 <0.0001 0.144 <0.0001 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01 11 11.5 9 7.78	<0.005 <0.005 13 <0.0001 0.144 <0.0001 0.003 <0.01 12 5 7.55	<.0.005 <0.005 9.11 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01 14
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.007	0.89	<0.0001 0.015 0.002 42 7 <0.0001 <0.001	<0.001 0.013 <0.03 16 12 <0.0001 <0.01	<0.0001 <0.005 0.001 14 8 <0.001 0.5	<0.005 <0.005 <0.0001 0.189 0.003 <0.01 11 11.5	<0.005 <0.005 13 <0.0001 0.144 <0.0001 0.003 <0.01	<0.005 <0.005 9.1 <0.0001 0.161 <0.0001 <0.001 0.002 <0.01

Sample Location SW-6

					•					
Sample Date					May-06	Aug-06	Oct-06	May-07	Aug-07	Oct-07
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AF V	182	172	174	181	194	188
BOD	IFVVQO	a			<1	<1	<1	<1	1	3
Chloride			120	180	20	20	20	20	21	22
Conductivity			120	100	461	449	444	475	498	498
DOC					401	443	7.6	6.2	6.8	7.5
N-NH3 (Ammonia)					0.4		7.0	0.26	0.31	0.24
N-NH3 (unionized)	PWQO	0.00			0.4			<0.02	<0.02	<0.02
	PWQU	0.02				<0.1	r0 10			<0.02
N-NO2 (Nitrite)			0.6			0.19	<0.10 0.19	<0.10	<0.10	0.10
N-NO3 (Nitrate)			3			0.19	0.19	0.17 7.92	0.19 8.24	
pH	PWQO	6.5-8.5	6.5-9			0.004	0.004			8.05
Phenols	IPWQO	0.001	0.004	0.961		<0.001	<0.001	<0.001	<0.001	<0.001
Sulphate						29	28	33	34	32
TDS					300	292	289	309	324	324
Total phosphorous	IPWQO	0.03			0.04	0.02	0.03	0.2	0.18	0.02
Turbidity								12.3	13.1	5.5
Hardness as CaCO3						184	207	210	220	215
Calcium					55	54	60	61	65	63
Magnesium					13	12	14	14	14	14
Potassium					5	5	6	6	6	7
Sodium					15	15	16	17	18	18
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aluminum total	IPWQO	0.075								
Barium	ii WQO	0.073			0.08	0.08	0.07	0.09	0.09	0.09
Beryllium	PWQO	(b) 0.011			0.08	<0.001	<0.001	<0.001	<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.15	0.15	0.14	0.2	0.26	0.25
BOTOIT		-		3.33	0.13	0.13	0.14	0.2	0.20	0.23
Cadmium	PWQO	0.0002 c	based on	0.00021		<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.001	<0.001	<0.001	0.002	0.002	0.002
Cobalt	IPWQO	0.0009			0.0005	0.0003	0.0002	0.0005	0.0004	0.0004
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		2.84	1.73	0.31	3.24	1.82	1.52
11011	-				2.04	1.75	0.51	J.24	1.02	1.52
Lead	PWQO	0.025 0.005	based on	0.002		< 0.001	< 0.001	< 0.001	<0.001	<0.001
	IPWQO		hardness							
Manganese					1.4	1.02	0.8	1.34	1.35	1.42
Molybdenum	IPWQO	0.04				< 0.005	< 0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025		<0.005	<0.005	<0.005	<0.005	<0.005
Silicon					8.2	9.8	8	9.6	9.5	8.7
Silver	PWQO	0.0001				< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Strontium					0.185	0.152	0.151	0.136	0.176	0.189
Thallium									0.176	
Titanium	IPWQO	0.0003			0.100	0.0002	<0.0001	0.0004	<0.0001	<0.0001
Vanadium	IPWQO	0.0003				0.0002	<0.0001	0.0004	<0.0001	<0.0001
	IPWQO	0.006				0.0002 <0.01 0.002	<0.0001 <0.01 0.001	0.0004 <0.01 0.003	<0.0001 <0.01 0.004	<0.0001 <0.01 0.002
Zinc	IPWQO PWQO		0.007	0.89	<0.01	0.0002 <0.01	<0.0001 <0.01	0.0004 <0.01	<0.0001 <0.01	<0.0001 <0.01
Zinc	IPWQO	0.006	0.007	0.89		0.0002 <0.01 0.002	<0.0001 <0.01 0.001	0.0004 <0.01 0.003	<0.0001 <0.01 0.004	<0.0001 <0.01 0.002
	IPWQO PWQO	0.006				0.0002 <0.01 0.002	<0.0001 <0.01 0.001	0.0004 <0.01 0.003	<0.0001 <0.01 0.004	<0.0001 <0.01 0.002
Zinc Arsenic	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89		0.0002 <0.01 0.002	<0.0001 <0.01 0.001	0.0004 <0.01 0.003	<0.0001 <0.01 0.004	<0.0001 <0.01 0.002
Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1				0.0002 <0.01 0.002	<0.0001 <0.01 0.001	0.0004 <0.01 0.003	<0.0001 <0.01 0.004	<0.0001 <0.01 0.002
Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	0.0002 <0.01 0.002 <0.01	<0.0001 <0.01 0.001 <0.01	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01	<0.0001 <0.01 0.002 <0.01
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 9 0.47	0.0002 <0.01 0.002 <0.01 14	<0.0001 <0.01 0.001 <0.01 11	0.0004 <0.01 0.003 <0.01	<0.0001 <0.01 0.004 <0.01 11	<0.0001 <0.01 0.002 <0.01 11 0.33
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 9 0.47	0.0002 <0.01 0.002 <0.01 14	<0.0001 <0.01 0.001 <0.01 11 0.33	0.0004 <0.01 0.003 <0.01 11	<0.0001 <0.01 0.004 <0.01 11 0.33	<0.0001 <0.01 0.002 <0.01 11 0.33
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005			<0.01 9 0.47 3.8 6.91	0.0002 <0.01 0.002 <0.01 14 0.28	<0.0001 <0.01 0.001 <0.01 11 0.33	0.0004 <0.01 0.003 <0.01 11 0.33	<0.0001 <0.01 0.004 <0.01 11 0.33 13 7.35	<0001 <0.01 0.002 <0.01 11 11 0.33
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 9 0.47	0.0002 <0.01 0.002 <0.01 14	<0.0001 <0.01 0.001 <0.01 11 0.33	0.0004 <0.01 0.003 <0.01 11	<0.0001 <0.01 0.004 <0.01 11 0.33	<0.0001 <0.01 0.002 <0.01 11 0.33
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			<0.01 9 0.47 3.8 6.91	0.0002 <0.01 0.002 <0.01 14 0.28	<0.0001 <0.01 0.001 <0.01 11 0.33	0.0004 <0.01 0.003 <0.01 11 0.33	<0.0001 <0.01 0.004 <0.01 11 0.33 13 7.35	<0.0001 <0.01 0.002 <0.01 11 0.33

Sample Location SW-6

Sample Date					May-08	Oct-08	May-09	Jul-09	Sep-09	May-10
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			196	185	190	190	193	190
BOD					<1	<1	<1	3	<1	1
Chloride			120	180	21	20	19	18	18	19
Conductivity					494	482	483	483	477	
DOC					6.1	5.4	5.6	5.8	5.8	
N-NH3 (Ammonia)					0.34	0.22	0.25	0.28	0.28	0.35
N-NH3 (unionized)	PWQO	0.02			<0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.21	0.25	0.29	0.44	0.28	0.27
pH	PWQO	6.5-8.5	6.5-9		8.12	8.05	8.12	8.15	8.03	8.26
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Sulphate					37	32	34	32	31	
TDS					321	313	314	314	310	
Total phosphorous	IPWQO	0.03			0.01	< 0.01	0.01	< 0.01	0.01	0.02
Turbidity					10.7	2.6	8.1	2.9	7	10.6
Hardness as CaCO3					224	207	187	208	196	
Calcium					65	60	55	62	57	59
Magnesium					15	14	12	13	13	13
Potassium					6	6	5	7	7	6
Sodium					18	17	16	17	17	17
Aluminum (dissolved)	IPWQO	0.075			0.03	< 0.01	< 0.01	< 0.01		< 0.01
Aluminum total	IPWQO	0.075						< 0.01	< 0.01	
Barium					0.1	0.07	0.07	0.08	0.07	0.08
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Boron	IPWQO	0.2	1.5	3.55	0.22	0.21	0.33	0.23	0.2	0.24
	PWQO	0.0002 c	based on	0.00				0.00		
Cadmium	IPWQO	0.0002	hardness	0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium		0.0000	Haruness		0.000	0.000	0.004	0.004	0.004	<0.001
Cobalt	PWQO	0.0099			0.002	0.002	0.001	0.001	0.001	0.0003
CODAIL	IPWQO	0.0009			0.0006	0.0003	0.0004	0.0003	0.0003	0.0003
Copper	PWQO	0.005 d	d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
соррег	IPWQO			0.0003	10.001	10.001	10.001	10.001	10.001	10.001
Iron	PWQO	0.3	0.3		2.28	0.38	1.52	1.55	0.85	2.49
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	ii wqo		Har uness		1.39	1	0.94	0.95	0.99	1
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon	PWQU	0.025		0.025	8.6	8.5	7.4	8.3	8.1	8.1
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium	PWQU	0.0001								0.208
Thallium	IPWQO	0.0003			0.161 <0.0001	0.185	0.192	0.209	0.197 <0.0001	<0.0001
Titanium	IPWQU	0.0003				<0.0001	<0.0001	<0.0001		
Vanadium	IDVACOO	0.000			<0.01	< 0.01	< 0.05	<0.01	< 0.01	<0.01 0.002
vallaululli	IPWQO	0.006			0.004	0.003	0.002	0.003	0.002	0.002
Zinc	PWQO	0.03 0.02	0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ziiic	IPWQO		0.007	0.03	₹0.01	₹0.01	₹0.01	VO.01	₹0.01	\0.01
	PWQO	0.1								
Arsenic	IPWQO	0.005	0.005	0.15						
COD	irwqu	0.005								13
Colour										12
Mercury	DIAZOO	0.0000								
Selenium	PWQO	0.0002								
Tannin & Lignin	PWQO	0.1								
TOC										
					1	1	1		1	
TKN Sus. Solids										
Field Parameters							_	7.4		-
Discharge L/sec							8	7.1	6.6	7
pH							8.3	8	8.3	8.3
DO	PWQO	f					10.64	8.65	9.54	7.45
Conductivity Temperature		mg/l					515 8.3	417 11.7	418 9.1	466 8.3

Sample Location SW-6

Sample Date					Aug-10	Oct-10	Jun-11	Aug-11	Oct-11	Jun-12
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			189	184	186	182	185	197
BOD					1	<1	1	5	<1	1
Chloride			120	180	19	20	19	18	19	21
Conductivity										
DOC										
N-NH3 (Ammonia)					0.24	0.3	0.28	0.33	0.24	0.44
N-NH3 (unionized)	PWQO	0.02			<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.24	0.22	<0.10	0.34	0.28	0.28
pH	PWQO	6.5-8.5	6.5-9		8.09	8.21	8.09	8.15	7.93	8.01
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	-1-									
TDS										
Total phosphorous	IPWQO	0.03			<0.01	<0.01	<0.01	<0.01	<0.01	0.02
Turbidity	ii wac	0.03			9.8	2	7.6	4	1.7	3.4
Hardness as CaCO3					5.0		7.0	-	1.7	177
Calcium					59	65	53	55	59	51
Magnesium				1	13	13	12	12	12	12
Potassium										6
Sodium		1		1	6	6	6	6	6	18
					17	17	14	17	16	
Aluminum (dissolved)	IPWQO	0.075			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aluminum total	IPWQO	0.075					0.01	_	<0.01	0.02
Barium					0.08	0.07	0.07	0.08	0.07	0.1
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.18	0.19	0.18	0.16	0.15	0.23
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099	naraness		0.002	0.002	<0.001	0.002	<0.001	0.003
Cobalt	IPWQO	0.0009			0.002	0.0002	0.0003	0.0003	0.0002	0.0004
CODAIL					0.0003	0.0002	0.0003	0.0003	0.0002	0.0004
Copper	PWQO	0.005 d	d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	IPWQO			0.0003						
Iron	PWQO	0.3	0.3		1.62	0.45	1.43	1.52	0.49	2.55
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	ii wao		naraness		1	0.84	0.7	0.74	0.7	1.12
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel				0.025						<0.005
Silicon	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	9.1
Silver	511100	0.0004			8.7	7.9	7.6	7.7	7.6	<0.0001
	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Strontium					0.2	0.186	0.178	0.175	0.182	0.205
Thallium	IPWQO	0.0003			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Titanium				1	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Vanadium	IPWQO	0.006			0.002	0.001	0.002	0.002	0.001	0.004
71	PWQO	0.03 0.02	0.00-	0.00	.0.01	.0.01	.0.01	.0.01	.0.01	.0.04
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	-	0.1		1						
Arsenic	PWQO	0.1	0.005	0.15						
1		0.005	2.305		<u> </u>					
	IPWQO	0.003						12	10	7
COD	IPWQO	0.003			8	15	8	12	10	,
COD Colour	IPWQO	0.003			8	15	8	12	10	,
	PWQO	0.0002			8	15	8	12	10	,
Colour					8	15	8	12	10	,
Colour Mercury	PWQO	0.0002			8	15	8	12	10	,
Colour Mercury Selenium	PWQO	0.0002			8	15	8	12	10	,
Colour Mercury Selenium Tannin & Lignin TOC	PWQO	0.0002			8	15	8	12	10	,
Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO	0.0002			8	15	8	12	10	,
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO	0.0002			8	15	8	12	10	
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO	0.0002								
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO	0.0002			9	5.4	9.14	8.7	8.29	4.5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			9 8.1	5.4	9.14 8.2	8.7 7.9	8.29 7.6	4.5
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO	0.0002 0.1			9 8.1 2.37	5.4 8.4 13.5	9.14 8.2 2.98	8.7 7.9 9.27	8.29 7.6 9.49	4.5 8 10.26
Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			9 8.1	5.4	9.14 8.2	8.7 7.9	8.29 7.6	4.5

Sample Location SW-6

Sample Date					Aug-12	Oct-12	Jun-13	Aug-13	Nov-13	Apr-14
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	201	191	175	174	173	173
BOD	IPWQU	а			1	191	1/3	2	1/3	< 3
Chloride			120	180	20	19	17	17	17	15.9
Conductivity			120	100	20	19	1/	1/	1/	13.3
DOC										
N-NH3 (Ammonia)					0.47	0.37	0.33	0.36	0.33	0.4
N-NH3 (unionized)	DIMOO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	0.4
	PWQO	0.02	0.6							0.01
N-NO2 (Nitrite) N-NO3 (Nitrate)			0.6		<0.10 0.33	<0.10	<0.10	<0.10	<0.10	0.2
			3			0.28	0.29	0.34	0.4	0.5
pH	PWQO	6.5-8.5	6.5-9		8.1	8.09	8.1	8.05	8.22	. 0.004
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Sulphate										
TDS										
Total phosphorous	IPWQO	0.03			< 0.01	< 0.01	<0.01	0.01	<0.01	0.02
Turbidity					8	1.7	7.5	8.5	2.4	8.7
Hardness as CaCO3					197	199	188	164	192	273
Calcium					59	60	57	46	57	81.3
Magnesium					12	12	11	12	12	17.1
Potassium					6	7	6	6	6	9.5
Sodium					17	17	13	15	16	23.4
Aluminum (dissolved)	IPWQO	0.075	I		<0.01	<0.01		<0.01	0.03	0.02
Aluminum total	IPWQO	0.075			0.01	<0.01	0.02	<0.01	<0.01	
Barium	ii WQO	0.075			0.1	0.09	0.08	0.08	0.08	0.123
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.002
Boron	IPWQO	0.2	1.5	2 5 5	0.24					0.35
BOTOTI		-		3.55	0.24	0.26	0.19	0.21	0.18	0.55
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.00002
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.001	< 0.001	0.002	< 0.001	<0.001	0.0003
Cobalt	IPWQO	0.0009			0.0004	0.0004	0.0003	0.0003	0.0003	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	0.0008
Iron	PWQO	0.3	0.3		1.92	0.47	1.42	1.24	1.73	3.39
11011	-				1.52	0.47	1.42	1.24	1.73	3.33
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	< 0.001	<0.001	<0.001	< 0.001	0.00021
	IPWQO		hardness	5.552						
Manganese					1.1	0.83	0.62	0.67	0.65	0.989
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	<0.005	<0.005	<0.005	0.0003
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0017
Silicon					8.4	7	8.2	7.2	8.3	11.4
Silver	PWQO	0.0001			< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00002
Strontium					0.202	0.196	0.188	0.181	0.17	0.294
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00005
Titanium					<0.01	<0.01	<0.01	<0.01	<0.01	0.006
Vanadium										
	IPWOO	0.006								< 0.005
	IPWQO	0.006			0.0021	0.001	0.001	0.002	0.002	< 0.005
Zinc	PWQO	0.006 0.03 0.02	0.007	0.89						< 0.005 0.01
Zinc			0.007	0.89	0.0021	0.001	0.001	0.002	0.002	< 0.005
	PWQO				0.0021	0.001	0.001	0.002	0.002	< 0.005
Zinc Arsenic	PWQO IPWQO PWQO	0.03 0.02	0.007	0.89	0.0021	0.001	0.001	0.002	0.002	< 0.005
Arsenic	PWQO IPWQO	0.03 0.02			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD	PWQO IPWQO PWQO	0.03 0.02			0.0021	0.001	0.001	0.002	0.002	< 0.005
Arsenic COD Colour	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01	0.001 <0.01	0.001 <0.01	0.002 <0.01	0.002 <0.01	< 0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021	0.001	0.001 <0.01 <5	0.002 <0.01	0.002 <0.01	9
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01 8	0.001	0.001<0.01<58.3	0.002 <0.01 6	0.002 <0.01 9	9
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021	0.001	0.001 <0.01 <5	0.002 <0.01	0.002 <0.01 9 6.1 8.2	9
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO IPWQO	0.03 0.02 0.1 0.005 0.0002			0.0021 <0.01 8	0.001	0.001<0.01<58.3	0.002 <0.01 6	0.002 <0.01 9	9
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO IPWQO PWQO IPWQO PWQO PWQO	0.03 0.02 0.1 0.005 0.0002 0.1			0.0021 <0.01 8 8 7.2 7.9	0.001 <0.01 15 8.9 7.2	0.001 <0.01 <5 8.3 8	0.002 <0.01 6 7.8 8.2	0.002 <0.01 9 6.1 8.2	9 9 8.2

Sample Location SW-6

Sample Date					Jul-14	Oct-14	Jun-15	Aug-15	Oct-15	May-16
DADAMETED	Lineth	DWO O	CMOC	4.017				.0		,
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			173	181	183	178	178	170
BOD					< 3	< 3	10	3	< 3	<5
Chloride			120	180	15.7	16.4	16.7	16.2	17.1	18.6
Conductivity			1							
DOC			l							4.6
N-NH3 (Ammonia)			l		0.43	0.39	0.55	0.3	0.45	0.55
N-NH3 (unionized)	PWQO	0.02	i		0.03	0.02	0.01	0.01	0.01	0.024
N-NO2 (Nitrite)	11140	0.02	0.6		< 0.10	< 0.10	< 0.1	< 0.1	< 0.1	<0.05
N-NO3 (Nitrate)					0.4					0.56
	511100	6505	3		0.4	0.5	0.4	0.5	0.5	0.56
pH	PWQO	6.5-8.5	6.5-9							
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Sulphate			L							24.6
TDS			1			231				
Total phosphorous	IPWQO	0.03	Ī		0.01	< 0.01	0.01	< 0.01	< 0.01	0.03
Turbidity		1	i		10.1	2.3	12.9	15.5	1.8	8.6
Hardness as CaCO3		+			205	176	193	207	177	182
Calcium		+		1	58.8	52.2				53.9
		-		1			56.7	63.1	51.7	
Magnesium					12.3	11	12.5	13.4	11.6	11.6
Potassium			ļ		6.7	6.2	6.1	7.5	6.3	6.47
Sodium			<u> </u>		16.3	14.7	16.4	19.4	16.2	14.0
Aluminum (dissolved)	IPWQO	0.075			0.02	0.01	0.02	0.02	0.02	
Aluminum total	IPWQO	0.075								
Barium		1 212			0.087	0.07	0.085	0.103	0.073	0.075
Beryllium	PWQO	(b) 0.011	İ		< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.001
Boron	IPWQO	0.2	1.5	2.55				0.313		
BOTOTT				3.55	0.288	0.15	0.302	0.313	0.265	0.249
Cadmium	PWQO	0.0002 c	based on	0.00021	< 0.00002	< 0.00002	< 0.00002	0.00003	< 0.00002	<0.0001
Caumum	IPWQO		hardness	0.00021	< 0.00002	< 0.00002	< 0.00002	0.00003	< 0.00002	<0.0001
Chromium	PWQO	0.0099	i		0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.003
Cobalt	IPWQO	0.0009			0.0003	< 0.0001	0.0003	0.0002	0.0003	<0.0005
Cobait					0.0003	< 0.0001	0.0003	0.0002	0.0003	<0.0003
Copper	PWQO	0.005 d	d	0.0069	0.0004	0.0003	< 0.0001	0.0008	0.0005	<0.002
соррег	IPWQO		ı	0.0003	0.0004	0.0003	\ 0.0001	0.0000	0.0003	10.002
Iron	PWQO	0.3	0.3		2.06	0.407	2.41	3.27	0.538	1.87
	PWQO	0.025 0.005	based on							
Lead		0.023 0.003		0.002	0.00007	0.00003	0.00013	0.0003	0.00003	< 0.001
	IPWQO		hardness							
Manganese			I		0.777	0.552	0.77	0.816	0.601	0.577
Molybdenum	IPWQO	0.04	l		0.0004	0.0005	0.0002	0.0003	0.0004	< 0.002
Nickel	PWQO	0.025	i	0.025	0.0025	0.0013	0.0017	0.0014	0.0031	< 0.003
Silicon			i	0.000	8.67	6.91	7.64	9.1	7.69	7.82
Silver	PWQO	0.0001			< 0.00002	< 0.00002				
Strontium	FWQO	0.0001						0 000003		<0.0001
									0.00027	<0.0001
Thallium					0.212	0.185	0.196	0.228	0.00027 0.178	0.177
Titanium	IPWQO	0.0003			0.212 < 0.00005	0.185 < 0.00005	0.196 < 0.00005	0.228 < 0.00005	0.00027 0.178 < 0.00005	0.177 <0.0003
					0.212 < 0.00005 < 0.005	0.185 < 0.00005 < 0.005	0.196 < 0.00005 0.007	0.228 < 0.00005 < 0.005	0.00027 0.178 < 0.00005 < 0.005	0.177 <0.0003 0.002
Vanadium	IPWQO IPWQO	0.0003			0.212 < 0.00005	0.185 < 0.00005	0.196 < 0.00005	0.228 < 0.00005	0.00027 0.178 < 0.00005	0.177 <0.0003
	IPWQO				0.212 < 0.00005 < 0.005 < 0.005	0.185 < 0.00005 < 0.005 < 0.005	0.196 < 0.00005 0.007 < 0.005	0.228 < 0.00005 < 0.005 < 0.005	0.00027 0.178 < 0.00005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002
Vanadium Zinc	IPWQO PWQO	0.006	0.007	0.89	0.212 < 0.00005 < 0.005	0.185 < 0.00005 < 0.005	0.196 < 0.00005 0.007	0.228 < 0.00005 < 0.005	0.00027 0.178 < 0.00005 < 0.005	0.177 <0.0003 0.002
	IPWQO PWQO IPWQO	0.006 0.03 0.02	0.007	0.89	0.212 < 0.00005 < 0.005 < 0.005	0.185 < 0.00005 < 0.005 < 0.005	0.196 < 0.00005 0.007 < 0.005	0.228 < 0.00005 < 0.005 < 0.005	0.00027 0.178 < 0.00005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002
Zinc	IPWQO PWQO	0.006			0.212 < 0.00005 < 0.005 < 0.005	0.185 < 0.00005 < 0.005 < 0.005	0.196 < 0.00005 0.007 < 0.005	0.228 < 0.00005 < 0.005 < 0.005	0.00027 0.178 < 0.00005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002
	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89	0.212 < 0.00005 < 0.005 < 0.005	0.185 < 0.00005 < 0.005 < 0.005	0.196 < 0.00005 0.007 < 0.005	0.228 < 0.00005 < 0.005 < 0.005	0.00027 0.178 < 0.00005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002
Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			0.212 < 0.00005 < 0.005 < 0.005	0.185 < 0.00005 < 0.005 < 0.005	0.196 < 0.00005 0.007 < 0.005	0.228 < 0.00005 < 0.005 < 0.005	0.00027 0.178 < 0.00005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002
Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 < 0.00005 < 0.005 < 0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 < 0.00005 < 0.005 < 0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 <0.00005 <0.005 <0.005 0.011	0.185 < 0.00005 < 0.005 < 0.005 0.006	0.196 <0.00005 0.007 <0.005 0.006	0.228 <0.00005 <0.005 <0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 <0.00005 <0.005 <0.005 0.011	0.185 <0.00005 <0.005 <0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 <0.00005 <0.005 <0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005			0.212 <0.00005 <0.005 <0.005 0.011	0.185 < 0.00005 < 0.0005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 <0.00005 <0.0005 <0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005 5 6.76 7.7	0.177 <0.0003 0.002 <0.002 <0.005
Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			0.212 <0.00005 <0.005 <0.005 0.011	0.185 <0.00005 <0.005 <0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 <0.00005 <0.005 <0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005	0.177 <0.0003 0.002 <0.002 <0.005
Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO PWQO IPWQO IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			0.212 <0.00005 <0.005 <0.005 0.011	0.185 < 0.00005 < 0.0005 < 0.005 0.006	0.196 < 0.00005 0.007 < 0.005 0.006	0.228 <0.00005 <0.0005 <0.005 0.008	0.00027 0.178 < 0.00005 < 0.005 < 0.005 < 0.005 5 6.76 7.7	0.177 <0.0003 0.002 <0.002 <0.005

