Deep River Wastewater System

Waterworks # 120000612

Annual Report

Prepared For: Town of Deep River

Reporting Period of January 1st – December 31st, 2020

Issued: Mar 29th, 2021

Revision: 1

Operating Authority:

This report has been prepared to meet the requirements set out in the facility Environmental Compliance Approval (ECA) #1655-7P8SPE issued February 26, 2009.

Table of Contents

Operations and Compliance Reliability Indices1
Treatment Flows1
Raw Flow (m3/d)1
Effluent Flow (m3/d)2
Annual Comparison (m3)2
Raw Sewage Quality3
CBOD5(mg/L)3
Total Suspended Solids (mg/L)
Total Phosphorus (mg/L)
Total Kjeldahl Nitrogen (mg/L)4
Effluent Quality Assurance and Control Measures Taken4
Effluent Quality4
CBOD5
Total Suspended Solids5
Total Phosphorus
Total Ammonia Nitrogen7
E-coli9
рН9
Temperature10
Un-Ionized Ammonia
Acute Lethality 11
Operating Issues11
Maintenance 11
Major Maintenance Summary (Capital)11
Calibration Reports
Proposed Alterations, Extensions, or Replacement to Works
Sludge Generation

Summary of By-Pass, Overflows, Spill or Abnormal Discharge Events	13
Summary of Complaints	13
Annual Comparison (m3/year)	13
Sludge Disposal Summary	12

Appendixes

A - Performance Assessment Report	14
B - Calibration Reports	15

Operations and Compliance Reliability Indices

Compliance Event	# of Events
Ministry of the Environment, Conservation and Parks (MECP) Inspections	There were no inspections during this reporting period.
Ministry of Labour Inspections	There were no inspections during this reporting period.
Non-Compliances to MECP/EC	There were non-compliances during this reporting period.
Community Complaints	There were no complaints during this reporting period.
Spills	There were no spills reported during this reporting period.
By-Pass/Overflows	There were no by-passes/overflows during this reporting period.

Treatment Flows

Raw Flows (m3/d)

In 2020, the average daily raw flow was approx. 99.7% of the current design capacity.

The rated capacity based on the annual average daily raw flow exceeds 80%. Recommendations to reduce this influx to the sewage plant are being addressed by the Town decreasing the Infiltration & Inflow (I&I) problems throughout the collection system piping and the manhole levels. This will be a long- term strategy to deal with the I&I issues, along with the sub drain to try and deal with the ongoing water table issues also contributing to the issues.

Effluent Flow (m3/d)

Annual Comparison (m3)

Raw Sewage Quality

Further details are included in the Performance Report (PAR) in Appendix A.

CBOD5 (mg/L)

Total Suspended Solids (mg/L)

Total Phosphorus (mg/L)

Total Kjeldahl Nitrogen (mg/L)

Effluent Quality Assurance and Control Measures Taken

Effluent control measures include in-house sampling and testing for operational parameters such as suspended solids, phosphorus, and dissolved oxygen. In-house testing provides real time results which are then used to enhance process and operational performance. All in-house sampling and analysis are performed by certified operations staff utilizing approved methods and protocols for sampling, analysis and recording as specified in the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works", the Ministry's publication, "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" and the publication, "Standard Methods for the Examination of Water and Wastewater".

All final effluent samples collected during the reporting period to meet ECA sampling requirements were submitted to Eurofins laboratory in Ottawa for analysis. Eurofins has been deemed accredited by the Canadian Association for Laboratory Accreditation (CALA), meeting strict provincial guidelines including an extensive quality assurance/quality control program. By choosing this laboratory, the Ontario Clean Water Agency is ensuring appropriate control measures are undertaken during sample analysis. The pH and temperature parameters were analyzed in the field at the time of sample collection by certified operators, to ensure accuracy and precision of the results obtained. The unionized ammonia was calculated using the total ammonia nitrogen concentration, pH and temperature, as required by the facility ECA. The Deep River STP uses AquaTox Testing & Consulting Inc. for the testing of Acute Lethality. It's laboratory in Puslinch, ON is also accreditated under CALA.

Effluent Quality

Further details are included in the Performance Report (PAR) in Appendix A.

CBOD5

<u>Compliance</u> Compliance is based on an Annual Average Concentration and Annual Average Loading.

	Limit	Annual Average	Met Compliance
Concentration	25.0 mg/L	3.7 mg/L	Met
Loading	68.2 kg/d	9.9 kg/d	Met

Loading (kg/d)

Total Suspended Solids

Compliance

Compliance is based on an Annual Average Concentration and Annual Average Loading.