Sample Location SW-6

Sample Date					Aug-16	Nov-16	Apr-17	Aug-17	Oct-17	May-18
·					Aug-10	1404-10	Αρι-17	Aug-17	OCC-17	Way-10
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			166	179	172	167	162	184
BOD					<5	<5	3	< 3	5	3
Chloride			120	180	18.2	19.7	14.5	13.9	14.4	17
Conductivity										
DOC					4.4	4.5				4.8
N-NH3 (Ammonia)					0.52	0.51	0.61	0.53	0.25	0.91
N-NH3 (unionized)	PWQO	0.02			0.050	0.041	0.01	0.55	0.23	0.91
	PWQU	0.02	0.0					-		
N-NO2 (Nitrite)			0.6		<0.05	<0.05	< 0.1	< 0.05	< 0.05	< 0.10
N-NO3 (Nitrate)			3		0.53	0.54	0.7	0.57	0.86	0.62
pH	PWQO	6.5-8.5	6.5-9							8.11
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001
Sulphate					25.7	21.3				24
TDS										
Total phosphorous	IPWQO	0.03			0.01	<0.01	< 0.01	0.01	0.06	0.008
Turbidity	IF WVQO	0.03								9.2
					10.2	3.0	4.5	10.2	51.2	
Hardness as CaCO3					174	177	194	188	182	213
Calcium					52.0	53.0	51.7	50.8	54.1	64
Magnesium					10.8	10.8	11.4	11.2	11.3	13
Potassium					6.59	6.65	6.4	6.8	6.9	8
Sodium					15.3	15.4	15.9	15.2	14.4	20
Aluminum (dissolved)	IPWQO	0.075			25.5	25	0.04	0.01	0.01	< 0.01
Aluminum total	IPWQO	0.075		+	1	1	0.04	0.01	0.01	0.04
	IFWQU	0.075		+	0.000	0.000	0.072	0.000	0.412	
Barium					0.082	0.062	0.073	0.082	0.112	0.09
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	< 0.002	< 0.002	< 0.002	< 0.0005
Boron	IPWQO	0.2	1.5	3.55	0.213	0.232	0.342	0.305	0.252	0.35
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	< 0.0001	< 0.0001	< 0.000020	< 0.000014	< 0.000014	< 0.0001
Chromium		0.0000	Haruness		0.000	0.000				0.004
	PWQO	0.0099			< 0.003	<0.003	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			<0.0005	<0.0005	0.0003	0.0003	0.0001	0.0004
	PWQO	0.005 d		0.0000		0.000		0.0000	0.0007	0.004
Copper	IPWQO		d	0.0069	<0.002	<0.002	0.0003	0.0003	0.0007	< 0.001
Iron	PWQO	0.3	0.3		1.56	0.40	1.97	4.45	7.44	2.30
11011	-				1.50	0.40	1.97	1.45	7.44	2.30
Lead	PWQO	0.025 0.005	based on	0.002	< 0.001	<0.001	0.00008	0.00005	0.0003	< 0.001
Leau	IPWQO		hardness	0.002	<0.001	<0.001	0.00008	0.00003	0.0003	< 0.001
Manganese					0.511	0.415	0.57	0.488	0.628	0.63
Molybdenum	IPWQO	0.04			<0.002	<0.002	0.0003	0.0002	0.0003	< 0.005
Nickel				0.025						
	PWQO	0.025		0.025	<0.003	<0.003	0.0023	0.0015	0.0013	< 0.005
Silicon					8.24	8.11	7.85	8.38	7.98	8.1
Silver	PWQO	0.0001			< 0.0001	< 0.0001	< 0.00002	< 0.00002		< 0.0001
Strontium					0.168	0.144	0.157	0.176	0.194	0.192
Thallium	IPWQO	0.0003			< 0.0003	< 0.0003	< 0.00005	< 0.00005	< 0.00005	< 0.0001
Titanium					<0.002	<0.002	< 0.005	< 0.005	0.005	< 0.01
Vanadium	IPWQO	0.006		1	<0.002	<0.002	< 0.005	< 0.005	< 0.005	0.002
				+	₹0.002	~0.00Z	. 0.003	. 0.003	. 0.003	0.002
Zinc	PWQO	0.03 0.02	0.007	0.89	0.009	< 0.005	< 0.005	< 0.005	0.028	< 0.01
	IPWQO		0.507	5.05	5.505	10.003	. 5.555	. 5.005	3.320	. 3.01
	PWQO	0.1	1	1						
Arsenic	-		0.005	0.15	1					
	IPWQO	0.005								
COD					8	<5	9	7	21	15
Colour										
Mercury	PWQO	0.0002				İ				
Selenium	PWQO	0.1		1						
Tannin & Lignin		0.1		+	1	 	1			
TOC				+	-		1			
				1						
TKN		1	l .							
Sus. Solids										
Sus. Solids Field Parameters					7.01	7.61	9.5	9.5	8.1	9.0
Sus. Solids Field Parameters Discharge L/sec								9.5		9.0
Sus. Solids Field Parameters Discharge L/sec pH	DWO				7.2	8.2	7.4		8.1	7.2
Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f			7.2 10.33	8.2 10.7	7.4 12.84	5.33	8.1 6.85	7.2 6.04
Sus. Solids Field Parameters Discharge L/sec pH	PWQO	f mg/l			7.2	8.2	7.4		8.1	7.2

Sample Location SW-6

					oumpie zoet					
Sample Date					Jul-18	Oct-18	May-19	Aug-19	Oct-19	May-20
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			203	184	179	167	180	181
BOD	-,-				3	2	2	<1	2	<1
Chloride			120	180	20	18	20	16	16	16
Conductivity								-		
DOC					5.5	9.8	5.1	17.3	4.1	4.3
N-NH3 (Ammonia)					0.87	0.3	0.752	0.549	0.435	0.82
N-NH3 (unionized)	PWQO	0.02			0.04	< 0.02	0.09	0.03	0.03	0.04
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	<0.1	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		0.62	0.6	0.77	0.82	0.68	0.61
Hq	PWQO	6.5-8.5	6.5-9		8.03	8.11	8.52	8.14	8.26	8.12
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001
Sulphate		0.001	0.00	0.501	29	22	24	23	22	22
TDS					23		2-7	25		
Total phosphorous	IPWQO	0.03			0.009	0.005	0.007	0.009	0.004	<0.020
Turbidity	II WQO	0.03			10.8	5.1	6	7.2	1.1	7.9
Hardness as CaCO3					188	175	202	183	185	190
Calcium					57	52	61	55	56	58
Magnesium					11	11	12	11	11	11
Potassium						7				5
Sodium					6 15	15	6 15	6 15	6 15	15
Aluminum (dissolved)	IPWQO	0.075			15	15	15	15	15	
Aluminum total					0.01	< 0.01	0.03	<0.01	10.01	<0.01
Barium	IPWQO	0.075							<0.01	0.00
Beryllium	DIMOO	(1-) 0 044			0.1	0.09	0.08	0.08	0.08	0.08
	PWQO	(b) 0.011		2	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.4	0.31	0.31	0.29	0.31	0.33
Cadmium	PWQO	0.0002 c	based on	0.00021	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cadmidin	IPWQO		hardness	0.00021	₹ 0.0001	< 0.0001	\0.0001			
Chromium	PWQO	0.0099			< 0.001	< 0.001	0.001	<0.001	<0.001	<0.001
Cobalt	IPWQO	0.0009			0.0003	0.0003	0.0003	0.0002	<0.0002	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		2.26	0.98	1.5	1.32	0.22	1.89
	PWQO	0.025 0.005	based on		2.20	0.50	1.5	1.02	0.22	1.05
Lead	-	0.025 0.005		0.002	< 0.001	< 0.001	< 0.001		0.004	
	IPWQO		hardness					<0.001	<0.001	<0.001
Manganese					0.72	0.63	0.51	0.49	0.32	0.52
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Silicon					7.9	8.2	7.9	7.8	8	7.8
Silver	PWQO	0.0001								
Strontium					< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Thallium					0.203	0.205	0.181	0.184	<0.0001 0.2	0.183
	IPWQO	0.0003			0.203 < 0.0001	0.205 < 0.0001	0.181 <0.0001	0.184 <0.0001	<0.0001 0.2 <0.0001	0.183 <0.0001
Titanium		0.0003			0.203 < 0.0001 < 0.01	0.205 < 0.0001 < 0.01	0.181 <0.0001 <0.01	0.184 <0.0001 <0.01	<0.0001 0.2 <0.0001 <0.01	0.183 <0.0001 <0.01
Titanium Vanadium	IPWQO	0.0003			0.203 < 0.0001	0.205 < 0.0001	0.181 <0.0001	0.184 <0.0001	<0.0001 0.2 <0.0001	0.183 <0.0001
Vanadium		0.0003	0.007	0.90	0.203 < 0.0001 < 0.01 0.001	0.205 < 0.0001 < 0.01 < 0.001	0.181 <0.0001 <0.01 <0.001	0.184 <0.0001 <0.01	<0.0001 0.2 <0.0001 <0.01	0.183 <0.0001 <0.01
	IPWQO PWQO	0.0003	0.007	0.89	0.203 < 0.0001 < 0.01	0.205 < 0.0001 < 0.01	0.181 <0.0001 <0.01	0.184 <0.0001 <0.01 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001	0.183 <0.0001 <0.01 0.001
Vanadium	IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89	0.203 < 0.0001 < 0.01 0.001	0.205 < 0.0001 < 0.01 < 0.001	0.181 <0.0001 <0.01 <0.001	0.184 <0.0001 <0.01	<0.0001 0.2 <0.0001 <0.01	0.183 <0.0001 <0.01
Vanadium	IPWQO PWQO IPWQO PWQO	0.0003 0.006 0.03 0.02	0.007	0.89	0.203 < 0.0001 < 0.01 0.001	0.205 < 0.0001 < 0.01 < 0.001	0.181 <0.0001 <0.01 <0.001	0.184 <0.0001 <0.01 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001	0.183 <0.0001 <0.01 0.001
Vanadium Zinc Arsenic	IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD	IPWQO PWQO IPWQO PWQO	0.0003 0.006 0.03 0.02			0.203 < 0.0001 < 0.01 0.001	0.205 < 0.0001 < 0.01 < 0.001	0.181 <0.0001 <0.01 <0.001	0.184 <0.0001 <0.01 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001	0.183 <0.0001 <0.01 0.001
Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 < 0.0001 < 0.01 < 0.001 < 0.001	0.181 <0.0001 <0.01 <0.001 <0.001	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.01 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01	0.205 <0.0001 <0.01 <0.001 <0.001	0.181 <0.0001 <0.01 <0.001 <0.001 <5	0.184 <0.0001 <0.01 <0.001 <0.001	<0.0001 0.2 <0.0001 <0.001 <0.001 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 <0.0001 <0.01 0.001 <0.01 21	0.205 <0.0001 <0.001 <0.001 <0.001 <5	0.181 <0.0001 <0.01 <0.001 <0.001 <5	0.184 <0.0001 <0.01 <0.001 <0.01	<0.0001 0.2 <0.0001 <0.001 <0.01 <0.01	0.183 <0.0001 <0.01 0.001 <0.01
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			0.203 < 0.0001 < 0.01 0.001 < 0.01 21 21 6.8 7.4	0.205 <0.0001 <0.001 <0.001 <0.001 <5	0.181 <0.0001 <0.001 <0.001 <0.01 <5	0.184 <0.0001 <0.01 <0.001 <5 9 7.1	<0.0001 0.2 <0.0001 <0.001 <0.001 <0.01 13 13 6 7.9	0.183 <0.0001 <0.01 0.001 <0.01 19
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	IPWQO PWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.203 < 0.0001 < 0.01 0.001 < 0.01 21 21 6.8 7.4 12.83	0.205 <0.0001 <0.01 <0.001 <0.001 <5 8.76 7.8 11.9	0.181 <0.0001 <0.001 <0.001 <0.01 <5 9 7.7 12.1	0.184 <0.0001 <0.01 <0.001 <0.01 <5 9 7.1 6.2	<0.0001 0.2 <0.0001 <0.001 <0.001 <0.01 6 7.9 10.6	0.183 <0.0001 <0.01 0.001 <0.01 19 8 8 6.5 12.6
Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			0.203 < 0.0001 < 0.01 0.001 < 0.01 21 21 6.8 7.4	0.205 <0.0001 <0.001 <0.001 <0.001 <5	0.181 <0.0001 <0.001 <0.001 <0.01 <5	0.184 <0.0001 <0.01 <0.001 <5 9 7.1	<0.0001 0.2 <0.0001 <0.001 <0.001 <0.01 13 13 6 7.9	0.183 <0.0001 <0.01 0.001 <0.01 19

Sample Location SW-6

Sample Date Sep-20 Oct-20

Alkalintry sa CaSO3 PPWQQ a 120 180 17 17 17	PARAMETER	Limit	PWQO	CWQG	APV				
BOD				CWQG	7 •	170	175		
Conductivity									
DOC No.NH3 (Ammonia)	Chloride			120	180	17	17		
N-N-N-18 Company N-N-18	Conductivity								
N-N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO2 (Nitrite) N-NO3 (Nitri						3.9	4		
N.NO2 (Nitrite) N.NO3 (Nitrite) PH PWQ0									
N-NO3 (Nitrate) PH		PWQO	0.02						
Phenois									
Phenols PWQO 0.001 0.004 0.961 <0.001 <0.001									
Sulphate TOS TOTAL Phosphorous Phytical Phy									
TOS		IPWQO	0.001	0.004	0.961				
Total phosphorous Turbidity 1.6 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.7 1.6 1.6 1.7 1.7 1.6 1.7						21	22		
Turbidity		1011100	0.00			0.005			
Hardness as CaCO3		IPWQO	0.03						
Calcium									
Magnesium									
Potassium Sodium 15									
Sodium									
Aluminum (dissolved) IPWQO 0.075 0.001 0.001 0.001 0.007 0.0005 0.									
Aluminum total IPWQO		IDWOO	0.075						
Barlum						<0.01	<0.01		
Beryllium		IF WQO	0.073			0.00	0.07		
Boron IPWQO 0.02 1.5 3.55 0.3 0.001 0.00		D/W/OO	(b) 0 011						
Cadmium PWQQ IPWQQ 0.0002 c IPWQQ based on hardness 0.00021 <0.0001 <0.0001 Chromium PWQQ 0.0099 <0.0002				1.5	2 5 5				
Cadmium	50.0				3.33	0.5	0.5		
Chromium	Cadmium		0.0002		0.00021	< 0.0001	< 0.0001		
Cobalt IPWQO 0.0009 0.0002 0.0002 Copper IPWQO 0.005 d 0.0069 <0.001	Chromium		0.0000	naruness		<0.001	<0.001		
Copper									
Copper IPWQO	CODAIL					0.0002	0.0002		
IPWQO	Copper		0.005 d	d	0.0069				
Lead	1								
Lead	Iron					1.07	0.42		
Nanganese Nang	Lead		0.025 0.005	based on	0.002				
Molybdenum IPWQO 0.04 0.025 0.005 0.185 0.185 0.185 0.185 0.185 0.005 0.005 0.005 0.005 0.001 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.15 0.005 0.005 0.15 0.005	Lead	IPWQO		hardness	0.002	< 0.001	< 0.001		
Nickel									
Silicon Silver									
Silver		PWQO	0.025		0.025				
Strontium									
Thallium		PWQO	0.0001						
Titanium Vanadium IPWQO 0.006 Vondor Vanadium IPWQO 0.03 0.02 IPWQO 0.03 0.02 IPWQO 0.005 O.007 O.009 Vol.1 IPWQO 0.005 O.005 O.01 O.001 Arsenic IPWQO 0.005 O.005 O.005 O.015 O.001									
Vanadium		IPWQO	0.0003						
PWQO									
Zinc IPWQO 0.007 0.89 <0.01 <0.01	Vanadium	-				<0.001	<0.001		
PWQO	Zinc	PWQO	0.03 0.02	0.007	0.89				
Arsenic IPWQO 0.005 0.005 0.15 COD	Ziiic	IPWQO		0.007	0.03	< 0.01	< 0.01		
Arsenic IPWQO 0.005 0.005 0.15 COD		PWQO	0.1	u .					
COD 32 6 Colour Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TINN TINN TINN TINN Sus. Solids Sischarge L/sec 8 7.3 Tinnin PH 7.7 7.4 Tinnin	Arsenic			0.005	0.15				
Colour Mercury	COD	11 11 40	0.003			32	6		
Mercury PWQO 0.0002 Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Solids Field Parameters Discharge L/sec 8 7.3 PH 7.7 7.4 DO PWQO f 10.8 Conductivity mg/l 446 444							Ū		
Selenium PWQO 0.1 Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec 8 7.3 pH 7.7 7.4 DO PWQO f 10.8 8.9 Conductivity mg/l 446 444		PWOO	0.0002						
Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO TOC TOC TIN TOC TOC TOC TOC TOC TOC TOC TO									
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F 10.8 8.9 Conductivity PWQO F 446 444 Sus. Solids Field Parameters 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
Sus. Solids Field Parameters Discharge L/sec 8 7.3 PH 7.7 7.4 DO PWQO f 10.8 8.9 Conductivity mg/l 446 444									
Field Parameters 8 7.3 Discharge L/sec 8 7.3 pH 7.7 7.4 DO PWQO f 10.8 8.9 Conductivity mg/l 446 444			1						
Discharge L/sec									
pH 7.7 7.4 DO PWQO f 10.8 8.9 Conductivity mg/l 446 444	Field Parameters	-							
DO PWQO f 10.8 8.9 Conductivity mg/l 446 444	Discharge L/sec					8	7.3		
Conductivity mg/l 446 444						7.7	7.4		
	-	PWQO	f						
Temperature			mg/l						
	Temperature		l			8.1	5.6		

Sample Location SW-7

					oumpie zoei					
Sample Date					Aug-96	Nov-96	Nov-98	Jul-99	Oct-99	Nov-99
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			111	308	190	118	175	60
BOD					<1	2	<1	<1	<1	<1
Chloride			120	180	19.7	23.8	21.6	17	20.2	17
Conductivity					314	506	420	339	454	201
DOC										
N-NH3 (Ammonia)					0.03	0.05	0.04			0.03
N-NH3 (unionized)	PWQO	0.02			<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.01	<0.1	0.5	<0.1
N-NO3 (Nitrate)			3		0.1	0.2	0.01	0.3	0.3	0.2
На	PWQO	6.5-8.5	6.5-9		7.81	8.51	7.64	7.62	7.74	7.94
Phenols	IPWQO	0.001	0.004	0.961	0.006	<0.001	0.051	<0.001	0.008	<0.001
Sulphate	ii WQO	0.001	0.004	0.501	17	29	28			10.001
TDS					1/	23	20			
Total phosphorous	IPWQO	0.03			0.06	0.22	0.01	0.02	<0.01	0.01
Turbidity	IPWQU	0.03				2.1	2	2.2	0.7	
					2.8				215	1 70
Hardness as CaCO3				<u> </u>	126	218	233	152		78
Calcium					34.8	62.3	81.8	43	61.9	21.6
Magnesium					9.3	14.9	6.8	10.6	14.4	5.69
Potassium					4.9	6.5	4.7 -	<0.04	1.8	2.5
Sodium					10.2	14.8	13.5	12.8	14	12
Aluminum (dissolved)	IPWQO	0.075			0.05	0.1	0.11	0.04	0.33	0.07
Aluminum total	IPWQO	0.075								
Barium										
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on	0.00						
Cadmium		0.0002		0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt	IPWQO	0.0009						<0.0005	0.0009	<0.0005
C	PWQO	0.005 d		0.0000	0.00045	0.004	0.0000	0.0000	0.0044	-0.0005
Copper	IPWQO		d	0.0069	0.00015	0.001	0.0028	0.0022	0.0011	<0.0005
Iron	PWQO	0.3	0.3		0.74	0.8	1.49	0.88	0.28	0.67
	PWQO	0.025 0.005	based on		0.74	0.0				0.07
Lead		0.025 0.005		0.002	0.0002	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	IPWQO		hardness							
Manganese					0.49	1.11	0.59			
Molybdenum	IPWQO	0.04								
Nickel	PWQO	0.025		0.025	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02
Silicon										
Silver	PWQO	0.0001			< 0.0001	0.0004	0.001	0.0002	0.0000	< 0.0001
Strontium						0.0001	0.001	0.0002	0.0002	<0.0001
Thallium						0.0001	0.001	0.0002	0.0002	<0.0001
IIIaiiiuiii	IPWQO	0.0003				0.0001	0.001	0.0002	0.0002	<0.0001
Titanium	IPWQO	0.0003				0.0001	0.001	0.0002	0.0002	<0.0001
	-					0.0001	0.001	0.0002	0.0002	<0.0001
Titanium	IPWQO	0.006				0.0001	0.001	0.0002	0.0002	<0.0001
Titanium	IPWQO PWQO		0.007	0.89	<0.01	<0.001	0.07	<0.01	0.0002	<0.001
Titanium Vanadium	IPWQO	0.006	0.007	0.89						
Titanium Vanadium Zinc	IPWQO PWQO	0.006						<0.01	0.01	<0.01
Titanium Vanadium	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1	0.007	0.89						
Titanium Vanadium Zinc Arsenic	IPWQO PWQO IPWQO	0.006 0.03 0.02			<0.01	<0.01	0.07	<0.01	0.01	<0.01
Titanium Vanadium Zinc Arsenic	IPWQO PWQO IPWQO PWQO	0.006 0.03 0.02 0.1			<0.01	<0.01	0.07	<0.01 <0.001 27	0.01 <0.001 14	<0.01 <0.001 46
Titanium Vanadium Zinc Arsenic COD Colour	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50	<0.01	0.07 19 10.2	<0.01 <0.001 27 47	0.01 <0.001 14 6	<0.01 <0.001 46 88
Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01	<0.01 10 4 <0.0001	0.07 19 10.2 <0.0001	<0.01 <0.001 27 47 <0.0001	0.01 <0.001 14 6 <0.0001	<0.01 <0.001 46 88 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO PWQO IPWQO PWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50	<0.01	0.07 19 10.2	<0.01 <0.001 27 47	0.01 <0.001 14 6	<0.01 <0.001 46 88
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001	<0.01 10 4 <0.0001 <0.001	0.07 19 10.2 <0.0001 <0.001	<0.01 <0.001 27 47 <0.0001	0.01 <0.001 14 6 <0.0001	<0.01 <0.001 46 88 <0.0001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001	<0.01 10 4 <0.0001 <0.001 5.2	0.07 19 10.2 <0.0001 <0.001	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001	<0.01 10 4 <0.0001 <0.001 5.2	0.07 19 10.2 <0.0001 <0.001	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47	<0.01 <0.001 27 47 <0.0001 <0.001 0.43 11	0.01 <0.001 14 6 <0.0001 <0.001 1.09 <1	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO PWQO IPWQO IPWQO IPWQO	0.006 0.03 0.02 0.1 0.005			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47	<0.01 <0.001 27 47 <0.0001 <0.001	0.01 <0.001 14 6 <0.0001 <0.001	<0.01 <0.001 46 88 <0.0001 <0.001
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO PWQO IPWQO IPWQO PWQO PWQO PWQO	0.006 0.03 0.02 0.1 0.005 0.0002			<0.01 23 50 <0.0001 9 0.51	<0.01 10 4 <0.0001 <0.001 5.2 0.34	0.07 19 10.2 <0.0001 <0.001 13.4 0.47 11	<0.01 <0.001 27 47 <0.0001 <0.001 0.43 11	0.01 <0.001 14 6 <0.0001 <0.001 1.09 <1	<0.01 <0.001 46 88 <0.0001 <0.001 <0.54 <1

Sample Location SW-7

Sample Date					Jun-00	Aug-00	Oct-00	Sep-01	Dec-01	Jun-02
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	112	139	122	92	64	75
BOD	IPWQU	а						1		
Chloride			120	100	<1	<1	<1		1	<1
Conductivity			120	180	13.1	12.8	18.8	23.3		13
					288	309	298	248	194	228
DOC										
N-NH3 (Ammonia)					0.05	0.01	0.02	0.03	0.03	0.09
N-NH3 (unionized)	PWQO	0.02			<0.01	<0.01	<0.01			
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.2	0.3	0.2	0.2	0.3	0.2
pH	PWQO	6.5-8.5	6.5-9		8.07	7.72	7.92	7.34	7.99	7.61
Phenols	IPWQO	0.001	0.004	0.961	0.009	0.019	0.005	< 0.001	< 0.001	< 0.001
Sulphate									15	14
TDS										
Total phosphorous	IPWQO	0.03			0.03	0.14	0.01	0.01	0.01	0.02
Turbidity					2.3	>200	1.1	2.8	2.4	4.2
Hardness as CaCO3					125	145	125	121	69	92
Calcium					36.1	42.2	34.1	35.1	18.7	29
Magnesium				 	8.49	9.62	9.65	8.14	5.52	6.84
Potassium				1	3.1	3.6	<0.4	1.6	0.7	1.4
Sodium										
Aluminum (dissolved)	IDVACOO	0.075			10.5	9.9	12.5	13.1	19.2	9.7
	IPWQO	0.075			0.2	0.55	0.24	0.05	0.04	0.1
Aluminum total	IPWQO	0.075		1	-					
Barium									0.02	0.035
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55						
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	0.0001	<0.0001	< 0.0001	<0.0001	0.0001
Chromium	PWQO	0.0099	Hai uness		0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Cobalt										<0.01
Copail	IPWQO	0.0009			<0.0005	0.0022	<0.0005	0.0007	0.0041	
Copper	PWQO	0.005 d	d	0.0069	0.001	0.004	0.036	0.0009	0.0005	0.0018
Сорреі	IPWQO		u	0.0003	0.001	0.004	0.030	0.0003	0.0003	0.0018
Iron	PWQO	0.3	0.3		1.26	33.7	0.31	0.74	0.62	0.82
	PWQO	0.025 0.005	based on					-		
Lead		0.023 0.003		0.002	< 0.0002	0.0017	< 0.0002	< 0.0002	< 0.0002	0.0008
	IPWQO		hardness							
Manganese										
									0.17	0.37
Molybdenum	IPWQO	0.04								
Molybdenum Nickel	IPWQO PWQO	0.04 0.025		0.025	<0.02	<0.02	<0.02	<0.02	0.17 <0.02	<0.02
Molybdenum Nickel Silicon	PWQO			0.025	<0.02	<0.02	<0.02	<0.02		
Molybdenum Nickel				0.025	<0.02	<0.02	<0.02	<0.02		
Molybdenum Nickel Silicon	PWQO	0.025		0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver	PWQO	0.025		0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver Strontium	PWQO	0.025		0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO	0.025 0.0001 0.0003		0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.0001 0.0003	0.007		<0.0001	0.0002	<0.0001	<0.0001	<0.02 0.0004	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO	0.025 0.0001 0.0003	0.007	0.025					<0.02	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc	PWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	<0.0001	0.0002	<0.001	<0.001	<0.02 0.0004 <0.01	<0.02 0.02 0.01
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1	0.007		<0.0001	0.0002	<0.0001	<0.0001	<0.02 0.0004	<0.02
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO PWQO IPWQO PWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02		0.89	<0.0001 0.02 <0.001	0.0002	<0.0001 <0.001 <0.001	<0.0001 <0.01 <0.001	<0.02 0.0004 <0.01 <0.001	<0.02 0.02 0.01 <0.001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO PWQO IPWQO PWQO IPWQO PWQO PWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1		0.89	<0.0001 0.02 <0.001 23	0.0002 0.002 0.004 28	<0.0001 <0.001 <0.001 8	<0.0001 <0.001 <0.001 15	<0.02 0.0004 <0.01 <0.001 35	<0.02 0.02 0.01 <0.001 30
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42	0.0002 0.002 0.004 28 29	<0.0001 <0.001 <0.001 8 32	<0.0001 <0.001 <0.001 15 32	<0.02 0.0004 <0.01 <0.001	<0.02 0.02 0.01 <0.001 30 32
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001	0.0002 0.002 0.004 28 29 <0.0001	<0.0001 <0.001 <0.001 8 32 <0.0001	<0.0001 <0.001 <0.001 15 32 <0.0001	<0.02 0.0004 <0.01 <0.001 35 66	0.02 0.02 0.01 0.01 0.001 30 32 0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42	0.0002 0.002 0.004 28 29	<0.0001 <0.001 <0.001 8 32	<0.0001 <0.001 <0.001 15 32	<0.02 0.0004 <0.01 <0.001 35	<0.02 0.02 0.01 <0.001 30 32
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001	0.0002 0.002 0.004 28 29 <0.0001	<0.0001 <0.001 <0.001 8 32 <0.0001	<0.0001 <0.001 <0.001 15 32 <0.0001	<0.02 0.0004 <0.01 <0.001 35 66 <0.001	<0.02 0.02 0.01 <0.001 30 32 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001	0.0002 0.002 0.004 28 29 <0.0001	<0.0001 <0.001 <0.001 8 32 <0.0001	<0.0001 <0.001 <0.001 15 32 <0.0001	<0.02 0.0004 <0.01 <0.001 35 66	0.02 0.02 0.01 0.01 0.001 30 32 0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.01 <0.001 35 66 <0.001 21	<0.02 0.02 0.01 <0.001 30 32 <0.0001
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.001 <0.001 35 66 <0.001 21 0.5	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2 0.4
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.01 <0.001 35 66 <0.001 21	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2
Molybdenum Nickel Silicon Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.001 <0.001 35 66 <0.001 21 0.5	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2 0.4
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.001 <0.001 35 66 <0.001 21 0.5	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2 0.4
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.0001 <0.001 <0.001 15 32 <0.0001 <0.0001 0.42 1	<0.02 0.0004 <0.001 <0.001 35 66 <0.001 21 0.5	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2 0.4
Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005		0.89	<0.0001 0.02 <0.001 23 42 <0.0001 <0.001	0.0002 0.002 0.004 28 29 <0.0001 <0.001	<0.001 <0.001 <0.001 8 32 <0.0001 <0.001	<0.001 <0.001 <0.001 15 32 <0.0001 <0.001	<0.02 0.0004 <0.001 <0.001 35 66 <0.001 21 0.5	<0.02 0.02 0.01 <0.001 30 32 <0.0001 0.001 9.2 0.4

Sample Location SW-7

Sample Date					Aug-03	Oct-03	Oct-03	Mar-04	Jul-04	Sept-04
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			39	38	9	39	44	136
BOD								2	<1	1
Chloride			120	180	11.7	35.6	44.1	25	20.7	17.5
Conductivity					141	230	191	200	201	358
DOC										
N-NH3 (Ammonia)					0.07	0.03	0.01	0.08	0.04	0.02
N-NH3 (unionized)	PWQO	0.02			<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
N-NO2 (Nitrite)			0.6		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
N-NO3 (Nitrate)			3		0.2	0.2	0.2	0.4	0.1	0.3
pH	PWQO	6.5-8.5	6.5-9		7.4	7.63	6.9	7.26	7.45	8.32
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate					6	8	4	9	7	
TDS								95	90	183
Total phosphorous	IPWQO	0.03			0.02	0.02	0.02	0.04	0.04	0.01
Turbidity	ii waa	0.03			5.5	1.8	1.1	13	4.8	8.3
Hardness as CaCO3					44	61	33	58	61	143
Calcium					11.3	16.5	8.18	15.7	17	39.7
Magnesium				1	3.81	4.86	2.99	4.63	4.6	10.6
Potassium				1	1	2	1.4	1.9	1.3	4
Sodium				1	8.4	18.5	20.9	14.4	12.9	11.7
Aluminum (dissolved)	IPWQO	0.075			0.074	0.072	0.083	0.438	0.204	0.051
Aluminum total		0.075	1		0.074	0.072	0.063	0.436	0.204	0.031
Barium	IPWQO	0.075			0.012					
	BILLOO	(1-) 0 044			<0.012	<0.001	<0.001			
Beryllium	PWQO	(b) 0.011								
Boron	IPWQO	0.2	1.5	3.55	0.006	0.023	0.005			
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	< 0.001	<0.0001
	IPWQO		hardness	0.00021						
Chromium	PWQO	0.0099			0.003	0.0001	0.0001	0.0013	<0.002	0.0211
Cobalt	IPWQO	0.0009			0.0002	0.0004	0.0005	0.0003	< 0.001	0.0003
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	<0.002	0.018	0.028	<0.002	< 0.02	<0.002
Iron	PWQO	0.3	0.3		0.618	0.563	0.59	1.4	0.763	1.42
11011	-				0.018	0.303	0.33	1.4	0.703	1.42
Lead	PWQO	0.025 0.005	based on	0.002	0.0009	0.0008.	0.0009	0.0011	< 0.005	<0.0005
	IPWQO		hardness				0.000			
Manganese					0.033					
Molybdenum	IPWQO	0.04			0.0013	< 0.0001	< 0.0001			
Nickel	PWQO	0.025		0.025	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Silicon										19
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.001	< 0.0001
Strontium										
Thallium	IPWQO	0.0003								
Titanium										
Vanadium	IPWQO	0.006				<0.005	<0.005			
	PWQO	0.03 0.02								
Zinc	IPWQO	0.02	0.007	0.89	<0.005	0.005	0.008	0.006	0.02	<0.005
				1						
Arsenic	PWQO	0.1	0.005	0.15	<0.03	0.001	0.002	0.001	< 0.03	<0.001
AISCIIIC	IPWQO	0.005	0.005	0.15	\U.U3					~U.UU1
COD					26	48	62	39	52	17
Colour								47	210	38
Mercury	PWQO	0.0002				<0.0001	<0.0001	<0.0001	<0.0001	
Selenium	PWQO	0.1				< 0.001	<0.001	<0.001	< 0.01	< 0.001
Tannin & Lignin										
TOC		1						0.48	0.65	0.25
TOC TKN										0.23
									5	6
TKN Sus. Solids									5	6
TKN Sus. Solids Field Parameters									5	6
TKN Sus. Solids Field Parameters Discharge L/sec									5	6
TKN Sus. Solids Field Parameters Discharge L/sec pH	DWOO	f f			8.5				5	6
TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f			8.5				5	6
TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	f mg/l			8.5				5	6

Sample Location SW-7

Sample Date					May-05	Aug-05	Nov-05	May-06	Aug-06	Oct-06
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a	CWQG	AFV	68	151	46	45	42	48
BOD	II WQO	a			<1	<1	4	<1	<1	<1
Chloride			120	180	33	22	30	18	22	21
Conductivity			120	180	33		30	171	168	182
DOC								12.8	12	29.4
N-NH3 (Ammonia)					0.12	0.13	0.05	0.13	12	29.4
N-NH3 (unionized)	DIMOO	0.00			<0.02	<0.02	<0.02	0.13		
	PWQO	0.02							<0.10	<0.10
N-NO2 (Nitrite) N-NO3 (Nitrate)			0.6		<0.10 <0.10	<0.10 0.22	<0.10 <0.10		<0.10	0.10
			3							0.11
pH	PWQO	6.5-8.5	6.5-9		7.76	8.09	7.68		0.004	0.000
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001		<0.001	0.002
Sulphate									6	8
TDS								111	109	118
Total phosphorous	IPWQO	0.03			0.04	0.05	0.03	0.02	0.03	0.03
Turbidity					5.1	7	2.2			
Hardness as CaCO3					68	163	61		46	66
Calcium					19	47	16	15	12	18
Magnesium					5	11	5	4	4	5
Potassium					2	4	2	2	1	2
Sodium					10	15	17	12	12	15
Aluminum (dissolved)	IPWQO	0.075			0.13	0.02	0.08	0.08	0.06	0.12
Aluminum total	IPWQO	0.075								
Barium	WQU	0.075			0.04	0.06	0.02	0.02	0.02	0.02
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	<0.001	0.02	<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.04	0.17	0.02	0.03	0.01	0.01
DOTOIT		-		3.33	0.04	0.17	0.02	0.03	0.01	0.01
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	< 0.0001		< 0.0001	<0.0001
	IPWQO		hardness							
Chromium	PWQO	0.0099			0.001	0.002	0.001	<0.001	0.001	<0.001
Cobalt	IPWQO	0.0009			0.0003	0.0002	<0.0002	<0.0002	0.0003	<0.0002
	PWQO	0.005 d		0.0000	0.004		0.004	0.004	0.004	0.004
Copper	IPWQO		d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Iron	PWQO	0.3	0.3		1.45	0.53	0.61	0.81	1.15	0.91
	PWQO	0.025 0.005	based on							
Lead		0.025 0.005		0.002	< 0.001	< 0.001	< 0.001		< 0.001	< 0.001
	IPWQO		hardness							
Manganese					0.42	0.51	0.16	0.16	0.14	0.1
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005		<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005		<0.005	<0.005
Silicon					4.3	12.7	6.7	2.7	8.6	4.9
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001		<0.0001	<0.0001
Strontium					0.086	0.13	0.062	0.052	0.057	0.045
Thallium	IPWQO	0.0003			< 0.0001	< 0.0001	< 0.0001		<0.0001	<0.0001
Titanium					< 0.01	<0.01	<0.01		<0.01	<0.01
Vanadium	IPWQO	0.006			0.001	0.002	<0.001		0.002	< 0.001
	PWQO	0.03 0.02								
Zinc	IPWQO	0.02	0.007	0.89	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	i iPVV(JC)	1								
Ai-	-									
Arsenic	PWQO	0.1	0.005	0.15						
	-	0.1 0.005	0.005	0.15						
	PWQO		0.005	0.15	22	18	43	34	31	59
COD	PWQO		0.005	0.15	22	18	43	34	31	59
COD Colour	PWQO IPWQO	0.005	0.005	0.15	22	18	43	34	31	59
COD Colour Mercury	PWQO IPWQO PWQO	0.005	0.005	0.15	22	18	43	34	31	59
COD Colour Mercury Selenium	PWQO IPWQO	0.005	0.005	0.15	22	18	43	34	31	59
COD Colour Mercury Selenium Tannin & Lignin	PWQO IPWQO PWQO	0.005	0.005	0.15	22	18	43	34	31	59
COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO IPWQO PWQO	0.005	0.005	0.15	22	18	43			
COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO IPWQO PWQO	0.005	0.005	0.15	22	18	43	0.53	0.4	0.74
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO IPWQO PWQO	0.005	0.005	0.15	22	18	43			
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO IPWQO PWQO	0.005	0.005	0.15				0.53	0.4	
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO IPWQO PWQO	0.005	0.005	0.15	32	15	46	0.53	0.4	0.74
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005	0.005	0.15	32 8.06	15 7.52	46 8.96	0.53 51 6.93	0.4 0.5 7.7	0.74
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO	PWQO IPWQO PWQO	0.005 0.0002 0.1	0.005	0.15	32 8.06 4.65	15 7.52 9.7	46 8.96 12.29	0.53 51 6.93 8.8	0.4 0.5 7.7 6.06	0.74 8.44 11.69
COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO IPWQO PWQO PWQO	0.005 0.0002 0.1	0.005	0.15	32 8.06	15 7.52	46 8.96	0.53 51 6.93	0.4 0.5 7.7	0.74

Sample Location SW-7

Sample Date					May-07	Aug-07	Oct-07	May-08	Oct-08	May-09
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			37	150	103	48	76	91
BOD					<1	<1	3	1	<1	<1
Chloride			120	180	16	21	25	23	23	15
Conductivity					143	406	326	192	258	263
DOC					12.1	7.3	9.5	14.2	12.4	7.7
N-NH3 (Ammonia)					0.05	0.23	0.23	0.08	0.07	0.16
N-NH3 (unionized)	PWQO	0.02			< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		<0.10	0.19	0.2	< 0.10	0.14	0.18
pH	PWQO	6.5-8.5	6.5-9		6.82	8.21	7.92	7.65	7.82	7.95
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001
Sulphate					8	26	17	45	13	16
TDS					93	264	212	125	168	171
Total phosphorous	IPWQO	0.03			< 0.01	0.14	< 0.02	0.02	0.01	0.01
Turbidity					3.2	10.7	4.2	1.7	2.1	4.4
Hardness as CaCO3					49	170	124	66	94	97
Calcium					13	50	35	18	26	29
Magnesium					4	11	9	5	7	6
Potassium					2	5	4	2	3	3
Sodium					11	15	17	15	16	11
Aluminum (dissolved)	IPWQO	0.075	u .		0.08	0.01	0.02	0.11	0.05	0.04
Aluminum total	IPWQO	0.075								
Barium	-1-				0.02	0.07	0.05	0.02	0.03	0.04
Beryllium	PWQO	(b) 0.011			< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Boron	IPWQO	0.2	1.5	3.55	0.03	0.2	0.12	0.03	0.08	0.14
	PWQO	0.0002 c	based on							
Cadmium	IPWQO	0.0002	hardness	0.00021	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium		0.0000	Haruness		<0.001	0.002	0.002	0.003	0.002	<0.001
	PWQO	0.0099			<0.001	0.002	0.002			
Cobalt	IPWQO	0.0009			<0.0002	0.0003	0.0002	0.0002	<0.0002	0.0003
Copper	PWQO	0.005 d	d	0.0069	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	IPWQO			0.0003				10.001	10.001	10.001
Iron	PWQO	0.3	0.3		0.75	1.56	1.17	0.82	0.51	0.8
	PWQO	0.025 0.005	based on	0.000	0.004		0.004		0.004	0.004
Lead	IPWQO		hardness	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	Was		Tidi di icss		0.18	0.61	0.61	0.24	0.38	0.4
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silicon	1 WQO	0.023		0.023	3.5	7.7	7.7	3.4	6.8	5.1
Silver	PWQO	0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium	FWQO	0.0001			0.042	0.119	0.119	0.059	0.0001	0.092
Thallium	IPWQO	0.0003			0.0003	<0.0001	<0.0001	<0.0001	<0.001	<0.0001
Titanium	IF WVQO	0.0003			<0.01	<0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	IPWQO	0.006		 	0.001	0.002	0.002	0.002	0.001	0.001
· aauiuiii				 	0.001	0.002	0.002	0.002	0.001	0.001
Zinc	PWQO IPWQO	0.03 0.02	0.007	0.89	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Arsenic	PWQO	0.1	0.005	0.15						
COD	IPWQO	0.005					59			
Colour	IPWQO	0.005			59	59	39			
Mercury	IPWQO	0.005			59	59	39			
					59	59	39			
	PWQO	0.0002			59	59	39			
Selenium					59	59	39			
Selenium Tannin & Lignin	PWQO	0.0002			59	59	39			
Selenium Tannin & Lignin TOC	PWQO	0.0002								
Selenium Tannin & Lignin	PWQO	0.0002			0.74	0.74	0.74			
Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO	0.0002								
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO	0.0002								22.7
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO	0.0002			0.74	0.74	0.74			
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			0.74 55 7.96	0.74 20 7.64	0.74 15 8.02			8.2
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	0.0002 0.1			0.74 55 7.96 9.18	0.74 20 7.64 10.04	0.74 15 8.02 7.9			8.2 10.95
Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQ0 PWQ0	0.0002			0.74 55 7.96	0.74 20 7.64	0.74 15 8.02			8.2

Sample Location SW-7

Sample Date					Jul-09	Sep-09	May-10	Aug-10	Oct-10	Jun-11
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO		CWQG	APV	40	68	86	114	125	58
BOD	IPWQU	a			<1	<1	<1	<1	123	17
Chloride			120	180	24	26	23	22	19	17
Conductivity			120	180			23	22	19	1/
DOC					182	246				-
N-NH3 (Ammonia)					16.3	13.2	0.43	0.00	0.47	0.07
	B11/00	0.00			0.04	0.07	0.12	0.08	0.17	
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
N-NO3 (Nitrate)			3		<0.10	0.11	0.14	0.21	0.22	<0.10
pH	PWQO	6.5-8.5	6.5-9		7.64	7.72	8.03	7.97	8.14	7.55
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
Sulphate					6	10				
TDS					118	160				
Total phosphorous	IPWQO	0.03			0.02	0.03	0.03	0.01	< 0.01	<0.01
Turbidity					1.4	3.5	5.6	6.5	2.3	5.6
Hardness as CaCO3					49	77				· i
Calcium					13	21	26	35	44	17
Magnesium					4	6	7	8	10	4
Potassium					2	3	3	3	4	2
Sodium					16	17	14	16	15	11
Aluminum (dissolved)	IPWQO	0.075	l .		0.12	1,	0.03	0.01	0.02	0.08
Aluminum total	IPWQO	0.075		 	0.12	0.04	0.03	0.01	0.02	0.09
Barium	IF WVQO	0.073			0.02	0.04	0.04	0.05	0.04	0.02
Beryllium	PWQO	(b) 0.011			<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
Boron			4.5	2.55						0.0003
ВОГОП	IPWQO	0.2	1.5	3.55	0.04	0.06	0.09	0.09	0.12	0.04
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Caumum	IPWQO		hardness	0.00021	VO.0001	\0.0001	VO.0001	VO.0001	\0.0001	<0.0001
Chromium	PWQO	0.0099			0.001	0.001	< 0.001	0.002	0.003	< 0.001
Cobalt	IPWQO	0.0009			<0.0002	0.0002	<0.0002	0.0002	< 0.0002	0.0002
	PWQO	0.005 d								
Copper	IPWQO		d	0.0069	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iron		0.2	0.3		0.04	0.00	0.00	1	0.20	0.95
11011	PWQO	0.3	0.3		0.91	0.89	0.98	1	0.38	0.93
Lead	PWQO	0.025 0.005	based on	0.002	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Lead	IPWQO		hardness	0.002	10.001	10.001	10.001	10.001	10.001	10.001
Manganese					0.14	0.31	0.37	0.52	0.49	0.17
Molybdenum	IPWQO	0.04			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Silicon					5.6	7.3	4.7	8.7	8	3.6
Silver	PWQO	0.0001								
Strontium					<0.0001		<0.0001			
Thallium		0.0001			<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
					0.06	<0.0001 0.088	0.092	<0.0001 0.135	<0.0001 0.138	<0.0001 0.069
	IPWQO	0.0001			0.06 <0.0001	<0.0001 0.088 <0.0001	0.092 <0.0001	<0.0001 0.135 <0.0001	<0.0001 0.138 <0.0001	<0.0001 0.069 <0.0001
Titanium	IPWQO	0.0003			0.06 <0.0001 <0.01	<0.0001 0.088 <0.0001 <0.01	0.092 <0.0001 <0.01	<0.0001 0.135 <0.0001 <0.01	<0.0001 0.138 <0.0001 <0.01	<0.0001 0.069 <0.0001 <0.01
	IPWQO	0.0003			0.06 <0.0001	<0.0001 0.088 <0.0001	0.092 <0.0001	<0.0001 0.135 <0.0001	<0.0001 0.138 <0.0001	<0.0001 0.069 <0.0001
Titanium Vanadium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001	<0.0001 0.135 <0.0001 <0.01 0.001	<0.0001 0.138 <0.0001 <0.01 0.001	<0.0001 0.069 <0.0001 <0.01 0.001
Titanium	IPWQO	0.0003	0.007	0.89	0.06 <0.0001 <0.01	<0.0001 0.088 <0.0001 <0.01	0.092 <0.0001 <0.01	<0.0001 0.135 <0.0001 <0.01	<0.0001 0.138 <0.0001 <0.01	<0.0001 0.069 <0.0001 <0.01
Titanium Vanadium Zinc	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001	<0.0001 0.135 <0.0001 <0.01 0.001	<0.0001 0.138 <0.0001 <0.01 0.001	<0.0001 0.069 <0.0001 <0.01 0.001
Titanium Vanadium	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02	0.007	0.89	0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001	<0.0001 0.135 <0.0001 <0.01 0.001	<0.0001 0.138 <0.0001 <0.01 0.001	<0.0001 0.069 <0.0001 <0.01 0.001
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic	IPWQO IPWQO IPWQO IPWQO PWQO	0.0003 0.006 0.03 0.02			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001	<0.0001 0.135 <0.0001 <0.01 0.001	<0.0001 0.138 <0.0001 <0.01 0.001	<0.0001 0.069 <0.0001 <0.01 0.001
Titanium Vanadium Zinc Arsenic COD Colour	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TIKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001	<0.0001 0.088 <0.0001 <0.01 0.002	0.092 <0.0001 <0.01 0.001 <0.01	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01	<0.0001 0.069 <0.0001 <0.01 0.001 <0.01
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			0.06 <0.0001 <0.01 0.001 <0.01	<0.0001 0.088 <0.0001 <0.01 0.002 <0.01	0.092 <0.0001 <0.01 0.001 <0.01 25	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01 13	<0.0001 0.138 <0.0001 <0.01 0.001 <0.01 25	<0.0001 0.069 <0.0001 <0.01 <0.01 <0.01 45
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			0.06 <0.0001 <0.01 0.001 <0.01 <0.01	<0.0001 0.088 <0.0001 <0.01 0.002 <0.01 33.9 8.4	0.092 <0.0001 <0.01 0.001 <0.01 25 25 15.1 8.3	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01 13 17 8.4	<pre><0.0001 0.138 <0.0001 <0.01 0.001 <0.01 <0.01 <6.7 8.6</pre>	<0.0001 0.069 <0.0001 <0.01 <0.01 <0.01 45 39.9 8
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			0.06 <0.0001 0.001 0.001 <0.01 <0.01	<pre><0.0001 0.088 <0.0001 0.002 <0.01 0.002 <3.01 33.9 8.4 9.19</pre>	0.092 <0.0001 <0.01 0.001 <0.01 25 15.1 8.3 7.3	<pre><0.0001 0.135 <0.0001 <0.01 0.001 <0.01 13 17 8.4 1.93</pre>	<pre><0.0001 0.138 <0.0001 <0.01 0.001 <0.01 <0.01 6.7 8.6 14.13</pre>	<.0.001 0.069 <0.0001 <0.01 0.001 <0.01 45 45 39.9 8 1.52
Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec PH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			0.06 <0.0001 <0.01 0.001 <0.01 <0.01	<0.0001 0.088 <0.0001 <0.01 0.002 <0.01 33.9 8.4	0.092 <0.0001 <0.01 0.001 <0.01 25 25 15.1 8.3	<0.0001 0.135 <0.0001 <0.01 0.001 <0.01 13 17 8.4	<pre><0.0001 0.138 <0.0001 <0.01 0.001 <0.01 <0.01 <6.7 8.6</pre>	<0.0001 0.069 <0.0001 <0.01 <0.01 <0.01 45 39.9 8

Sample Location SW-7

Sample Date					Aug-11	Oct-11	Jun-12	Aug-12	Oct-12	Jun-13
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	а			96	114	81	107	37	45
BOD					3	<1	2	<1	1	12
Chloride			120	180	20	22	20	26	42	18
Conductivity										
DOC										
N-NH3 (Ammonia)					0.13	0.11	0.12	0.19	0.04	0.07
N-NH3 (unionized)	PWQO	0.02	1		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
N-NO2 (Nitrite)			0.6		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10
N-NO3 (Nitrate)			3		0.21	0.2	0.2	0.25	< 0.10	<0.10
pH	PWQO	6.5-8.5	6.5-9		7.76	7.93	7.5	7.89	7.05	7.58
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Sulphate				1						
TDS		+		1						
Total phosphorous	IPWQO	0.03		+	0.01	<0.01	0.02	0.01	0.02	0.01
Turbidity	11 11 40	0.03		+	3.2	1.4	5.4	4	2.3	2.3
Hardness as CaCO3				+	3.2	1.4	75	111	54	52
Calcium					27	33	20	33	15	16
				+						3
Magnesium Potassium		+		+	7	8	6	7	4	1
Sodium		-		+	3	4	2	3	2	12
					14	14	13	16	21	12
Aluminum (dissolved)	IPWQO	0.075			0.03	0.02	0.03	0.02	0.04	
Aluminum total	IPWQO	0.075				0.03	0.09	0.03	0.1	0.14
Barium					0.04	0.04	0.04	0.05	0.03	0.03
Beryllium	PWQO	(b) 0.011	ı		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005
Boron	IPWQO	0.2	1.5	3.55	0.07	0.08	0.09	0.11	0.03	0.05
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Chromium	PWQO	0.0099	Hai uness	+	0.002	<0.001	0.008	0.001	<0.001	0.002
Cobalt				-						0.002
CODAIL	IPWQO	0.0009		-	0.0003	<0.0002	0.0004	0.0003	0.0002	0.0003
Copper	PWQO	0.005 d	d	0.0069	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Соррег	IPWQO		u	0.0003	\0.001	V0.001	₹0.001	VO.001	VO.001	VO.001
Iron	PWQO	0.3	0.3		0.86	0.42	1.68	0.91	0.53	1.22
	PWQO	0.025 0.005	based on	1						
Lead	IPWQO	0.025 0.005	hardness	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Managana	IPWQU		Haruness	-	0.00	0.00	0.00	0.40	0.40	0.17
Manganese	1811100			+	0.32	0.33	0.38	0.43	0.12	
Molybdenum	IPWQO	0.04			<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Nickel	PWQO	0.025		0.025	< 0.005	< 0.005	< 0.005	< 0.005		<0.005
Silicon									<0.005	
Silver					7.4	7.4	6.4	8.4	6.4	4.1
Strontium	PWQO	0.0001			7.4 <0.0001	7.4 <0.0001	<0.0001	<0.0001	6.4 <0.0001	<0.0001
	PWQO	0.0001			7.4	7.4			6.4	<0.0001 0.067
Thallium	PWQO	0.0001			7.4 <0.0001	7.4 <0.0001	<0.0001	<0.0001	6.4 <0.0001	<0.0001
Thallium Titanium	1				7.4 <0.0001 0.099	7.4 <0.0001 0.122	<0.0001 0.094	<0.0001 0.122	6.4 <0.0001 0.07	<0.0001 0.067 <0.0001 <0.01
Thallium	1				7.4 <0.0001 0.099 <0.0001	7.4 <0.0001 0.122 <0.0001	<0.0001 0.094 <0.0001	<0.0001 0.122 <0.0001	6.4 <0.0001 0.07 <0.0001	<0.0001 0.067 <0.0001
Thallium Titanium Vanadium	IPWQO	0.0003			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001	<0.0001 0.094 <0.0001 <0.01 0.003	<0.0001 0.122 <0.0001 <0.01 0.001	6.4 <0.0001 0.07 <0.0001 <0.01 0.001	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium	IPWQO IPWQO PWQO	0.0003	0.007	0.89	7.4 <0.0001 0.099 <0.0001 <0.01	7.4 <0.0001 0.122 <0.0001 <0.01	<0.0001 0.094 <0.0001 <0.01	<0.0001 0.122 <0.0001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01	<0.0001 0.067 <0.0001 <0.01
Thallium Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89	7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001	<0.0001 0.094 <0.0001 <0.01 0.003	<0.0001 0.122 <0.0001 <0.01 0.001	6.4 <0.0001 0.07 <0.0001 <0.01 0.001	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc	IPWQO IPWQO PWQO	0.0003			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001	<0.0001 0.094 <0.0001 <0.01 0.003	<0.0001 0.122 <0.0001 <0.01 0.001	6.4 <0.0001 0.07 <0.0001 <0.01 0.001	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium	IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02	0.007	0.89	7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001	<0.0001 0.094 <0.0001 <0.01 0.003	<0.0001 0.122 <0.0001 <0.01 0.001	6.4 <0.0001 0.07 <0.0001 <0.01 0.001	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD	IPWQO IPWQO IPWQO PWQO PWQO	0.0003 0.006 0.03 0.02			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001	<0.0001 0.094 <0.0001 <0.01 0.003	<0.0001 0.122 <0.0001 <0.01 0.001	6.4 <0.0001 0.07 <0.0001 <0.01 0.001	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001 30	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001 0.01
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001 30	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 15	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01 20	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<.0.0001 0.067 <0.0001 <0.001 0.001 0.01 48
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001 30	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <0.01	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<0.0001 0.067 <0.0001 <0.01 0.001 0.01
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005			7.4 <0.0001 0.099 <0.0001 <0.01 0.001 <0.01 17.49	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 <15	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01 20 29 8	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01	6.4 <0.0001 0.007 <0.0001 <0.01 <0.01 35 59.9 6.8	<.0.0001 0.067 <0.0001 <0.001 0.001 0.01 48
Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	IPWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.0003 0.006 0.03 0.02 0.1 0.005 0.0002 0.1			7.4 <0.0001 0.099 <0.0001 <0.01 0.001 30	7.4 <0.0001 0.122 <0.0001 <0.01 0.001 15	<0.0001 0.094 <0.0001 <0.01 0.003 <0.01 20	<0.0001 0.122 <0.0001 <0.01 0.001 <0.01 20 20 14 7.7	6.4 <0.0001 0.07 <0.0001 <0.01 0.001 <0.01	<.0.0001 0.067 <0.0001 <0.01 0.001 0.01 48 48 59.1 7.9

Sample Location SW-7

					•					
Sample Date					Aug-13	Nov-13	Apr-14	Jul-14	Oct-14	Jun-15
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			87	53	31	60	38	56
BOD					1	<1	< 3	< 3	< 3	9
Chloride			120	180	23	18	11.5	22.5	19.4	21.8
Conductivity										
DOC										
N-NH3 (Ammonia)					0.13	0.07	0.02	0.11	0.05	0.09
N-NH3 (unionized)	PWQO	0.02			< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01
N-NO2 (Nitrite)			0.6		<0.10	<0.10	0.1	< 0.10	< 0.10	< 0.1
N-NO3 (Nitrate)			3		0.2	0.12	0.2	0.2	0.2	0.2
pH	PWQO	6.5-8.5	6.5-9		7.79	7.86				0.2
Phenols	IPWQO	0.001	0.004	0.961	<0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sulphate	ii waa	0.001	0.004	0.501	10.001	10.001	10.001	10.001	10.001	₹ 0.001
TDS									86.9	
Total phosphorous	IPWQO	0.03			0.01	<0.01	0.02	0.02	< 0.01	0.02
Turbidity	IF WVQO	0.03			4	1.5	3.3	4.3	1.1	
Hardness as CaCO3					89			77		3.8
Calcium						59	53		58	60
					24	17	14.9	22.2	17.1	16.5
Magnesium					7	4	3.85	5.46	3.8	4.45
Potassium					3	2	2.3	2.2	2.1	1.8
Sodium				1	15	14	13.1	16.5	14.3	13.2
Aluminum (dissolved)	IPWQO	0.075	,		0.03	0.06	0.06	0.06	0.06	0.04
Aluminum total	IPWQO	0.075			0.04	0.06				
Barium					0.04	0.02	0.029	0.033	0.028	0.025
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	< 0.002	< 0.002	< 0.002	< 0.002
Boron	IPWQO	0.2	1.5	3.55	0.08	0.04	0.049	0.081	< 0.005	0.076
	PWQO	0.0002 c	based on							
Cadmium	IPWQO		hardness	0.00021	<0.0001	<0.0001	< 0.00002	< 0.00002	< 0.00002	0.00008
Chromium	PWQO	0.0099	Haruness		<0.001	<0.001	0.0004	< 0.002	0.006	< 0.002
Cobalt		0.0099			<0.001	0.0002	0.0004	0.0002	0.0002	0.0003
CODAIL	IPWQO				<0.0002	0.0002	0.0002	0.0002	0.0002	0.0003
Copper	PWQO	0.005 d	d	0.0069	< 0.001	<0.001	0.0008	0.0004	0.0006	0.0018
Соррсі	IPWQO			0.0005	10.001	10.001	0.0000	0.000.	0.000	
Iron	PWQO	0.3	0.3		0.8	0.44	1.49	1.35	0.507	0.927
	PWQO	0.025 0.005	based on							
Lead	IPWQO		hardness	0.002	<0.001	<0.001	0.00032	0.00025	0.00014	0.00117
Manganese	ii wao		Haraness		0.28	0.12	0.245	0.232	0.12	0.184
Molybdenum	IPWQO	0.04			<0.005	<0.005	0.0001	0.0002	0.0006	0.0002
Nickel				0.025						
Silicon	PWQO	0.025		0.025	<0.005	<0.005	0.0006	0.001	0.0087	0.0026
Silver	21100	0.0004			6.6	6.1	5.81	6.89	5.3	3.47
	PWQO	0.0001			<0.0001	<0.0001	< 0.00002		< 0.00002	0.00002
Strontium					0.101	0.058	0.068	0.097	0.075	0.072
Thallium	IPWQO	0.0003			<0.0001	<0.0001	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Titanium					<0.01	<0.01	0.016	< 0.005	0.006	0.015
Vanadium	IPWQO	0.006			0.001	<0.001	< 0.005	< 0.005	< 0.005	< 0.005
7:	PWQO	0.03 0.02	0.007	0.00	-0.01	40.01	0.014	0.013	0.055	40.005
Zinc	IPWQO		0.007	0.89	<0.01	<0.01	0.014	0.012	0.055	< 0.005
		0.1	1	+			+			
Arsenic	PWQO		0.005	0.15			1			1
	IPWQO	0.005								
COD					24	34	31	38	48	36
Colour										<u> </u>
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								l -
Tannin & Lignin										
TOC										
TKN										
Sus. Solids										
Field Parameters										
Discharge L/sec				1	24	36.4	80	22	54.3	32.31
pH				<u> </u>	8.5	8.1	8.1	8.1	7.4	7.4
DO	PWQO	f		+	7.68	10.79	7.44	9.68	10.99	9.04
Conductivity	FVVQU	mg/l		+	248	193	109	205	158	224
Conductivity										
Temperature		1116/1			13.3	5.3	7.2	14.4	7.1	15.3

Sample Location SW-7

PARAMETER Limit PWQQ	Sample Date					Aug-15	Oct-15	May-16	Aug-16	Nov-16	Apr-17
BOD	PARAMETER	Limit	PWQO	CWQG	APV						
Chloride	Alkalinity as CaCO3	IPWQO	а			86	42	31	137	66	11
Conductivity						< 3	< 3	<5	<5	<5	< 3
DOC N-NH3 (Ammonia)				120	180	18	32.7	15.9	16.1	34.1	6.5
N.NH3 (Jamonia)	Conductivity										
N-NF3 (unionized) PWQQ								11.2	4.3	10.0	
NNO2 (Nirite) NNO3 (Nirite) PWQ0	N-NH3 (Ammonia)					0.13	0.06	0.05	0.31	0.17	0.05
NNO3 (Nirate) PWQ0	N-NH3 (unionized)	PWQO	0.02			< 0.01	< 0.01	0.00016	0.029	0.0062	< 0.01
PM	N-NO2 (Nitrite)			0.6		< 0.1	< 0.1	< 0.05	< 0.05	< 0.05	< 0.1
Phenols PWQO 0.001 0.004 0.961 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0	N-NO3 (Nitrate)			3		0.3	0.2	0.07	0.52	0.17	0.3
Phenols PhwQO 0.001 0.004 0.961 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 <	pH	PWQO	6.5-8.5	6.5-9							
Sulphate	Phenols	IPWQO		0.004	0.961	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
Total plosphorous IPWQO 0.03	Sulphate							5.53	19.5	8.24	
Turbidity	TDS										
Hardness as CaCO3	Total phosphorous	IPWQO	0.03			0.02	< 0.01	0.02	0.01	0.01	< 0.01
Hardness as CaCO3	Turbidity	,				10.6	1.8	2.8	7.4	2.7	1.4
Calcium	Hardness as CaCO3							37.5	133	71.7	
Magnesium Potassium Potassium 4 1.8 1.4.3 4.9.5 2.87 0.6 5.04 1.26 5.04 1.26 5.04 1.26 5.04 1.26 5.06 5.01 1.7 1.7.9 9.02 13.0 18.0 5.7 0.6 5.00 5.00 1.7 1.7.9 9.02 13.0 18.0 5.7 0.09 Aluminum (dissolved) IPWQO 0.075 0.04 0.05 0.025 0.00 0.00 0.00 0.09 0.00											
Potassium Sodium Potassium Potassi	Magnesium									5.04	
Sodium											
Aluminum (dissolved)											
Aluminum total IPWQO 0.075	Aluminum (dissolved)	IPWOO	0.075					3.02	25.0	10.0	
Barlum						0.0.	0.05				0.05
Beryllium	Barium		0.075			0.058	0.029	0.017	0.056	0.027	0.008
Boron IPWQO 0.02 1.5 3.55 0.125 0.049 0.037 0.138 0.068 0.018		PWOO	(b) 0 011								
Cadmium PWQO IPWQO 0.0002 c IPWQO based on hardness 0.00021 0.00004 <0.00002 <0.0001 <0.0001 <0.00010 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00005 <0.00001 <0.00005 <0.00001 <0.00005 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001<				1.5	3 55						
Cadmium IPWQO	50.0		-		3.33	0.123	0.043	0.037	0.130	0.000	0.010
Chromium	Cadmium	-	0.0002 C		0.00021	0.00004	< 0.00002	< 0.0001	< 0.0001	< 0.0001	< 0.000020
Cobalt IPWQO 0.0009 0.0002 0.0001 <0.0005 <0.0005 0.0001 0.0005 <0.0005 0.0001 0.0005 <0.0005 0.0001 0.0005 <0.0005 <0.0005 0.0001 0.0005 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001		-		nardness							
Copper											
Copper IPWQO	Cobalt					0.0002	0.0001	<0.0005	<0.0005	<0.0005	0.0001
IPWQO	Connor		0.005 d	4	0.0060	0.001	0.0005	<0.002	<0.002	<0.002	< 0.0001
Lead	Сорреі	IPWQO		u	0.0003	0.001	0.0003	<0.002	<0.002	<0.002	< 0.0001
Deciding Deciding	Iron	PWQO	0.3	0.3		2.57	0.568	0.55	0.94	0.36	0.417
Deciding Deciding		PWOO	0.025 0.005	based on							
Manganese	Lead	-	0.025 0.005		0.002	0.00064	0.00021	<0.001	<0.001	<0.001	0.00017
Molybdenum IPWQO 0.04 0.0002 0.0002 <0.002 <0.002 <0.002 <0.002 <0.0001	Manganoso	IF WQO		Haruness		0.267	0.100	0.004	0.200	0.125	0.026
Nickel		IDMOO	0.04								
Silicon					0.025						
Silver PWQ0 0.0001 < 0.00002 0.00046 < 0.0001 < 0.0001 < 0.00002 Strontium 0.135 0.061 0.045 0.126 0.067 0.018 Thallium IPWQ0 0.0003 < 0.00005		PWQU	0.025		0.025						
Strontium		BILLOO	0.0004								
Thallium		PWQO	0.0001								
Titanium PWQO 0.006 0.007 < 0.005 0.003 < 0.002 < 0.005 < 0.005		1011100	0.0000								
Vanadium IPWQO 0.006 < 0.005 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <		IPWQU	0.0003								
PWQO		IDWA	0.000								
Zinc IPWQO 0.007 0.89 0.018 <0.005 0.005 <0.005 <0.005 0.005 0.005 Arsenic PWQO 0.1 IPWQO 0.005 0.005 0.015 COD	validululli	-				< 0.005	< 0.005	<0.002	<0.002	<0.002	< 0.005
Arsenic PWQO 0.1	Zinc	PWQO	0.03 0.02	0.007	0.89	0.018	< 0.005	0.005	<0.005	<0.005	0.005
Arsenic IPWQO 0.005 0.005 0.15	ZIIIC	IPWQO		0.007	0.83	0.018	< 0.003	0.003	<0.003	<0.003	0.003
Arsenic IPWQO 0.005 0.005 0.15		PWOO	0.1								
COD 6 39 12 <5	Arsenic	-		0.005	0.15						
Colour Mercury PWQO 0.0002	COD	IPWQU	0.005			-	20	12		220	25
Mercury PWQO 0.0002 Selenium Selenium PWQO 0.1 TOTALIAN STREET ST						6	39	12	<5	220	25
Selenium PWQO 0.1 Image: Conductivity		B1110.5	0.0007								
Tannin & Lignin TOC TIKN Sus. Solids Field Parameters Discharge L/sec DO DO PWQO F 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63											
TOC TKN Sus. Solids Field Parameters Discharge L/sec PH DO PWQO F Supply Do Do Do Do Do Do Do Do Do Do Do Do Do		PWQO	0.1								
TKN Sus. Solids Field Parameters Field Parameters Discharge L/sec 18.15 39.6 91.5 11.38 16.93 184.03 pH 7.4 8 8.2 6.8 8.2 7.1 DO PWQO f 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63											1
Sus. Solids Field Parameters Discharge L/sec 18.15 39.6 91.5 11.38 16.93 184.03 pH 7.4 8 8.2 6.8 8.2 7.1 DO PWQO f 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63											
Field Parameters 18.15 39.6 91.5 11.38 16.93 184.03 pH 7.4 8 8.2 6.8 8.2 7.1 DO PWQO f 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63											
Discharge L/sec 18.15 39.6 91.5 11.38 16.93 184.03 PH											
pH 7.4 8 8.2 6.8 8.2 7.1 DO PWQO f 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63							26.5	04 -		40	100
DO PWQO f 8.98 11.06 11.53 9.67 11.98 14.05 Conductivity mg/l 238 195 122 359 257 63											
Conductivity mg/l 238 195 122 359 257 63											
	-	PWQO	f								
Temperature 14.6 9.8 8.8 12.7 4 4			mg/l			238	195	122		257	
	Temperature					14.6	9.8	8.8	12.7	4	4

Sample Location SW-7

					•					
Sample Date					Aug-17	Oct-17	May-18	Jul-18	Oct-18	May-19
PARAMETER	Limit	PWQO	CMOC	APV						
Alkalinity as CaCO3	Limit		CWQG	APV	58	66	22	120	74	34
BOD	IPWQO	a								
			400	400	< 3	5	2	< 1	< 1	2
Chloride			120	180	16.2	16.3	9	20	31	21
Conductivity										
DOC							8.0	7.3	12.5	10.1
N-NH3 (Ammonia)					0.11	0.03	0.14	0.47	0.22	
N-NH3 (unionized)	PWQO	0.02			-	< 0.01	< 0.02	< 0.02	< 0.02	
N-NO2 (Nitrite)			0.6		< 0.05	< 0.05	< 0.10	< 0.10	< 0.10	< 0.1
N-NO3 (Nitrate)			3		0.25	0.31	< 0.10	0.48	0.23	0.17
pH	PWQO	6.5-8.5	6.5-9				7.48	7.93	7.81	7.81
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Sulphate		0.000			10.002	10.001	3	17	9	5
TDS							3	- 17	,	
Total phosphorous	IPWQO	0.03			0.02	0.07	0.018	0.01	0.008	0.009
Turbidity	IPWQU	0.03								
					5.1	66.4	1	6.8	1.5	3.7
Hardness as CaCO3					69	92	17	118	80	40
Calcium					17.3	26.6	5	34	22	11
Magnesium					4.51	6.31	1	8	6	3
Potassium					2	3	1	4	3	1
Sodium					13	13.6	7	15	20	11
Aluminum (dissolved)	IPWQO	0.075			0.05	0.04	0.05	0.03	0.04	
Aluminum total	IPWQO	0.075					0.09			0.09
Barium					0.028	0.081	0.01	0.06	0.04	0.02
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Boron	IPWQO	0.2	1.5	2 5 5	0.075	0.094				0.04
DOTOTI		-		3.55	0.075	0.094	0.02	0.21	0.1	0.04
Cadmium	PWQO	0.0002 c	based on	0.00021	0.000081	0.000063	< 0.0001	< 0.0001	< 0.0001	<0.0001
cadillalli	IPWQO		hardness	0.00021	0.000001	0.000003	10.0001	10.0001	10.0001	40.0001
Chromium	PWQO	0.0099			0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cobalt	IPWQO	0.0009			0.0003	0.0002	< 0.0002	0.0002	< 0.0002	<0.0002
	PWQO	0.005 d								
Copper	IPWQO	0.005	d	0.0069	0.0082	0.0089	< 0.001	< 0.001	< 0.001	< 0.001
Iron	PWQO	0.3	0.3		1.09	9.96	0.42	1.34	0.72	0.48
Load	PWQO	0.025 0.005	based on	0.000	0.00055	0.00004	4 O OO1	z 0 001	z 0 001	40 001
Lead	IPWQO		hardness	0.002	0.00055	0.00094	< 0.001	< 0.001	< 0.001	<0.001
Manganese			mar arress		0.136	0.438	0.05	0.37	0.2	0.08
Molybdenum	IPWQO	0.04			0.0003	0.438	< 0.005	< 0.005	< 0.005	<0.05
Nickel				0.035						
	PWQO	0.025		0.025	0.0031	0.0022	< 0.005	< 0.005	< 0.005	<0.005
Silicon					6.92	7.88	3.4	7.2	8.2	3.4
Silver	PWQO	0.0001			< 0.00002		< 0.0001	< 0.0001	< 0.0001	<0.0001
Strontium					0.071	0.117	0.024	0.13	0.096	0.042
Thallium	IPWQO	0.0003			< 0.00005	< 0.00005	< 0.0001	< 0.0001	< 0.0001	<0.0001
Titanium					< 0.005	0.009	< 0.01	0.01	< 0.01	< 0.01
Vanadium	IPWQO	0.006			< 0.005	< 0.005	< 0.001	< 0.001	< 0.001	< 0.01
	PWQO	0.03 0.02								
Zinc		3.00 0.02	0.007	0.89	0.007	0.028	< 0.01	< 0.01	< 0.01	< 0.01
	IPWQO									
A	PWQO	0.1	0.005	0.45						
Arsenic	IPWQO	0.005	0.005	0.15						
COD	11 11 40	0.003		1	50	50	21	24	26	23
Colour					50	50	21	24	20	23
	B11:	0.0								
Mercury	PWQO	0.0002								
Selenium	PWQO	0.1								
Tannin & Lignin										
TOC										
		1								
TKN						1	1			
TKN Sus. Solids										
TKN Sus. Solids Field Parameters					49	45.2	143.8	14 86	27 78	60
TKN Sus. Solids Field Parameters Discharge L/sec					49	45.2	143.8	14.86	27.78	60
TKN Sus. Solids Field Parameters Discharge L/sec pH	DIA CO					7.9	7	7.4	7.9	7.4
TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO	f			6.4	7.9 7.5	7 5.99	7.4 11.65	7.9 11	7.4 12.3
TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO	f mg/l				7.9	7	7.4	7.9	7.4

Sample Location SW-7

Sample Date					Aug-19	Oct-19	May-20	Sep-20	Oct-20	
PARAMETER	Limit	PWQO	CWQG	APV						
Alkalinity as CaCO3	IPWQO	a			89	37	40	51	48	
BOD					<1	1	<1	3	<1	
Chloride			120	180	25	42	21	24	29	
Conductivity										
DOC					19.5	11.7	11.1	14.7	10.6	
N-NH3 (Ammonia)					0.226	0.052	0.085	0.16	0.08	
N-NH3 (unionized)	PWQO	0.02			<0.02	<0.02	<0.02	<0.02	< 0.02	
N-NO2 (Nitrite)			0.6		<0.10	<0.10	<0.10	<0.10	<0.10	
N-NO3 (Nitrate)			3		0.42	0.1	0.11	0.19	0.18	
pH	PWQO	6.5-8.5	6.5-9		8.07	7.72	7.85	7.66	7.8	
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001	0.004	0.004	< 0.001	
Sulphate					12	6	6	5	7	
TDS										
Total phosphorous	IPWQO	0.03			0.011	0.009	0.027	0.009	0.006	
Turbidity		0.00			4.2	1.1	1.6	2.9	0.9	
Hardness as CaCO3					104	51	42	61	54	
Calcium					30	14	12	18	15	
Magnesium		 			7	4	3	4	4	
Potassium		 			3	2	1	2	2	
Sodium		 			17	22	13	16	17	
Aluminum (dissolved)	IPWQO	0.075	1		1/	22		0.07	0.04	
Aluminum total					0.02	0.06	0.06	0.07	0.04	
Barium	IPWQO	0.075					0.00	0.00	0.00	
	D11100	(1)0044			0.04	0.02	0.02	0.03	0.02	
Beryllium	PWQO	(b) 0.011			<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Boron	IPWQO	0.2	1.5	3.55	0.13	0.05	0.05	0.07	0.06	
Cadmium	PWQO	0.0002 c	based on	0.00021	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Cadillidili	IPWQO		hardness	0.00021	<0.0001					
Chromium	PWQO	0.0099			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cobalt	IPWQO	0.0009			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	
	PWQO	0.005 d								
Copper	1 11 40	0.005 u	d	0.0069						
соррсі	IDMAGO		u	0.0009	40 001	40 001	40 001	-0.001	-0.001	
	IPWQO	0.2		0.0009	<0.001	<0.001	<0.001	<0.001	<0.001	
Iron	PWQO	0.3	0.3	0.0069	<0.001 0.78	<0.001 0.34	<0.001 0.56	<0.001 0.72	<0.001 0.37	
Iron		0.3 0.025 0.005			0.78	0.34	0.56	0.72	0.37	
	PWQO		0.3	0.0069						
Iron	PWQO PWQO		0.3 based on		0.78	0.34	0.56	0.72	0.37	
Iron Lead	PWQO PWQO		0.3 based on		0.78 <0.001	0.34	0.56 <0.001	<0.001	0.37 <0.001	
Iron Lead Manganese	PWQO PWQO IPWQO	0.025 0.005	0.3 based on	0.002	0.78 <0.001 0.21	0.34 <0.001 0.05	0.56 <0.001 0.09	<0.001 0.13	0.37 <0.001 0.09	
Iron Lead Manganese Molybdenum Nickel	PWQO PWQO IPWQO	0.025 0.005	0.3 based on		0.78 <0.001 0.21 <0.005 <0.005	0.34 <0.001 0.05 <0.005 <0.005	0.56 <0.001 0.09 <0.005 <0.005	<0.001 0.13 <0.005 <0.005	0.37 <0.001 0.09 <0.005 <0.005	
Iron Lead Manganese Molybdenum	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025	0.3 based on	0.002	<0.001 0.21 <0.005	<0.001 0.05 <0.005	0.56 <0.001 0.09 <0.005	<0.001 0.13 <0.005	<0.001 0.09 <0.005	
Iron Lead Manganese Molybdenum Nickel Silicon Silver	PWQO PWQO IPWQO	0.025 0.005	0.3 based on	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001	0.72 <0.001 0.13 <0.005 <0.005 5.6 <0.0001	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001	
Iron Lead Manganese Molybdenum Nickel Silicon	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001	0.3 based on	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3	0.34 <0.001 0.05 <0.005 <0.005 6.5	0.56 <0.001 0.09 <0.005 <0.005 3.4	<0.001 0.13 <0.005 <0.005 5.6	0.37 <0.001 0.09 <0.005 <0.005 6.2	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium	PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025	0.3 based on	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047	0.72 <0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO IPWQO PWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	 0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 <0.11 <0.0001 <0.01 	 0.34 <0.001 0.05 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium	PWQO PWQO IPWQO IPWQO PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	 0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.007 <0.0001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium	PWQO PWQO IPWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on	0.002	<pre><0.08 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.01 <0.001</pre>	 0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 <0.0001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.001	<pre><0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001</pre>	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	 0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 <0.11 <0.0001 <0.01 	 0.34 <0.001 0.05 <0.005 <0.005 <0.001 <0.001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.0001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc	PWQO PWQO IPWQO IPWQO PWQO PWQO IPWQO IPWQO PWQO	0.025 0.005 0.04 0.025 0.0001 0.0003	0.3 based on hardness	0.002	<pre><0.08 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.01 <0.001</pre>	 0.34 <0.001 0.05 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.001	<pre><0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001</pre>	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<pre><0.08 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.01 <0.001</pre>	 0.34 <0.001 0.05 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.001	<pre><0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001</pre>	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD	PWQO PWQO IPWQO PWQO PWQO IPWQO IPWQO IPWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02	0.3 based on hardness	0.002	<pre><0.08 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.01 <0.001</pre>	 0.34 <0.001 0.05 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.001	<pre><0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001</pre>	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <0.001 <0.001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.01 <0.001	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.001	 0.72 <0.001 0.13 <0.005 <0.005 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <0.01	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.0001 <0.001 <1.0001 <1.0001	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.001 <0.001 <0.01	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.001 <0.001 <0.01	0.72 <0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001 <0.001	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.001 <0.001	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 <0.001 <0.001 <0.001 11 18.5	0.34 <0.001 0.05 <0.005 <0.005 6.5 <0.0001 0.071 <0.0001 <0.001 <0.001 37	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 <0.001 <0.001 <0.001 <0.001 <6.001	0.72 <0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001 31	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.01 <19 19	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.001 <0.001 <1.11 11 18.5 6.8	0.34 <0.001 0.05 <0.005 <0.005 <0.0001 0.071 <0.0001 <0.001 <0.001 <0.01 37 39 8.3	0.56 <0.001 0.09 <0.005 <0.005 <0.0001 0.047 <0.0001 <0.001 <0.001 <0.01 65 65 6.9	0.72 <0.001 0.13 <0.005 <0.005 5.66 <0.0001 0.07 <0.0001 <0.001 <0.001 31 37.5 7.3	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.001 <0.001 19 39 7.2	
Iron Lead Manganese Molybdenum Nickel Silicon Silver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH DO	PWQO PWQO IPWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.001 <0.001 <1.001 11 18.5 6.8 4.7	0.34 <0.001 0.05 <0.005 <0.005 <0.0001 0.071 <0.0001 <0.001 <0.001 37 39 8.3 11.4	0.56 <0.001 0.09 <0.005 <0.005 3.4 <0.0001 0.047 <0.0001 <0.01 <0.01 <0.01 <6.001 36 65 6.9 12.2	0.72 <0.001 0.13 <0.005 <0.005 5.6 <0.0001 0.07 <0.0001 <0.001 <0.001 31 37.5 7.3 10.3	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.001 <0.001 19 39 7.2 13.4	
Iron Lead Manganese Molybdenum Nickel Silicon Siliver Strontium Thallium Titanium Vanadium Zinc Arsenic COD Colour Mercury Selenium Tannin & Lignin TOC TKN Sus. Solids Field Parameters Discharge L/sec pH	PWQO PWQO IPWQO	0.025 0.005 0.04 0.025 0.0001 0.0003 0.006 0.03 0.02 0.1 0.005	0.3 based on hardness	0.002	0.78 <0.001 0.21 <0.005 <0.005 7.3 <0.0001 0.11 <0.001 <0.001 <1.11 11 18.5 6.8	0.34 <0.001 0.05 <0.005 <0.005 <0.0001 0.071 <0.0001 <0.001 <0.001 <0.01 37 39 8.3	0.56 <0.001 0.09 <0.005 <0.005 <0.0001 0.047 <0.0001 <0.001 <0.001 <0.01 65 65 6.9	0.72 <0.001 0.13 <0.005 <0.005 5.66 <0.0001 0.07 <0.0001 <0.001 <0.001 31 37.5 7.3	0.37 <0.001 0.09 <0.005 <0.005 6.2 <0.0001 0.068 <0.0001 <0.001 <0.001 19 39 7.2	

Field Blanks

Sample Date Aug-15 Aug-17

PARAMETER	Limit	PWQO	CWQG	APV				
Alkalinity as CaCO3	IPWQO	a	CWQO	AI V	< 5	< 5		
BOD		ű			< 3	< 3		
Chloride			120	180	< 0.5	< 0.5		
Conductivity								
DOC								
N-NH3 (Ammonia)					< 0.01	< 0.01		
N-NH3 (unionized)	PWQO	0.02			< 0.01	-		
N-NO2 (Nitrite)			0.6		< 0.1	< 0.05		
N-NO3 (Nitrate)			3		< 0.1	< 0.05		
pH	PWQO	6.5-8.5	6.5-9					
Phenols	IPWQO	0.001	0.004	0.961	< 0.001	< 0.001		
Sulphate								
TDS								
Total phosphorous	IPWQO	0.03			< 0.01	< 0.01		
Turbidity					0.2	0.2		
Hardness as CaCO3					< 1	< 1		
Calcium					< 0.02	< 0.02		
Magnesium					< 0.01	< 0.01		
Potassium					< 0.1	< 0.1		
Sodium					< 0.2	< 0.2		
Aluminum (dissolved)	IPWQO	0.075			< 0.01	< 0.01	 	
Aluminum total	IPWQO	0.075			•			
Barium					< 0.001	< 0.001		
Beryllium	PWQO	(b) 0.011			< 0.002	< 0.002		
Boron	IPWQO	0.2	1.5	3.55	< 0.005	< 0.005		
	PWQO	0.0002 c	based on					
Cadmium	IPWQO		hardness	0.00021	< 0.00002	< 0.000014		
Chromium	PWQO	0.0099	naraness		< 0.002	< 0.001		
Cobalt	IPWQO	0.0009			< 0.002	< 0.001		
Cobait					< 0.0001	< 0.0001		
Copper	PWQO	0.005 d	d	0.0069	< 0.0001	< 0.0001		
	IPWQO							
Iron	PWQO	0.3	0.3		< 0.005	< 0.005		
Lead	PWQO	0.025 0.005	based on	0.002	< 0.00002	< 0.00002		
Leau	IPWQO		hardness	0.002	< 0.00002	< 0.00002		
Manganese					< 0.001	< 0.001		
Molybdenum	IPWQO	0.04			< 0.0001	< 0.0001		
Nickel	PWQO	0.025		0.025	< 0.0005	< 0.0002		
Silicon	-				< 0.01	< 0.01		
Silver	PWQO	0.0001			< 0.00002	< 0.00002		
Strontium	-				< 0.001	< 0.001		
Thallium	IPWQO	0.0003			< 0.00005	< 0.00005		
Titanium					< 0.005	< 0.005		
Vanadium	IPWQO	0.006			< 0.005	< 0.005		
	PWQO	0.03 0.02						
Zinc	IPWQO		0.007	0.89	< 0.005	< 0.005		
		0.1			ı			
Arsenic	PWQO	0.1	0.005	0.15				
	IPWQO	0.005		0.15			 	l
COD					< 5	< 5		
Colour								
Mercury	PWQO	0.0002						
Selenium	PWQO	0.1						
Tannin & Lignin								
TOC								
TKN								
Sus. Solids								
Field Parameters								
Discharge L/sec								
pH								
DO	PWQO	f						
Conductivity		mg/l						
Temperature								

		SW 1	SW 1 DUP SW 8		SW 1	SW 1 DUP SW 8	
Parameter	PWQO	May-18	May-18	RPD	Jul-18	Jul-18	RPD
Alkalinity as CaCO3	а	9	8	11.76%	22	16	31.58%
BOD			< 1	NC	< 1	< 1	0.00%
Chloride		1	10	163.64%	38	38	0.00%
Conductivity							
DOC		8.1	8.9	9.41%	17.1	18.3	6.78%
N-NH3 (Ammonia)		0.12	0.12	0.00%	0.06	0.07	15.38%
N-NH3 (unionized)	0.02	< 0.02	< 0.02	0.00%	< 0.02	< 0.02	0.00%
N-NO2 (Nitrite)		< 0.10	< 0.10	0.00%	< 0.10	< 0.10	0.00%
N-NO3 (Nitrate)		< 0.10	< 0.10	0.00%	< 0.10	< 0.10	0.00%
На	6.5-8.5	7.08	6.99	1.28%	7.2	7.09	1.54%
Phenols	0.001	< 0.001	< 0.001	0.00%	< 0.001	< 0.001	0.00%
Sulphate		2	2	0.00%	2	2	0.00%
TDS							
Total phosphorous	0.03	0.016	0.017	6.06%	0.024	0.023	4.26%
Turbidity		0.6	0.6	0.00%	2.3	1.9	19.05%
Hardness as CaCO3		5	5	0.00%	23	23	0.00%
Calcium		2	2	0.00%	6	6	0.00%
Magnesium		< 1	< 1	0.00%	2	2	0.00%
Potassium		< 1	< 1	0.00%	< 1	< 1	0.00%
Sodium		7	7	0.00%	19	21	10.00%
Aluminum (dissolved)	0.075	0.06	0.06	0.00%	0.08	0.08	0.00%
Aluminum total		0.06	0.06	0.00%			
Barium		< 0.01	< 0.01	0.00%	0.01	0.01	0.00%
Beryllium	(b) 0.011	< 0.0005	< 0.0005	0.00%	< 0.0005	< 0.0005	0.00%
Boron	0.2		< 0.01	NC	< 0.01	< 0.01	0.00%
Cadmium	0.0002 c	< 0.0001	< 0.0001	0.00%	< 0.0001	< 0.0001	0.00%
Chromium	0.0099	< 0.001	< 0.001	NC	< 0.001	< 0.001	0.00%
Cobalt	0.0009	< 0.0002	< 0.0002	0.00%	0.0003	0.0003	0.00%
Copper	0.005 d	< 0.001	< 0.001	0.00%	< 0.001	< 0.001	0.00%
Iron	0.3	0.29	0.29	0.00%	1.02	1.01	0.99%
Lead	0.025 0.005	< 0.001	< 0.001	0.00%	< 0.001	< 0.001	0.00%
Manganese		0.02	0.02	0.00%	0.06	0.06	0.00%
Molybdenum	0.04	< 0.005	< 0.005	0.00%	< 0.005	< 0.005	0.00%
Nickel	0.025	< 0.005	< 0.005	0.00%	< 0.005	< 0.005	0.00%
Silicon		2.8	2.8	0.00%	3.4	3.2	6.06%
Silver	0.0001	< 0.0001	< 0.0001	0.00%	< 0.0001	< 0.0001	0.00%
Strontium		0.012	0.012	0.00%	0.039	0.039	0.00%
Thallium	0.0003	< 0.0001	< 0.0001	0.00%	< 0.0001	< 0.0001	0.00%
Titanium		< 0.01	< 0.01	0.00%	< 0.01	< 0.01	0.00%
Vanadium	0.006	< 0.001	< 0.001	0.00%	< 0.001	< 0.001	0.00%
Zinc	0.03 0.02		< 0.01	NC	< 0.01	< 0.01	0.00%
Arconic	0.1						
Arsenic	0.005			NC			
COD		30	25	18.18%	44	46	4.44%
Average RPD				5.84%			2.57%

NC = Not Calculated

		SW 1	SW 1 DUP SW 8		SW 1	SW 1 DUP SW 8	
Parameter	PWQO	Oct-18	Oct-18	RPD	May-19	May-19	RPD
Alkalinity as CaCO3	a	20	24	18.18%	9	7	25.00%
BOD		< 1	< 1	0.00%	4	5	22.22%
Chloride		43	42	NC	23	20	13.95%
Conductivity							
DOC		16.3	16.2	0.62%	10.4	11.3	8.29%
N-NH3 (Ammonia)		0.2	0.15	28.57%	<0.02	<0.02	NC
N-NH3 (unionized)	0.02	0.2	0.02	163.64%	<0.02	<0.02	NC
N-NO2 (Nitrite)		< 0.10	< 0.10	0.00%	<0.1	<0.1	NC
N-NO3 (Nitrate)		< 0.10	< 0.10	0.00%	<0.1	<0.1	NC
рН	6.5-8.5	7.17	7.31	1.93%	6.86	6.96	1.45%
Phenols	0.001	< 0.001	< 0.001	0.00%	<0.001	<0.001	NC
Sulphate		2	2	0.00%	3	3	0.00%
TDS				NC			
Total phosphorous	0.03	0.01	0.01	0.00%	0.008	0.009	11.76%
Turbidity		0.8	1	22.22%	0.8	0.9	11.76%
Hardness as CaCO3		23	23	0.00%	14	14	0.00%
Calcium		6	6	0.00%	4	4	0.00%
Magnesium		2	2	0.00%	1	1	0.00%
Potassium		1	1	0.00%	<1	<1	NC
Sodium		23	22	4.44%	12	12	0.00%
Aluminum (dissolved)	0.075	0.06	0.06	0.00%			
Aluminum total					0.08	0.08	0.00%
Barium		0.01	< 0.01	0.00%	<0.01	<0.01	NC
Beryllium	(b) 0.011	< 0.0005	< 0.0005	0.00%	<0.0005	<0.0005	NC
Boron	0.2	< 0.01	< 0.01	0.00%	<0.01	<0.01	NC
Cadmium	0.0002 c	< 0.0001	< 0.0001	0.00%	<0.0001	<0.0001	NC
Chromium	0.0099	< 0.001	< 0.001	0.00%			
Cobalt	0.0009	< 0.0002	< 0.0002	0.00%	<0.0002	<0.0002	NC
Copper	0.005 d	< 0.001	< 0.001	0.00%	0.001	< 0.001	NC
Iron	0.3	0.66	0.66	0.00%	0.36	0.35	2.82%
Lead	0.025 0.005	< 0.001	< 0.001	0.00%	<0.001	<0.001	NC
Manganese		0.02	0.02	0.00%	0.02	0.02	0.00%
Molybdenum	0.04	< 0.005	< 0.005	0.00%	<0.005	<0.005	NC
Nickel	0.025	< 0.005	< 0.005	0.00%	<0.005	<0.005	NC
Silicon		8	8	0.00%	2.2	2.2	0.00%
Silver	0.0001	< 0.0001	< 0.0001	0.00%	<0.0001	<0.0001	NC
Strontium		0.05	0.048	4.08%	0.023	0.022	4.44%
Thallium	0.0003	< 0.0001	< 0.0001	0.00%	<0.0001	<0.0001	NC
Titanium		< 0.01	< 0.01	0.00%	<0.01	<0.01	NC
Vanadium	0.006	< 0.001	< 0.001	0.00%	<0.001	<0.001	NC
Zinc	0.03 0.02	< 0.01	< 0.01	0.00%	<0.01	<0.01	NC
Arsenic	0.1 0.005			NC			
COD	3.003	33	35	5.88%	29	30	3.39%
Average RPD		- 33	- 55	6.57%		30	5.84%
				0.01/0		1	J.J . 70

NC = Not Calculated

		SW 1	SW 1 DUP SW 8		SW 1	SW 1 DUP SW 8	
Parameter	PWQO	Aug-19	Aug-19	RPD	Oct-19	Oct-19	RPD
Alkalinity as CaCO3	а	23	17	30.00%	16	12	28.57%
BOD		<1	<1	NC	2	2	0.00%
Chloride		41	41	0.00%	50	50	0.00%
Conductivity				NC			
DOC		14	23.2	49.46%	13.1	13	0.77%
N-NH3 (Ammonia)		0.02	0.021	4.88%	0.031	<0.010	0.00%
N-NH3 (unionized)	0.02	<0.02	<0.02	NC	<0.02	<0.02	0.00%
N-NO2 (Nitrite)		<0.10	<0.10	NC	<0.10	<0.10	0.00%
N-NO3 (Nitrate)		0.11	0.11	NC	<0.10	<0.10	0.00%
рН	6.5-8.5	7.32	7.23	1.24%	7.38	7.11	3.73%
Phenols	0.001	0.001	0.001	NC	<0.001	<0.001	0.00%
Sulphate		2	2	0.00%	4	4	0.00%
TDS				NC			
Total phosphorous	0.03	0.012	0.013	8.00%	0.008	0.009	11.76%
Turbidity		1.5	1.2	22.22%	1	0.8	22.22%
Hardness as CaCO3		32	32	0.00%	32	32	0.00%
Calcium		8	8	0.00%	8	8	0.00%
Magnesium		3	3	0.00%	3	3	0.00%
Potassium		<1	<1	NC	1	2	66.67%
Sodium		23	19	19.05%	25	25	0.00%
Aluminum (dissolved)	0.075						
Aluminum total		0.04	0.04	NC	0.06	0.06	0.00%
Barium		0.01	0.01	NC	0.01	0.01	0.00%
Beryllium	(b) 0.011	<0.0005	<0.0005	NC	<0.0005	<0.0005	0.00%
Boron	0.2	<0.01	<0.01	NC	<0.01	<0.01	0.00%
Cadmium	0.0002 c	<0.0001	<0.0001	NC	<0.0001	<0.0001	0.00%
Chromium	0.0099	<0.001	<0.001	NC	<0.001	<0.001	0.00%
Cobalt	0.0009	<0.0002	<0.0002	NC	<0.0002	<0.0002	0.00%
Copper	0.005 d	< 0.001	<0.001	NC	<0.001	<0.001	0.00%
Iron	0.3	0.53	0.56	5.50%	0.36	0.36	0.00%
Lead	0.025 0.005	<0.001	<0.001	NC	<0.001	<0.001	0.00%
Manganese		0.02	0.02	0.00%	0.02	0.02	0.00%
Molybdenum	0.04	<0.005	<0.005	NC	<0.005	<0.005	0.00%
Nickel	0.025	<0.005	<0.005	NC	<0.005	<0.005	0.00%
Silicon		6.5	6.4	1.55%	6.1	6.1	0.00%
Silver	0.0001	<0.0001	<0.0001	0.00%	<0.0001	<0.0001	0.00%
Strontium		0.051	0.051	0.00%	0.052	0.051	1.94%
Thallium	0.0003	<0.0001	<0.0001	NC	<0.0001	<0.0001	0.00%
Titanium		<0.01	<0.01	NC	<0.01	<0.01	0.00%
Vanadium	0.006	<0.001	<0.001	NC	<0.001	<0.001	0.00%
Zinc	0.03 0.02	<0.01	<0.01	NC	<0.01	<0.01	0.00%
Arsenic	0.1 0.005			NC			
COD	2.000	19	25	27.27%	35	36	2.82%
Average RPD				9.40%			3.55%

NC = Not Calculated

		SW 1	SW 1 DUP #1		SW 1	SW 1 DUP #1	
Parameter	PWQO	May-20	May-20	RPD	Sep-20	Sep-20	RPD
Alkalinity as CaCO3	а	8	24	100.00%	12	21	54.55%
BOD		2	<1	NC	4	3	28.57%
Chloride		23	23	0.00%	28	28	0.00%
Conductivity							
DOC		13.1	13.1	0.00%	20	20.4	1.98%
N-NH3 (Ammonia)		<0.010	<0.010	NC	<0.01	0.01	NC
N-NH3 (unionized)	0.02	<0.02	<0.02	NC	<0.02	<0.02	NC
N-NO2 (Nitrite)		<0.10	<0.10	NC	<0.10	<0.10	NC
N-NO3 (Nitrate)		<0.10	<0.10	NC	<0.10	<0.10	NC
pH	6.5-8.5	6.83	7.95	15.16%	6.8	6.8	0.00%
Phenols	0.001	0.003	0.002	40.00%	0.007	0.007	0.00%
Sulphate		3	3	0.00%	1	1	0.00%
TDS							
Total phosphorous	0.03	<0.020	<0.020	NC	0.01	0.01	0.00%
Turbidity		0.6	0.6	0.00%	1.2	0.9	28.57%
Hardness as CaCO3		14	18	25.00%	23	19	19.05%
Calcium		4	4	0.00%	6	6	0.00%
Magnesium		1	2	66.67%	2	1	66.67%
Potassium		<1	<1	NC	<1	<1	NC
Sodium		14	14	0.00%	17	17	0.00%
Aluminum (dissolved)	0.075	0.06	0.06	0.00%	0.09	0.09	0.00%
Aluminum total							
Barium		<0.01	<0.01	NC	0.01	0.01	0.00%
Beryllium	(b) 0.011	<0.0005	<0.0005	NC	<0.0005	<0.0005	NC
Boron	0.2	<0.01	<0.01	NC	<0.01	<0.01	NC
Cadmium	0.0002 c	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Chromium	0.0099	<0.001	<0.001	NC	<0.001	<0.001	NC
Cobalt	0.0009	<0.0002	<0.0002	NC	<0.0002	<0.0002	NC
Copper	0.005 d	<0.001	<0.001	NC	<0.001	<0.001	NC
Iron	0.3	0.4	0.39	2.53%	0.72	0.73	1.38%
Lead	0.025 0.005	<0.001	<0.001	NC	<0.001	<0.001	NC
Manganese		0.02	0.02	0.00%	0.02	0.02	0.00%
Molybdenum	0.04	<0.005	<0.005	NC	<0.005	<0.005	NC
Nickel	0.025	<0.005	<0.005	NC	<0.005	<0.005	NC
Silicon		2.2	2.2	0.00%	4.7	4.7	0.00%
Silver	0.0001	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Strontium		0.024	0.024	0.00%	0.034	0.034	0.00%
Thallium	0.0003	<0.0001	<0.0001	NC	<0.0001	<0.0001	NC
Titanium		<0.01	<0.01	NC	<0.01	<0.01	NC
Vanadium	0.006	<0.001	<0.001	NC	<0.001	<0.001	NC
Zinc	0.03 0.02	<0.01	<0.01	NC	<0.01	0.01	NC
Arsenic	0.1 0.005	-	-	-	-	-	-
COD		40	44	9.52%	52	52	0.00%
Average RPD				15.23%			10.04%

NC = Not Calculated

Unionized Ammonia Millers Road WDS 2020

Location	Ammonia	рН	Temperature	рКа	f	Unionized Ammonia
SW1 May 2019	0.02	7.9	12.6	9.64337149	0.017736042	0.0003547
SW1 Aug 2019	0.02	8.1	9	9.76525797	0.021157047	0.0004231
SW1 Oct 2019	0.03	8.3	10.3	9.72088627	0.036554503	0.0010966
SW2 May 2019	0.05	7.9	9.9	9.73449569	0.014427559	0.0007214
SW2 Aug 2019	0.02	8	10.3	9.72088627	0.01866091	0.0003732
SW2 Oct 2019	0.037	8	8.3	9.7893202	0.015983873	0.0005914
SW3 May 2019	0.276	8.1	8.7	9.77555572	0.020671532	0.0057053
SW3 Aug 2019	0.287	8.1	10	9.73108973	0.022849244	0.0065577
SW3 Oct 2019	0.253	8.1	8.5	9.78243307	0.020353372	0.0051494
SW4 May 2019	0.87	7.8	8.1	9.79621712	0.009986743	0.0086885
SW4 Aug 2019	0.04	7.8	9.6	9.74472803	0.01122968	0.0004492
SW4 Oct 2019	0.03	8	8.5	9.78243307	0.016235221	0.0004871
SW5 May 2019	0.85	7.8	8.2	9.79276743	0.010065584	0.0085557
SW5 Aug 2019	0.03	7.6	9.5	9.74814363	0.007059591	0.0002118
SW5 Oct 2019	0.03	8.1	8.7	9.77555572	0.020671532	0.0006201
SW6 May 2019	0.75	7.7	7.8	9.80658091	0.007763087	0.0058223
SW6 Aug 2019	0.03	7.1	9.3	9.7549821	0.002208299	0.0000662
SW6 Oct 2019	0.03	7.9	9.9	9.73449569	0.014427559	0.0004328
SW7 May 2019	0.073	7.4	9.6	9.74472803	0.004501039	0.0003286
SW7 Aug 2019	0.02	6.8	11.5	9.6802875	0.001315651	0.0000263
SW7 Oct 2019	0.02	8.3	8.6	9.77899317	0.03212378	0.0006425

SW1 May 2020	0.01	8.3	12.7	9.64002958	0.043708001	0.0004371
SW1 Sept 2020	0.01	6.1	12.1	9.6601162	0.000275273	0.0000028
SW1 Oct 2020	0.01	7.1	4.2	9.93269514	0.0014678	0.0000147
SW2 May 2020	0.069	7.7	12.3	9.65341128	0.011009832	0.0007597
SW2 Sept 2020	0.06	7.4	8.4	9.78587541	0.004095832	0.0002457
SW2 Oct 2020	0.01	7.3	6.2	9.8622304	0.002732632	0.0000273
SW3 May 2020	0.401	7.5	8.8	9.7721207	0.00531575	0.0021316
SW3 Sept 2020	0.7	7.5	8.5	9.78243307	0.005191661	0.0036342
SW3 Oct 2020	0.268	7.4	6.1	9.86572967	0.003410254	0.0009139
SW4 May 2020	1.03	7.5	8.4	9.78587541	0.005150884	0.0053054
SW4 Sept 2020	0.98	7.2	8.3	9.7893202	0.002567812	0.0025165
SW4 Oct 2020	0.966	7.3	6.3	9.85873364	0.002754662	0.0026610
SW5 May 2020	0.908	7.3	7.2	9.82737503	0.002960311	0.0026880
SW5 Sept 2020	0.83	7.7	8.3	9.7893202	0.008075297	0.0067025
SW5 Oct 2020	0.776	7.3	6	9.86923144	0.002689052	0.0020867
SW6 May 2020	0.82	6.5	6	9.86923144	0.000427153	0.0003503
SW6 Sept 2020	0.69	7.7	8.1	9.79621712	0.00794908	0.0054849
SW6 Oct 2020	0.618	7.4	5.6	9.88326366	0.003275755	0.0020244
SW7 May 2020	0.085	6.9	7.3	9.82390317	0.00119009	0.0001012
SW7 Sept 2020	0.16	7.3	10.2	9.72428503	0.003750448	0.0006001
SW7 Oct 2020	0.08	7.2	4.2	9.93269514	0.001847149	0.0001478

Monitoring	Reference	Reference	Nov	<i>ı</i> -98	Nov	<i>y</i> -99	Jun	-00	Ma	/ -05
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	6.22	121.53	6.19	121.56	5.9	121.85	Compr	omised
85-A	T/Plastic	128.4	6.01	122.39	6	122.4	5.67	122.73	5.52	122.88
85-B	T/Plastic	129.87	6.64	123.23	6.65	123.22	6.195	123.675	5.98	123.89
85-C	T/Plastic	129.44	6.53	122.91	6.6	122.84	6.165	123.275	6.04	123.4
85-D	T/Plastic	132.25	9.72	122.53	9.76	122.49	9.345	122.905	9.2	123.05
85-E	T/Plastic	131.5	Not Lo	ocated	Not Lo	ocated	Not Lo	ocated	Not Lo	ocated
85-F	T/Plastic	131.13		ry		ry		ry		ry
85-Y	T/Plastic	129.75	6.935	122.815	6.995	122.755	6.575	123.175	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decom	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decom	ssioned
88-2-S	T/Plastic	133.1	10.47	122.63	10.51	122.59	10.08	123.02	10.29	122.81
88-2-D	T/Plastic	133.09	10.385	122.705	10.405	122.685	9.99	123.1	9.92	123.17
88-3-S	T/Plastic	129.96	6.3	123.66	6.41	123.55	5.915	124.045	6.08	123.88
88-3-D	T/Plastic	129.98	6.355	123.625	6.38	123.6	5.87	124.11	5.71	124.27
89-1-S	T/Plastic	128.4	7.55	120.85	7.56	120.84	7.62	120.78	7.18	121.22
89-1-D	T/Plastic	128.32	7.06	121.26	7.07	121.25	6.75	121.57	7.02	121.3
89-2-S	T/Plastic	128.54	7.4	121.14	7.4	121.14	7.095	121.445	Not Me	easured
89-2-D	T/Plastic	128.54	7.35	121.19	7.36	121.18	7.05	121.49	Not Me	easured
91-1	T/Plastic	128.234	6.1	122.134	5.925	122.309	5.645	122.589	5.54	122.694
91-2	T/Plastic	129.769	9.855	119.914	9.785	119.984	9.625	120.144	9.82	119.949
91-3	T/Plastic	118.05	9.02	109.03	8.95	109.1	8.89	109.16	8.91	109.14
91-4	T/Plastic	127.97					6.93	121.04	6.48	121.49
91-5 S	T/Plastic	129.161								
91-5 D	T/Plastic	129.558	6.08	123.478	6.115	123.443	5.62	123.938	5.48	124.078
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.715	123.351	5.715	123.351	5.27	123.796	5.12	123.946
95-3 D		129.053								
95-4 S	T/Plastic	129.846	6.135	123.711	6.62	123.226	5.66	124.186	5.5	124.346
95-4 D		129.864								
95-5	T/Plastic	129.391	5.455	123.936	5.935	123.456	4.935	124.456	4.76	124.631
95-6	T/Plastic	126.988	4.96	122.028	4.98	122.008	4.61	122.378	4.45	122.538
96-1-S	T/Plastic	128.353	5.005	123.348	4.53	123.823	4.04	124.313	3.82	124.533
96-1-D	T/Plastic	128.327	4.57	123.757	4.605	123.722	4.09	124.237	3.93	124.397
96-2	T/Plastic		Not Me	asured	Not Me	easured	4.525		4.44	
96-3	T/Plastic	129.98	7.045	122.935	7.07	122.91	6.62	123.36	6.5	123.48
03-1	T/Plastic									
07-2S	T/Plastic	123.68								
07-2D	T/Plastic	123.96								
07-F S	T/Plastic	130.26								
07-F D	T/Plastic	130.986								
07-3S	T/Plastic	129.63								
07-3D	T/Plastic	129.76								
08-1S	T/Plastic	129.845								
08-1D	T/Plastic	129.858								

Monitoring	Reference	Reference	Nov	<i>/</i> -05	May	/-06	Oct	:-06	May	<i>r</i> -07
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	6.03	122.37	5.40	123.00	5.73	122.67	5.27	123.13
85-B	T/Plastic	129.87	6.71	123.16	5.93	123.94	6.43	123.44	5.68	124.19
85-C	T/Plastic	129.44	6.61	122.83	5.94	123.50	6.03	123.41	5.47	123.97
85-D	T/Plastic	132.25	9.75	122.50	9.08	123.17	9.42	122.83	9.42	122.83
85-E	T/Plastic	131.5	Not Lo	ocated	Not Lo	ocated	Not Lo	ocated	Not Lo	cated
85-F	T/Plastic	131.13	D	ry	D	ry	D	ry	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decomi		Decomi	ssioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	10.50	122.60	9.83	123.27	10.17	122.93	9.64	123.46
88-2-D	T/Plastic	133.09	10.40	122.69	9.74	123.35	9.94	123.15	9.54	123.55
88-3-S	T/Plastic	129.96	6.40	123.56			5.99	123.97	5.35	124.61
88-3-D	T/Plastic	129.98	6.40	123.58	5.60	124.38	5.99	123.99	5.35	124.63
89-1-S	T/Plastic	128.4	7.20	121.20	7.08	121.32	7.35	121.06	7.00	121.40
89-1-D	T/Plastic	128.32	7.04	121.28	6.54	121.78	6.81	121.51	6.45	121.87
89-2-S	T/Plastic	128.54	Not Me	easured	Not Me	easured	Not Me	easured	Not Me	asured
89-2-D	T/Plastic	128.54	Not Me	easured	Not Me	easured	Not Me	easured	Not Me	asured
91-1	T/Plastic	128.234	6.05	122.18	5.46	122.77	5.78	122.45	5.36	122.87
91-2	T/Plastic	129.769	9.81	119.96	9.44	120.33	9.63	120.14	9.39	120.38
91-3	T/Plastic	118.05	8.99	109.06	8.79	109.26	8.89	109.16	8.82	109.23
91-4	T/Plastic	127.97	7.18	120.79	6.77	121.20	D	ry	5.90	122.07
91-5 S	T/Plastic	129.161								
91-5 D	T/Plastic	129.558	6.13	123.43	5.37	124.19	5.74	123.82	5.13	124.43
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.77	123.30	5.03	124.04	5.38	123.69	4.83	124.24
95-3 D		129.053								
95-4 S	T/Plastic	129.846	6.18	123.67	5.42	124.43	5.78	124.07	5.14	124.71
95-4 D		129.864								
95-5	T/Plastic	129.391	5.51	123.88	4.69	124.70	5.06	124.33	4.39	125.00
95-6	T/Plastic	126.988	4.95	122.04	4.36	122.63	4.69	122.30	4.15	122.84
96-1-S	T/Plastic	128.353	4.53	123.82	3.77	124.58	4.13	124.22	3.46	124.89
96-1-D	T/Plastic	128.327	4.62	123.71	3.85	124.48	4.21	124.12	3.57	124.76
96-2	T/Plastic		D	ry	D	ry	4.49		4.20	
96-3	T/Plastic	129.98	7.08	122.90	6.39	123.59	6.75	123.23	6.18	123.80
03-1	T/Plastic								1.20	
07-2S	T/Plastic	123.68								
07-2D	T/Plastic	123.96								
07-F S	T/Plastic	130.26								
07-F D	T/Plastic	130.986								
07-3S	T/Plastic	129.63								
07-3D	T/Plastic	129.76								
08-1S	T/Plastic	129.845								
08-1D	T/Plastic	129.858								

Monitoring	Reference	Reference	Oct	:-07	Nov-07		May-08		Oct-08	
Well	Mark	Elevation	Static	Elevation	Static	Elevation		Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compre	omised
85-A	T/Plastic	128.4	5.65	122.75	Not Me	easured	5.16	123.24	5.46	122.94
85-B	T/Plastic	129.87	6.23	123.64	6.17	123.70	5.57	124.30	5.97	123.90
85-C	T/Plastic	129.44	5.95	123.49	Not Me	easured	5.37	124.07	5.73	123.71
85-D	T/Plastic	132.25	9.35	122.90	Not Me	easured	Destr	oyed	Destr	oyed
85-E	T/Plastic	131.5	Not Lo	ocated	Not Lo	ocated	Not Located		Not Lo	cated
85-F	T/Plastic	131.13	Decomm	issioned	Decomm	Decommissioned Decommission		issioned	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compro	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	10.08	123.02	Not Me	easured	9.55	123.55	9.90	123.20
88-2-D	T/Plastic	133.09	10.00	123.09	Not Me	easured	9.47 123.62		9.82	123.27
88-3-S	T/Plastic	129.96	Decomm	issioned	Decomm	issioned	Decomm	issioned	Decomm	issioned
88-3-D	T/Plastic	129.98	Decomm	issioned	Decomm	issioned	Decomm	issioned	Decomm	issioned
89-1-S	T/Plastic	128.4	7.32	121.08	Not Me	easured	6.91	121.49	7.17	121.23
89-1-D	T/Plastic	128.32	6.75	121.57	Not Me	easured	6.35	121.97	6.62	121.70
89-2-S	T/Plastic	128.54	Decomm	issioned	Decommissioned		Decomm	issioned	Decomm	issioned
89-2-D	T/Plastic	128.54	Decomm	issioned	Decommissioned		Decomm	issioned	Decomm	issioned
91-1	T/Plastic	128.234	5.83	122.40	Not Measured		5.35	122.88	5.59	122.64
91-2	T/Plastic	129.769	9.68	120.09	Not Me	Not Measured		120.40	9.55	120.22
91-3	T/Plastic	118.05	8.97	109.08	Not Me	easured	8.72	109.33	8.87	109.18
91-4	T/Plastic	127.97	7.16	120.81	Not Me	easured	6.36	121.61	7.17	120.80
91-5 S	T/Plastic	129.161								
91-5 D	T/Plastic	129.558	5.64	123.92	5.74	123.82	5.03	124.53	5.43	124.13
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.33	123.74	Not Me	easured	4.74	124.33	5.12	123.95
95-3 D		129.053								
95-4 S	T/Plastic	129.846	5.69	124.16	Not Me	easured	5.06	124.79	5.47	124.38
95-4 D		129.864								
95-5	T/Plastic	129.391	4.99	124.40	Not Me	easured	4.32	125.07	4.75	124.64
95-6	T/Plastic	126.988	4.63	122.36	Not Me	easured	4.12	122.87	4.46	122.53
96-1-S	T/Plastic	128.353	4.06	124.29	4.15	124.20	3.42	124.93	3.83	124.52
96-1-D	T/Plastic	128.327	4.13	124.20	4.22	124.11	3.51	124.82	3.90	124.43
96-2	T/Plastic		D	ry	Not Me	easured	D	ry	Di	У
96-3	T/Plastic	129.98	6.64	123.34	Not Me	easured	6.07	123.91	6.43	123.55
03-1	T/Plastic		DRY		Not Me	easured	1.33		1.50	
07-2S	T/Plastic	123.68	2.41	121.27			2.04	121.64	2.28	121.40
07-2D	T/Plastic	123.96	5.41	118.55	5 Not Measured		4.80	119.16	5.02	118.94
07-F S	T/Plastic	130.26	7.12	123.14	Not Me	easured	6.50	123.76	6.90	123.36
07-F D	T/Plastic	130.986								
07-3S	T/Plastic	129.63	5.55	124.08	Not Me	easured	4.92	124.71	5.33	124.30
07-3D	T/Plastic	129.76	5.67	124.09	Not Me	easured	5.04	124.72	5.46	124.30
08-1S	T/Plastic	129.845								
08-1D	T/Plastic	129.858								

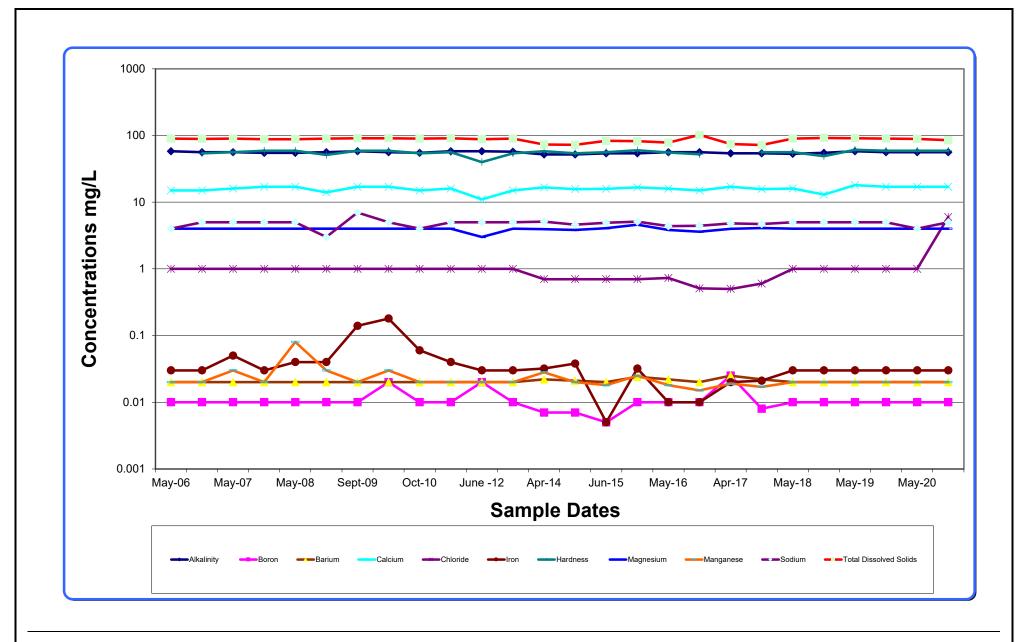
Monitoring	Reference	Reference	Nov	<i>y</i> -08	May	y-09	Sep	-09	May	/-10
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compre	omised	Compr	omised
85-A	T/Plastic	128.4	Not Me	easured	5.12	123.28	Not Me	asured	5.46	122.94
85-B	T/Plastic	129.87	Not Me	easured	5.50	124.37	Not Me	asured	5.98	123.89
85-C	T/Plastic	129.44	Not Me	easured	5.29	124.15	Not Me	asured	5.73	123.71
85-D	T/Plastic	132.25	Destr	royed	8.74	123.51	9.28	122.97	Not Located	
85-E	T/Plastic	131.5	Not Lo	ocated	Not Located		Not Located		Not Lo	cated
85-F	T/Plastic	131.13	Decomm	issioned	Decomm	issioned	Decomm	issioned	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	Compromised		omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	Not Me	easured	9.47	123.63	10.08	123.02	9.81	123.29
88-2-D	T/Plastic	133.09	Not Me	easured	9.39	123.70	10.02	123.07	9.89	123.20
88-3-S	T/Plastic	129.96	Decomm	issioned	Decomm	issioned	Decomm	issioned	Decomm	issioned
88-3-D	T/Plastic	129.98	Decomm	issioned	Decomm	issioned	Decomm	issioned	Decomm	issioned
89-1-S	T/Plastic	128.4	Not Me	easured	6.85	121.55	7.28 121.12		7.13	121.27
89-1-D	T/Plastic	128.32	Not Me	easured	6.29 122.03		6.74 121.58		6.58	121.74
89-2-S	T/Plastic	128.54	Decomm	issioned	Decomm	issioned	Decommissioned		Decomm	issioned
89-2-D	T/Plastic	128.54			Decomm	issioned	Decomm	issioned	Decomm	issioned
91-1	T/Plastic	128.234	Not Measured		5.27	122.96	5.81	122.42	5.54	122.69
91-2	T/Plastic	129.769	Not Measured		9.32	120.45	9.67	120.10	9.51	120.26
91-3	T/Plastic	118.05	Not Me	easured	8.69	109.36	8.92	109.13	8.83	109.22
91-4	T/Plastic	127.97	Not Me	easured	6.14	121.83			D	ry
91-5 S	T/Plastic	129.161	5.16	124.00	4.53	124.63	5.16	124.00	5.06	124.10
91-5 D	T/Plastic	129.558	5.54	124.02	4.92	124.64	5.54	124.02	5.45	124.11
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.24	123.83	4.65	124.42	5.24	123.83	5.11	123.96
95-3 D		129.053	5.3	123.75	4.75	124.30	5.3	123.75		123.86
95-4 S	T/Plastic	129.846	5.57	124.28	4.96	124.89	5.57	124.28		124.36
95-4 D		129.864	5.64	124.22	5.02	124.84	5.64	124.22	5.55	124.31
95-5	T/Plastic	129.391	Not Me		4.20	125.19	4.99	124.40		124.62
95-6	T/Plastic	126.988	Not Me		4.05	122.94			4.42	122.57
96-1-S	T/Plastic	128.353		easured	3.37	124.98		124.29		124.50
96-1-D	T/Plastic	128.327		easured	3.40		ļ	124.21		124.40
96-2	T/Plastic			easured		ry	Di	•		ry
96-3	T/Plastic	129.98		easured	5.99		·	123.35		123.53
03-1	T/Plastic			easured	1.28			•		ry
07-2S	T/Plastic	123.68		easured	1.99	121.69		121.30		121.48
07-2D	T/Plastic	123.96		easured	4.51	119.45		119.19		118.64
07-F S	T/Plastic	130.26		123.25	6.38			123.25		123.35
07-F D	T/Plastic	130.986		124.21	6.14	124.85		124.21		124.31
07-3S	T/Plastic	129.63		124.20	4.80	124.83		124.20		124.28
07-3D	T/Plastic	129.76		124.20	4.95	124.81	5.56	124.20		124.28
08-1S	T/Plastic	129.845		124.18	5.05	124.80		124.18		124.28
08-1D	T/Plastic	129.858	5.62	124.24	4.99	124.87	5.62	124.24	5.54	124.32

Monitoring	Reference	Reference	Oct	:-10	Jun	1-11	Oct	t-11	Jun	-12
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	5.94	122.46	5.21	123.19	5.47	122.93	5.44	122.96
85-B	T/Plastic	129.87	6.54	123.33	5.66	124.21	5.98	123.89	5.96	123.91
85-C	T/Plastic	129.44	6.27	123.17	5.43	124.01	5.74	123.70	5.71	123.73
85-D	T/Plastic	132.25	9.66	122.59	8.85	123.40	Not Lo	ocated	Not Lo	cated
85-E	T/Plastic	131.5	Not Lo	ocated						
85-F	T/Plastic	131.13	Decomm	issioned	Decomn	nissioned	Decomn	nissioned	Decomm	nissioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decom	issioned	Decom	issioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decom	issioned	Decom	issioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	10.04	123.06	9.61	123.49	9.9	123.20	9.88	123.22
88-2-D	T/Plastic	133.09	10.34	122.75	9.53	123.56	9.84	123.25	9.80	123.29
88-3-S	T/Plastic	129.96	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned
88-3-D	T/Plastic	129.98	Decomm	issioned	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned
89-1-S	T/Plastic	128.4	7.49	120.91	6.92	121.48	7.17	121.23	7.12	121.28
89-1-D	T/Plastic	128.32	6.98	121.34	6.39	121.93	6.62	121.70	6.58	121.74
89-2-S	T/Plastic	128.54	Decomm	issioned	Decomn	nissioned	Decomn	nissioned	Decomm	issioned
89-2-D	T/Plastic	128.54	Decomm	issioned	Decomn	nissioned	Decomn	nissioned	Decomm	issioned
91-1	T/Plastic	128.234	5.98	122.25	5.35	116.78	5.64	122.59	5.56	122.67
91-2	T/Plastic	129.769	9.78	119.99	9.36	110.55	9.56	120.21	9.53	120.24
91-3	T/Plastic	118.05	8.94	109.11	8.71	100.32	8.9	109.15	8.91	109.14
91-4	T/Plastic	127.97	D	ry	6.13	121.84	D	ry	D	ry
91-5 S	T/Plastic	129.161	5.62	123.54	4.71	124.45	5.05	124.11	5.03	124.13
91-5 D	T/Plastic	129.558	6.02	123.54	5.10	124.46	5.45	124.11	5.44	124.12
95-1	O/G	129.022								<u> </u>
95-2	O/G	134.144								<u> </u>
95-3-S	T/Plastic	129.066	5.68	123.39	4.80	124.27	5.14	123.93	5.12	123.95
95-3 D		129.053	5.75	123.30	4.89	124.16	5.22	123.83	5.20	123.85
95-4 S	T/Plastic	129.846	6.08	123.77	5.14		5.48	124.37	5.47	124.38
95-4 D		129.864	6.15	123.71	5.20	124.66	5.54	124.32	5.54	124.32
95-5	T/Plastic	129.391	5.41	123.98	4.41	124.98	4.77	124.62	4.78	124.61
95-6	T/Plastic	126.988	4.87	122.12				122.52		122.61
96-1-S	T/Plastic	128.353	4.45	123.90				124.49		122.88
96-1-D	T/Plastic	128.327	4.52	123.81				124.41		124.42
96-2	T/Plastic			ry		ry		ry		ry
96-3	T/Plastic	129.98	6.98							
03-1	T/Plastic			ry	1.33			ry		ry
07-2S	T/Plastic	123.68	2.54	121.14						121.48
07-2D	T/Plastic	123.96	5.86	118.10				119.21		119.45
07-F S	T/Plastic	130.26	7.52	122.74				123.35		123.36
07-F D	T/Plastic	130.986	7.26	123.73				124.32		124.32
07-3S	T/Plastic	129.63	5.94	123.69				124.28		124.30
07-3D	T/Plastic	129.76	6.07	123.69				124.29		124.30
08-1S	T/Plastic	129.845	6.17	123.68				124.48		124.29
08-1D	T/Plastic	129.858	6.14	123.72	5.19	124.67	5.54	124.32	5.53	124.33

Monitoring	Reference	Reference	Oct	:-12	Jun	1-13	Nov	/-13	Apr	-14
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	5.99	122.41	5.28	123.12	5.65	122.75	5.60	122.80
85-B	T/Plastic	129.87	6.6	123.27	5.77	124.10	6.19	123.68	6.08	123.79
85-C	T/Plastic	129.44	6.32	123.12	5.52	123.92	5.94	123.50	5.84	123.60
85-D	T/Plastic	132.25	Not Lo	ocated	8.94	123.31	9.34	122.91	9.22	123.03
85-E	T/Plastic	131.5	Not Lo	ocated	Not Lo	ocated	Not Lo	ocated	Not Lo	cated
85-F	T/Plastic	131.13	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decom	issioned	Decomm	nissioned	Decomm	issioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decom	issioned	Decomm	nissioned	Decomm	issioned
88-2-S	T/Plastic	133.1	10.46	122.64	9.69	123.41	10.1	123.00	10.00	123.10
88-2-D	T/Plastic	133.09	10.38	122.71	9.61	123.48	10.02	123.07	9.90	123.19
88-3-S	T/Plastic	129.96	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	issioned
88-3-D	T/Plastic	129.98	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	issioned
89-1-S	T/Plastic	128.4	7.51	120.89	6.99	121.41	7.3	121.10	7.22	121.18
89-1-D	T/Plastic	128.32	6.99	121.33	6.43	121.89	7.25	121.07	6.68	121.64
89-2-S	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
89-2-D	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
91-1	T/Plastic	128.234	6.05	122.18	5.39	122.84	5.61	122.62	5.50	122.73
91-2	T/Plastic	129.769	9.83	119.94	9.42	120.35	9.59	120.18	9.50	120.27
91-3	T/Plastic	118.05	9.02	109.03	8.81	109.24	8.94	109.11	8.91	109.14
91-4	T/Plastic	127.97	D	ry	6.56	121.41	D	ry	5.81	122.16
91-5 S	T/Plastic	129.161	5.69	123.47	4.81	124.35	5.23	123.93	5.11	124.05
91-5 D	T/Plastic	129.558	6.09	123.47	5.22	124.34	5.65	123.91	5.52	124.04
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.74	123.33	4.89	124.18	5.31	123.76	5.16	123.91
95-3 D		129.053	5.80	123.25	4.98	124.07	5.39	123.66	5.27	123.78
95-4 S	T/Plastic	129.846	6.14	123.71	5.25	124.60	5.68	124.17	5.53	124.32
95-4 D		129.864	6.21	123.65	5.32	124.54	5.75	124.11	5.59	124.27
95-5	T/Plastic	129.391	5.47	123.92	4.52	124.87	4.97	124.42	4.78	124.61
95-6	T/Plastic	126.988	4.90	122.09	4.22	122.77	4.61	122.38	4.40	122.59
96-1-S	T/Plastic	128.353	4.45	123.90			5.57	122.78	3.81	124.54
96-1-D	T/Plastic	128.327	4.59	123.74	3.69	124.64	4.12	124.21	3.96	124.37
96-2	T/Plastic			ry		ry		ry	4.28	
96-3	T/Plastic	129.98	7.04	122.94	6.23	123.75	6.85	123.13	6.55	123.43
03-1	T/Plastic		D	ry	1.29		1.3		1.12	
07-2S	T/Plastic	123.68	2.54	121.14	2.07	121.61		121.29	2.18	121.50
07-2D	T/Plastic	123.96	5.87	118.09	5.37	118.59	5.7	118.26	5.41	118.55
07-F S	T/Plastic	130.26	7.57	122.69	6.67	123.59	7.13	123.13	6.97	123.29
07-F D	T/Plastic	130.986	7.33	123.66	6.44	124.55	6.89	124.10	6.72	124.27
07-3S	T/Plastic	129.63	6.01	123.62	5.10	124.53	5.50	124.13	5.40	124.23
07-3D	T/Plastic	129.76	6.13	123.63	5.23	124.53	5.69	124.07	5.52	124.24
08-1S	T/Plastic	129.845	6.23	123.62	5.34	124.51	5.79	124.06	5.63	124.22
08-1D	T/Plastic	129.858	6.21	123.65	5.3	124.56	5.75	124.11	5.58	124.28

Monitoring	Reference	Reference	Oc	t-14	Jur	n-15	Oc	t-15	Ma	y-16
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	5.62	122.78	5.42	122.98	5.83	122.57	5.21	123.19
85-B	T/Plastic	129.87	6.15	123.72	5.91	123.96	6.41	123.46	5.40	124.47
85-C	T/Plastic	129.44	5.91	123.53	5.66	123.78	6.14	123.30	5.19	124.25
85-D	T/Plastic	132.25	9.32	122.93	9.08	123.17	9.46	122.79	8.63	123.62
85-E	T/Plastic	131.5	Not L	ocated						
85-F	T/Plastic	131.13	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decom	issioned
88-1-D	T/Plastic	130.33	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decom	issioned
88-2-S	T/Plastic	133.1	10.07	123.03	9.83	123.27	10.27	122.83	9.39	123.71
88-2-D	T/Plastic	133.09	9.98	123.11	9.77	123.32	10.23	122.86	9.29	123.80
88-3-S	T/Plastic	129.96	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned
88-3-D	T/Plastic	129.98	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned
89-1-S	T/Plastic	128.4	7.27	121.13	7.07	121.33	7.41	120.99	6.73	121.67
89-1-D	T/Plastic	128.32	6.72	121.60	6.51	121.81	6.87	121.45	6.22	122.10
89-2-S	T/Plastic	128.54	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned
89-2-D	T/Plastic	128.54	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned	Decomn	nissioned
91-1	T/Plastic	128.234	5.64	122.59	5.52	122.71	5.94	122.29	5.20	123.03
91-2	T/Plastic	129.769	9.58	120.19	9.50	120.27	9.76	120.01	9.25	120.52
91-3	T/Plastic	118.05	8.93	109.12	8.95	109.10	9.06	108.99	8.77	109.28
91-4	T/Plastic	127.97	7.18	120.79	D	ry	D	ry	6.14	121.83
91-5 S	T/Plastic	129.161	5.91	123.25	4.98	124.18	5.50	123.66	4.43	124.73
91-5 D	T/Plastic	129.558	5.60	123.96	5.40	124.16	5.91	123.65	4.85	124.71
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.28	123.79	5.06	124.01	5.57	123.50	4.55	124.52
95-3 D		129.053	5.36	123.69	5.14	123.91	5.63	123.42	4.65	124.40
95-4 S	T/Plastic	129.846	5.63	124.22	5.42	124.43	5.97	123.88	4.86	124.99
95-4 D		129.864	5.69	124.17	5.47	124.39	6.01	123.85	4.92	124.94
95-5	T/Plastic	129.391	4.91	124.48	4.70	124.69	5.25	124.14	4.09	125.30
95-6	T/Plastic	126.988	4.57	122.42	4.35	122.64	4.77	122.22	3.97	123.02
96-1-S	T/Plastic	128.353	4.47						3.23	
96-1-D	T/Plastic	128.327	4.06	124.27	3.85	124.48	4.37	123.96	3.28	125.05
96-2	T/Plastic		D	ry		ry		ry	4.44	
96-3	T/Plastic	129.98	6.59	123.39	6.38	123.60	6.85	123.13	5.88	124.10
03-1	T/Plastic		D	ry		royed		royed		royed
07-2S	T/Plastic	123.68	2.32	121.36	2.13	121.55	2.43	121.25	1.92	121.76
07-2D	T/Plastic	123.96								
07-F S	T/Plastic	130.26								
07-F D	T/Plastic	130.986								
07-3S	T/Plastic	129.63	5.50							
07-3D	T/Plastic	129.76							4.85	
08-15	T/Plastic	129.845	5.73						4.95	
08-1D	T/Plastic	129.858								

Monitoring	Reference	Reference	Nov	/-16	Арі	r-17	Oct	t-17	May	<i>y</i> -18
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	5.81	122.59	5.73	122.67	5.24	123.16	5.37	123.03
85-B	T/Plastic	129.87	6.37	123.50	6.20	123.67	5.67	124.20	5.79	124.08
85-C	T/Plastic	129.44	6.11	123.33	5.94	123.50	5.44	124.00	5.56	123.88
85-D	T/Plastic	132.25	9.45	122.80	9.29	122.96	8.90	123.35	8.96	123.29
85-E	T/Plastic	131.5	Not Lo	ocated	Not Lo	ocated	Not Lo	ocated	Not Lo	cated
85-F	T/Plastic	131.13	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	issioned	Decom	issioned	Decomi	issioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	issioned	Decom	issioned	Decomi	issioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	10.24	122.86	10.05	123.05	9.57	123.53	9.72	123.38
88-2-D	T/Plastic	133.09	10.16	122.93	9.98	123.11	9.64	123.45	9.64	123.45
88-3-S	T/Plastic	129.96	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	issioned
88-3-D	T/Plastic	129.98	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	issioned
89-1-S	T/Plastic	128.4	7.39	121.01	7.29	121.11	7.00	121.40	7.06	121.34
89-1-D	T/Plastic	128.32	6.89	121.43	6.72	121.60	6.43	121.89	6.51	121.81
89-2-S	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
89-2-D	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
91-1	T/Plastic	128.234	5.95	122.28	5.54	122.69	5.46	122.77	5.35	122.88
91-2	T/Plastic	129.769	9.79	119.98	9.51	120.26	9.47	120.30	9.39	120.38
91-3	T/Plastic	118.05	9.06	108.99	8.94	109.11	8.87	109.18	8.87	109.18
91-4	T/Plastic	127.97	D	ry	5.71	122.26	D	ry	5.74	122.23
91-5 S	T/Plastic	129.161	5.44	123.72	5.23	123.93	4.71	124.45	4.80	124.36
91-5 D	T/Plastic	129.558	5.84	123.72	5.64	123.92	5.13	124.43	5.22	124.34
95-1	O/G	129.022								
95-2	O/G	134.144								
95-3-S	T/Plastic	129.066	5.47	123.60	5.33	123.74	4.85	124.22	4.91	124.16
95-3 D		129.053	5.60	123.45	5.40	123.65	4.93	124.12	4.99	124.06
95-4 S	T/Plastic	129.846	5.87	123.98	5.69	124.16	5.14	124.71	5.20	124.65
95-4 D		129.864	5.92	123.94	5.74	124.12	5.19	124.67	5.26	124.60
95-5	T/Plastic	129.391	5.57	123.82	4.91	124.48	4.40	124.99	4.43	124.96
95-6	T/Plastic	126.988	4.32	122.67	4.36	122.63	4.24	122.75	4.14	122.85
96-1-S	T/Plastic	128.353	4.24	124.11	4.01	124.34	3.43	124.92	3.46	124.89
96-1-D	T/Plastic	128.327	4.31	124.02	4.11	124.22	3.57	124.76	3.64	124.69
96-2	T/Plastic			ry	3.58			ry	3.89	-3.89
96-3	T/Plastic	129.98	6.80	123.18	6.64	123.34	6.15	123.83		116.69
03-1	T/Plastic			royed		royed		royed		oyed
07-2S	T/Plastic	123.68	2.44							121.63
07-2D	T/Plastic	123.96	5.67	118.29						118.73
07-F S	T/Plastic	130.26	7.31	122.95				123.69		123.61
07-F D	T/Plastic	130.986	7.07	123.92				124.66		124.58
07-3S	T/Plastic	129.63	5.75	123.88			5.01	124.62	5.07	124.56
07-3D	T/Plastic	129.76	5.84	123.92	5.65	124.11	5.14	124.62	5.20	124.56
08-1S	T/Plastic	129.845	5.96	123.89	5.75	124.10	5.23	124.62	5.31	124.54
08-1D	T/Plastic	129.858	5.94	123.92	5.69	124.17	5.19	124.67	5.26	124.60


Monitoring	Reference	Reference	Oct	:-18	Ma	y-19	Oct	:-19	May	<i>y</i> -20
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
85-A	T/Plastic	128.4	5.61	122.79	5.03	123.37	5.64	116.75	5.31	123.09
85-B	T/Plastic	129.87	6.12	123.75	5.36	124.51	6.16	117.07	5.70	124.17
85-C	T/Plastic	129.44	5.88	123.56		129.44	5.92	116.99	5.49	123.95
85-D	T/Plastic	132.25	9.30	122.95	8.63	123.62	9.31	113.22	8.91	123.34
85-E	T/Plastic	131.5	Not Lo	ocated						
85-F	T/Plastic	131.13	Decomm	nissioned	Decomm	nissioned	Decomm	issioned	Decomm	issioned
85-Y	T/Plastic	129.75	Compr	omised	Compr	omised	Compr	omised	Compr	omised
88-1-S	T/Plastic	130.34	Decomi	ssioned	Decom	issioned	Decomi	ssioned	Decomi	ssioned
88-1-D	T/Plastic	130.33	Decomi	ssioned	Decom	issioned	Decomi	ssioned	Decomi	ssioned
88-2-S	T/Plastic	133.1	10.04	123.06	9.40	123.70	10.07	112.56	9.65	123.45
88-2-D	T/Plastic	133.09	9.97	123.12	9.28	123.81	10.01	112.70	9.58	123.51
88-3-S	T/Plastic	129.96	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned	Decomm	nissioned
88-3-D	T/Plastic	129.98	Decomm	nissioned		nissioned	Decomm	issioned	Decomm	issioned
89-1-S	T/Plastic	128.4	7.26	121.14	6.80	121.60	7.28	121.12	7.03	113.81
89-1-D	T/Plastic	128.32	6.71	121.61	6.22	122.10	6.73	121.59	6.45	114.80
89-2-S	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	nissioned	Decomm	issioned
89-2-D	T/Plastic	128.54	Decomm	nissioned	Decomn	nissioned	Decomm	issioned	Decomm	issioned
91-1	T/Plastic	128.234	5.79	122.44	D	ry	5.82	122.41	5.38	122.85
91-2	T/Plastic	129.769	9.67	120.10	9.29	120.48	9.68	120.09	9.45	120.32
91-3	T/Plastic	118.05	8.99	109.06	8.64	109.41	9.01	109.04	8.84	109.21
91-4	T/Plastic	127.97	D	ry	5.58	122.39	D	ry	5.93	122.04
91-5 S	T/Plastic	129.161	5.18	123.98	4.38	124.78	5.23	123.93	4.73	124.43
91-5 D	T/Plastic	129.558	5.59	123.97	4.77	124.79	5.65	123.91	5.14	124.42
95-1	O/G	129.022						129.02		
95-2	O/G	134.144						134.14		
95-3-S	T/Plastic	129.066	5.28	123.79	4.44	124.63	5.31	123.76	4.81	124.26
95-3 D		129.053	5.35	123.70	4.58	124.47	5.39	123.66	4.92	124.13
95-4 S	T/Plastic	129.846	5.61	124.24	4.77	125.08	5.67	124.18	5.16	124.69
95-4 D		129.864	5.69	124.17	4.82	125.04	5.74	124.12	5.21	124.65
95-5	T/Plastic	129.391	4.90	124.49	3.96		4.96	124.43	4.50	124.89
95-6	T/Plastic	126.988	4.58					126.99		122.82
96-1-S	T/Plastic	128.353	3.96					122.81	3.44	124.91
96-1-D	T/Plastic	128.327	4.04					124.23		124.76
96-2	T/Plastic			ry	4.14			ry		ry
96-3	T/Plastic	129.98	6.58					123.36		
03-1	T/Plastic			royed		royed		royed		royed
07-2S	T/Plastic	123.68	2.34					121.35		121.64
07-2D	T/Plastic	123.96	5.78	118.18				118.19		118.56
07-F S	T/Plastic	130.26	7.05	123.21	4.61			123.16		123.69
07-F D	T/Plastic	130.986	6.81	124.18				124.13		124.66
07-3S	T/Plastic	129.63	5.48	124.15				124.10		124.63
07-3D	T/Plastic	129.76	5.61	124.15				124.09		124.63
08-15	T/Plastic	129.845	5.70	124.15				124.08		124.61
08-1D	T/Plastic	129.858	5.67	124.19	4.79	125.07	5.74	124.12	5.26	124.60

Millers Road Waste Disposal Site Record of Water Levels

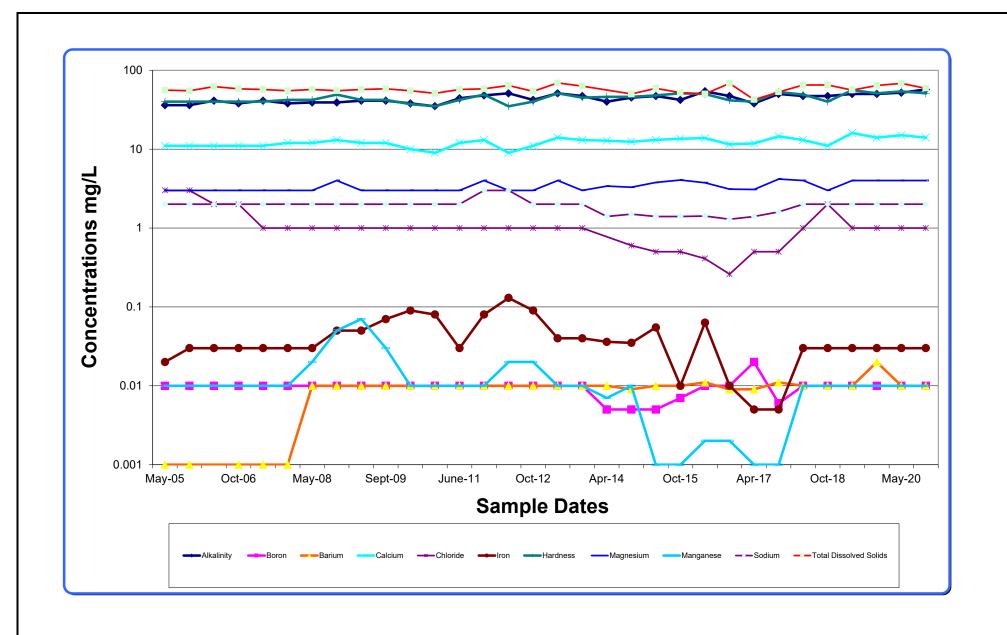
Monitoring	Reference	Reference	Oct	t-20						
Well	Mark	Elevation	Static	Elevation	Static	Elevation	Static	Elevation	Static	Elevation
85-Z	T/Plastic	127.75	Compr	omised						
85-A	T/Plastic	128.4	5.55	122.85						
85-B	T/Plastic	129.87								
85-C	T/Plastic	129.44	5.66	123.78						
85-D	T/Plastic	132.25	9.17	123.08						
85-E	T/Plastic	131.5	Not Lo	Not Located						
85-F	T/Plastic	131.13	Decomm	Decommissioned						
85-Y	T/Plastic	129.75	Compr	Compromised						
88-1-S	T/Plastic	130.34	Decom	Decomissioned						
88-1-D	T/Plastic	130.33	Decom	issioned						
88-2-S	T/Plastic	133.1	9.99	123.11						
88-2-D	T/Plastic	133.09	9.90	123.19						
88-3-S	T/Plastic	129.96	Decomm	nissioned						
88-3-D	T/Plastic	129.98	Decomm	nissioned						
89-1-S	T/Plastic	128.4	7.21	121.19						
89-1-D	T/Plastic	128.32	6.66	121.66						
89-2-S	T/Plastic	128.54	Decomm	nissioned						
89-2-D	T/Plastic	128.54	Decomn	nissioned						
91-1	T/Plastic	128.234	5.58	122.65						
91-2	T/Plastic	129.769	9.57	120.20						
91-3	T/Plastic	118.05	8.94	109.11						
91-4	T/Plastic	127.97	Dry							
91-5 S	T/Plastic	129.161	5.13	124.03						
91-5 D	T/Plastic	129.558	5.55	124.01						
95-1	O/G	129.022		0.00						
95-2	O/G	134.144		0.00						
95-3-S	T/Plastic	129.066	5.16	123.91						
95-3 D		129.053	5.29	123.76						
95-4 S	T/Plastic	129.846	5.57	124.28						
95-4 D		129.864	5.62	124.24						
95-5	T/Plastic	129.391	4.86	124.53						
95-6	T/Plastic	126.988								
96-1-S	T/Plastic	128.353	3.96							
96-1-D	T/Plastic	128.327	4.00	124.33						
96-2	T/Plastic			ry						
96-3	T/Plastic	129.98								
03-1	T/Plastic		Destroyed							
07-2S	T/Plastic	123.68								
07-2D	T/Plastic	123.96								
07-F S	T/Plastic	130.26								
07-F D	T/Plastic	130.986								
07-35	T/Plastic	129.63								
07-3D	T/Plastic	129.76								
08-15	T/Plastic	129.845								
08-1D	T/Plastic	129.858	5.64	124.22						

Appendix I

Chemical Trends

Millers Road WDS

Monitoring Well 91-2


Historical Trend (2005-2020)

PROJECT NUMBER 17-6015E

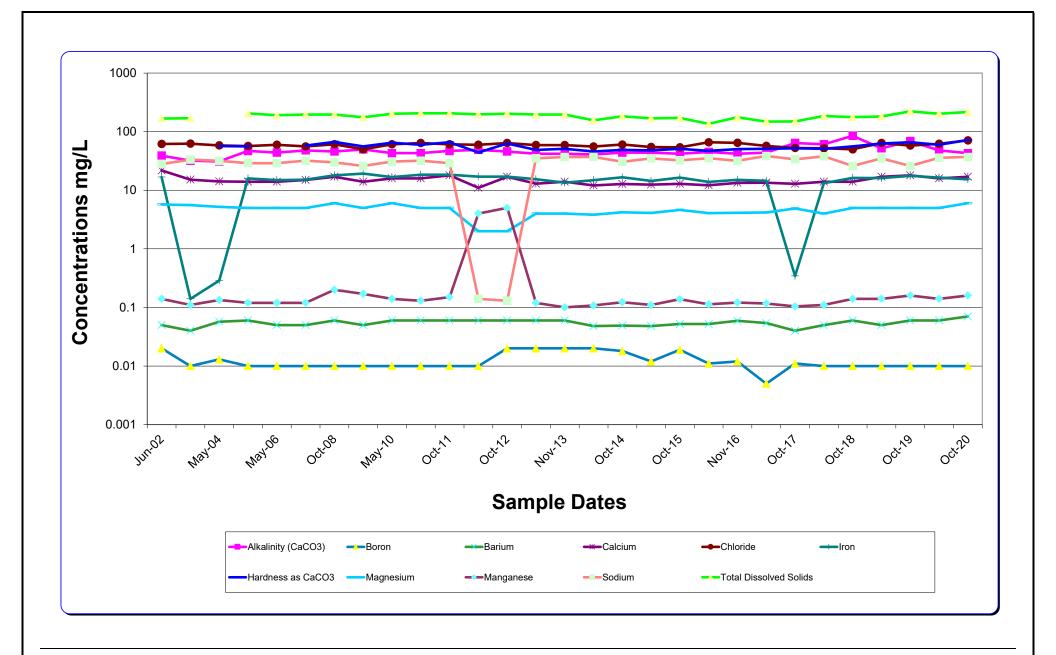
DATE May-21

PLOT DATE 01-May-21

DRAWN BY AS
CHECKED BY AB

Millers Road WDS

Monitoring Well 95-5

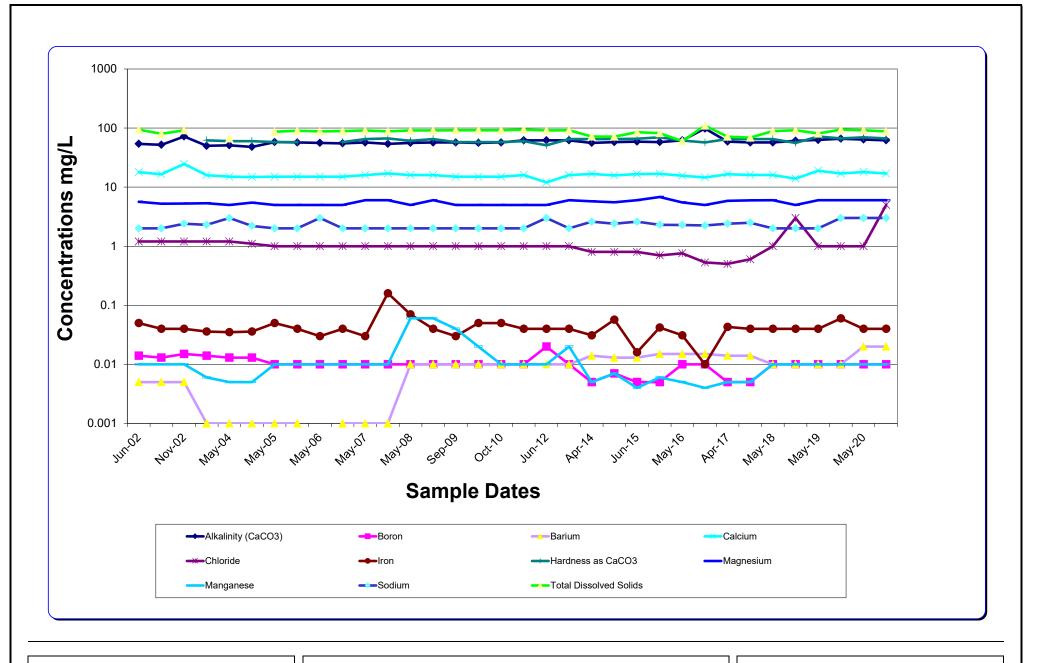

Historical Trend (2005-2020)

 PROJECT NUMBER
 17-6015E

 DATE
 May-21

 PLOT DATE
 09-May-21

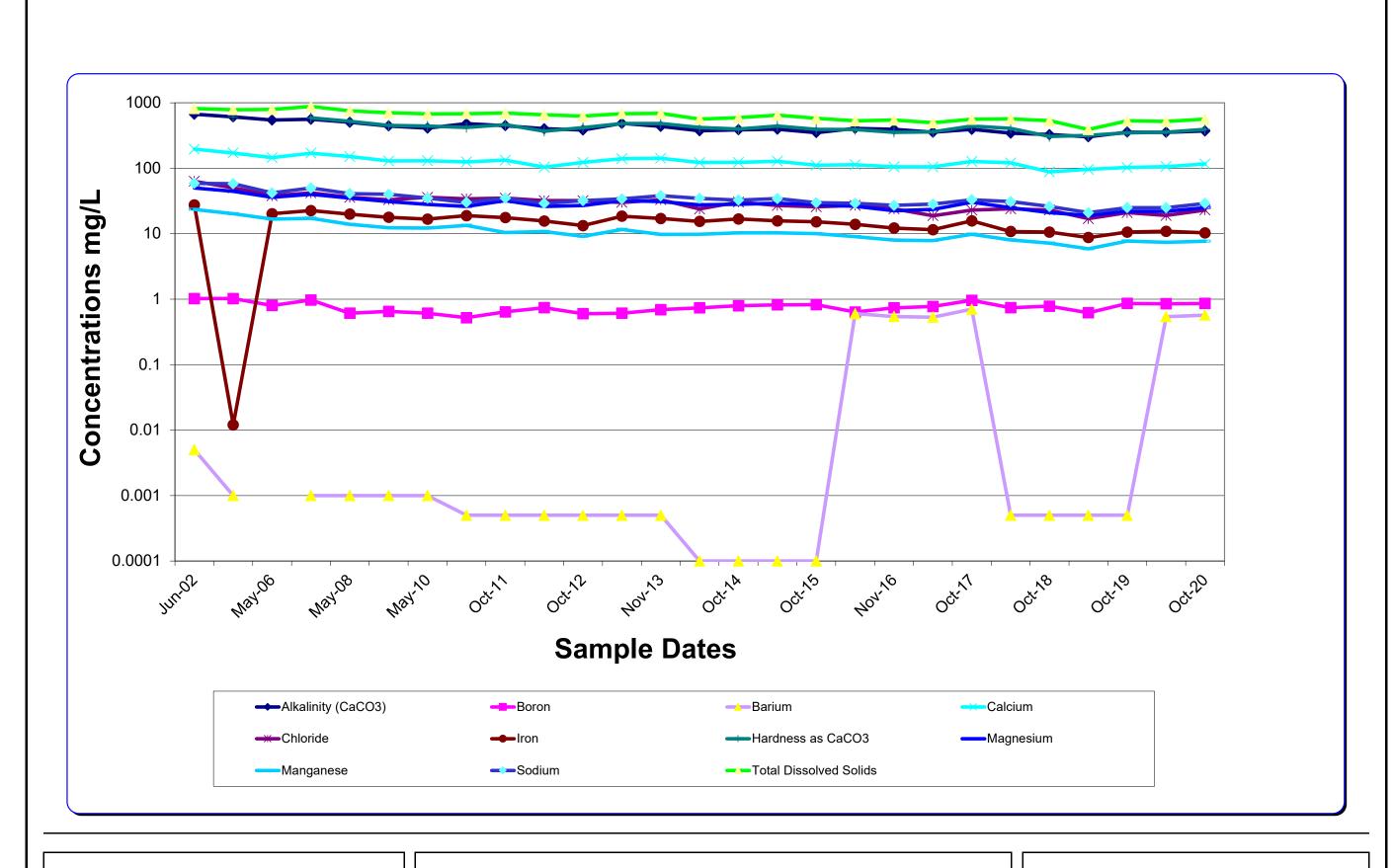
DRAWN BY AS CHECKED BY AB



Millers Road WDS
Monitoring Well 91-5 Deep
Historical Trend (2002 - 2020)

PROJECT NUMBER
DATE

17-6015E May-21

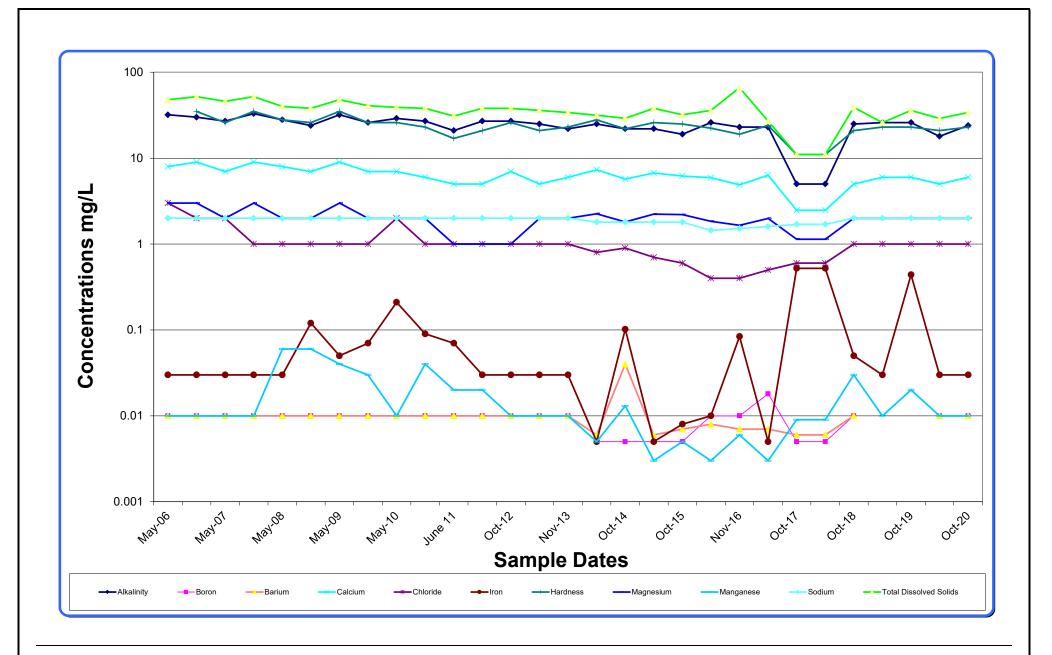

Millers Road WDS

Monitoring Well 96-3

Historical Trend (2002 - 2020)

PROJECT NUMBER
DATE

17-6015E May-21


Millers Road WDS

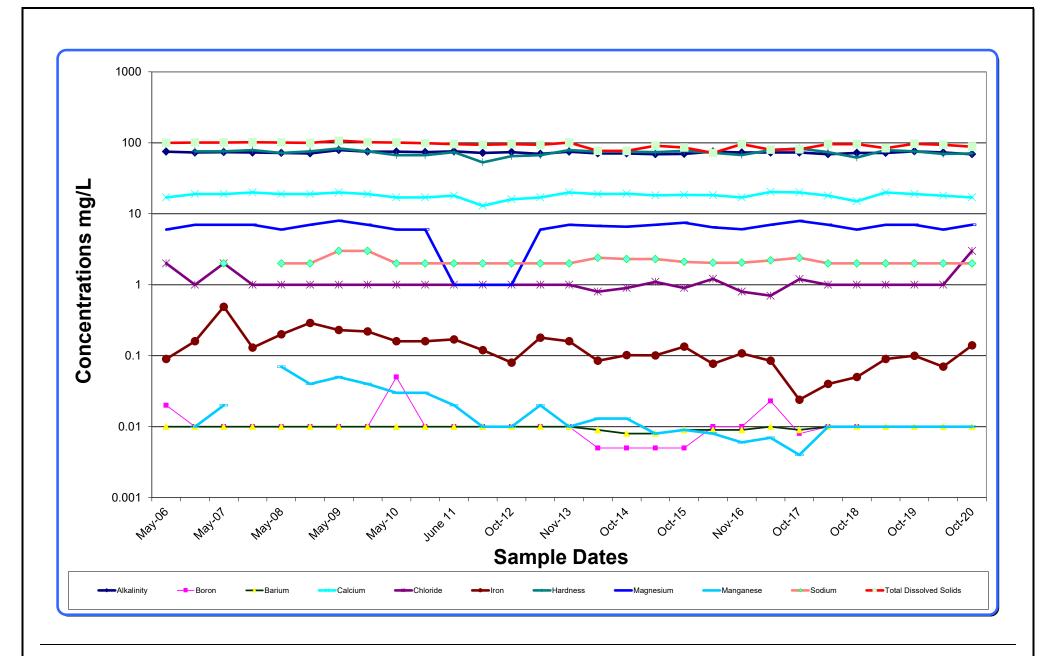
Monitoring Well 95-6

Historical Trend (2002 - 2020)

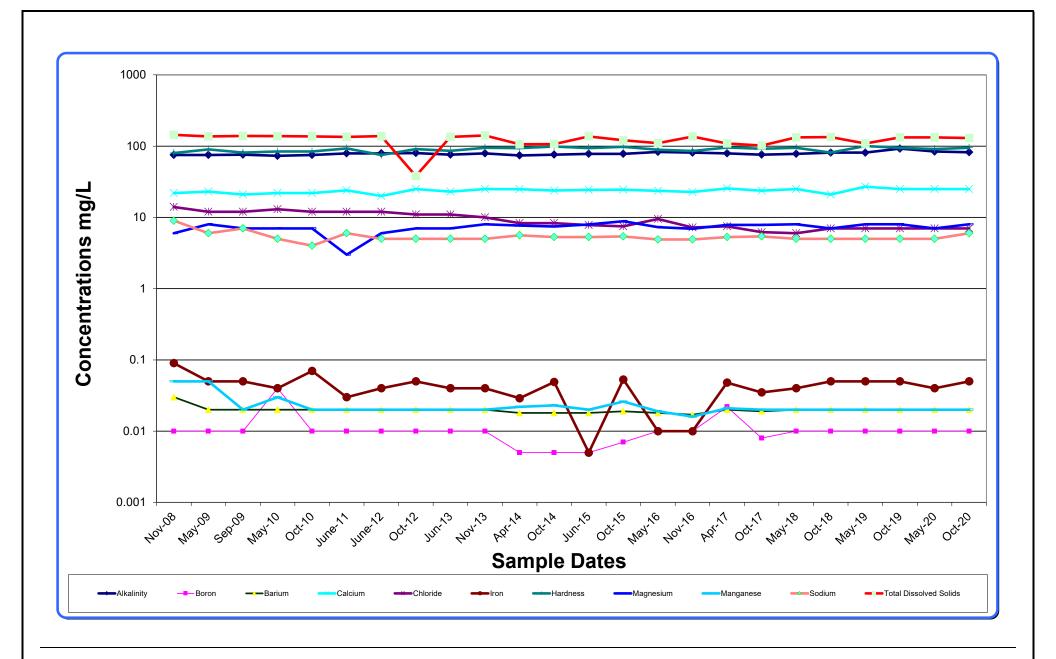
PROJECT NUMBER
DATE

17-6015E May-21

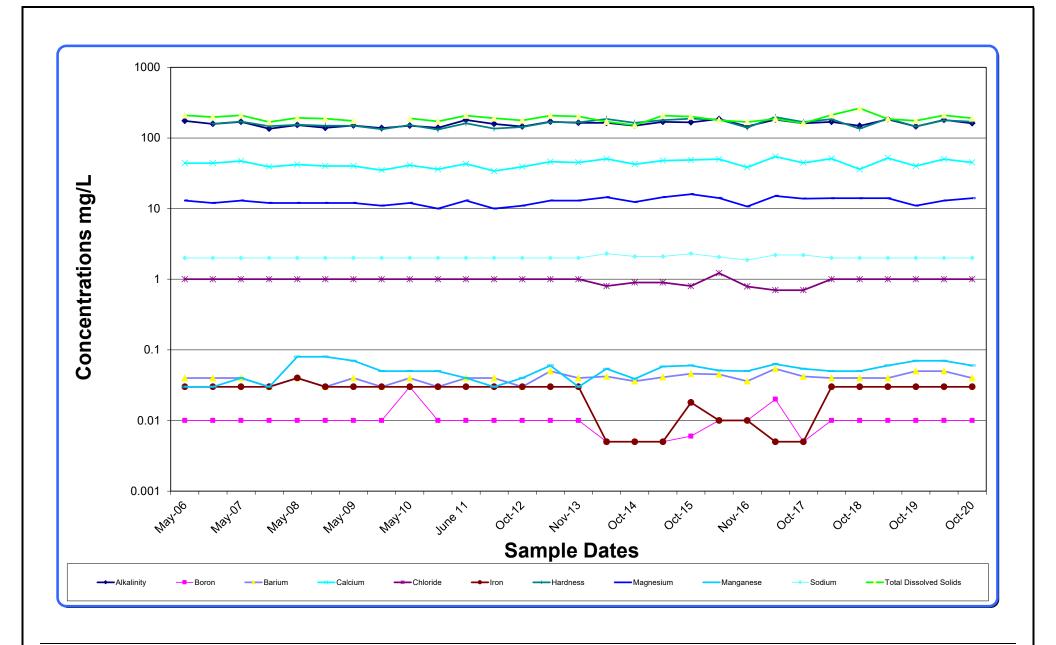
Millers Road WDS
Monitoring Well 96-1 Shallow
Historical Trend (2006 - 2020)


PROJECT NUMBER
DATE

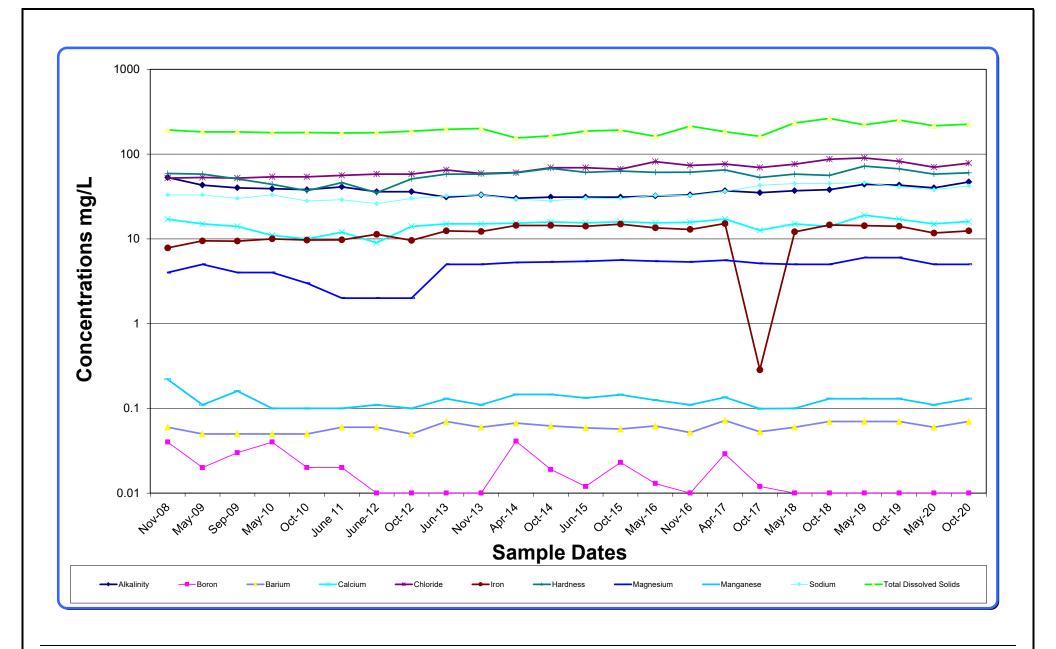
Millers Road WDS
Monitoring Well 96-1 Deep
Historical Trend (2008 - 2020)


PROJECT NUMBER
DATE

Millers Road WDS
Monitoring Well 95-3 Shallow
Historical Trend (2006 - 2020)

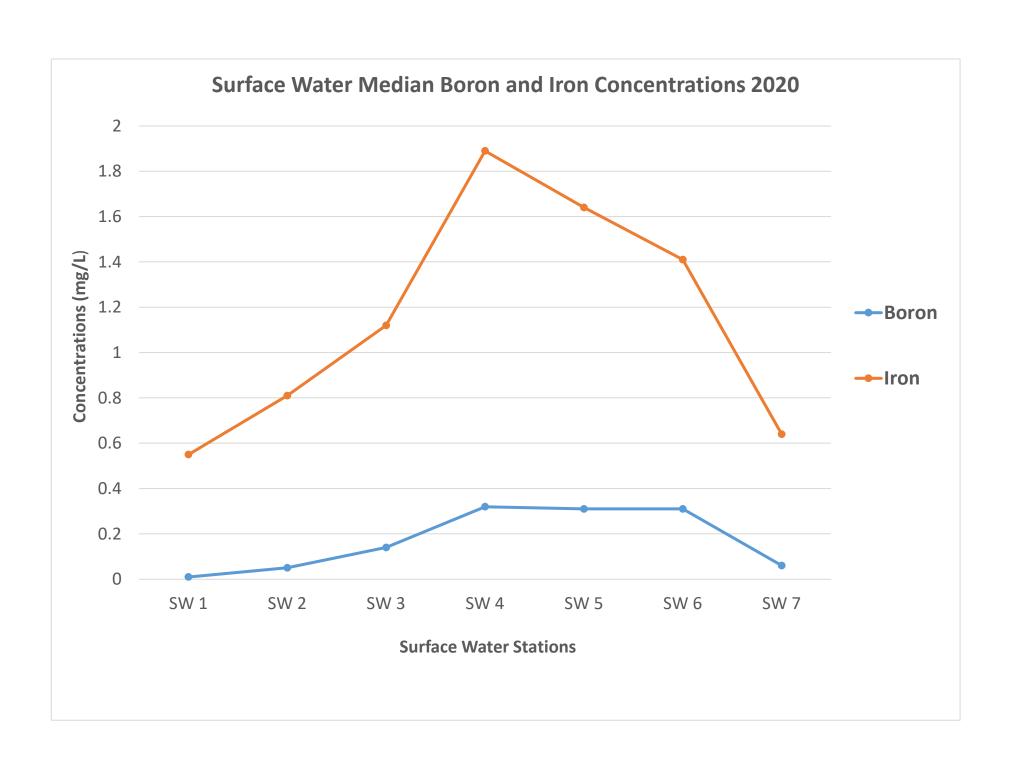

PROJECT NUMBER
DATE

Millers Road WDS
Monitoring Well 95-3 Deep
Historical Trend (2008 - 2020)


PROJECT NUMBER
DATE

Millers Road WDS
Monitoring Well 95-4 Shallow
Historical Trend (2006 - 2020)

PROJECT NUMBER
DATE



Millers Road WDS

Monitoring Well 95-4 Deep

Historical Trend (2008 - 2020)

PROJECT NUMBER
DATE