	Limit	Annual Average	Met Compliance
Concentration	25.0 mg/L	4.6 mg/L	Met
Loading	68.2 kg/d	12.7 kg/d	Met

Concentration (mg/L)

Loading (kg/d)

Total Phosphorus

Compliance

Compliance is based on a Monthly Average Concentration and Monthly Average Loading.

	Limit	Monthly Average	Met Compliance
Concentration	1.0 mg/L	0.12 mg/L	Met
Loading	2.7 kg/d	0.33 kg/d	Met

Loading (kg/d)

Total Ammonia Nitrogen

<u>Compliance</u>

Compliance is based on a various Monthly Average Concentrations and various Monthly Average Loadings.

	Limit	Monthly Average	Met Compliance
Concentration	Varies by month	2.84 mg/L	Met
Loading	Varies by month	7.54 kg/d	Met

Concentration (mg/L)

Loading (kg/d)

<u>E-coli</u>

Compliance

Date	Exceedance of	Limit	Value	Corrective Action
There were no Non-Compliance events during the reporting period				
		in compliance	evenes during	5 the reporting period.

Geometric Mean (cfu/100mL)

<u>рН</u>

<u>Compliance</u>

Date	Exceedance of	Limit	Value	Corrective Action
I	There were no No	n-Compliance	events durin	g the reporting period.

pH is to remain in the range of 6.0-9.5. Each instance the pH is outside of that range, it is reported as noncompliant. The objective is 6.5-9.0 inclusively.

Temperature

Temperature is required to be tested, but there are no compliance limits for this parameter.

Un-ionized Ammonia

Un-Ionized is required to be tested, but there are no compliance limits for this parameter.

Acute Lethality

There was one (1) sample collected in 2020 and tested for acute lethality for both Rainbow Trout and Daphnia magna. This sampling is required annually, both provincially and federally. Results are displayed as % mortality. An adverse result is a > 50% mortality rate.

Date	Rainbow Trout	Daphnia Magna
Jul 7, 2020	0	0
Jul 7, 2020	0	0

Operating Issues

There were no major operating issues during 2020.

Maintenance

The Deep River STP uses a Workplace Management System (WMS) called Maximo. This is a comprehensive computerized maintenance tracking system. The system creates work orders for scheduled maintenance on an annual, semi-annual, monthly, quarterly and weekly basis. The service work is recorded in the work order history. This ensures routine and preventive maintenance is performed. Emergency and capital repair maintenance is completed and added to the system.

During the 2020 calendar year, a total of 384 Work Orders were completed at the Deep River Sewage Treatment Plant. A breakdown of this total is listed below:

Maintenance Type	# Completed in 2020
Corrective Work Orders	55
Emergency Work Orders	2
Preventative Work Orders	241
Operational Work Orders	55
Capital Work Orders	18
Call Back Work Orders	13

Major Maintenance Summary (Capital)

WO #	Description						
1998961	Purchase of a washing machine for the sewage plant.						
	Miscellaneous capital items purchased including:						
1586971	Parts for stand-by hypo system,						
	• Tire tubes for the snow blower,						
	Sump pump inspection,						

	Parts for alum pump servicing,
	Machine and bore keyways, and
	Pump and other hardware.
1750218	 Miscellaneous items purchased for the plant including: Hardware for the fire hose, Parts for the muffin monster, Filters for the furnace, Belt for garage door, Hose for tank clean out, Valve set-up for trash pump, Gaskets for valve replacement, and Other hardware and supplies.
1918470	Replacement of the hot water tank.

Calibration Reports

Flow meter calibration reports are included in Appendix B.

Proposed Alterations, Extensions, or Replacement to Works

In 2020, a number of alternations and replacements were completed at the sewage plant, including: a hypo dosing pump, a new sump pump, a VFD raw sewage pump, UV seals and relay board for a full rebuild of all the UV's, a mixing valve and mud valve and actuator for SBR#1, a new raw sewage grinder, six sludge holding tank valves, and a back-up digester pump was purchased, but not installed.

Sludge Generation

Sludge generated from the treatment plant is spread on agricultural land during the spreading season, as per the Nutrient Management Act, O. Reg. 267/03. OCWA contracted the sludge hauling in 2020 to Bio-Ag. All NASM Plans are done under their authority.

Date	Disposal Location	NASM Approval Number	Total Volume (m3)
Jun 2020	Yantha – TV Tower Farm	24041	2291
Nov 2020	Yantha – TV Tower Farm	24041	1703
		Total Sludge	3994

Sludge Disposal Summary

Annual Comparison (m3/year)

It is anticipated that sludge volumes will be similar in the 2021 season, as in 2020.

Summary of Complaints

Location	Date	Actions Taken	
	There were no co	mplaints received during this re	eporting period.

Summary of By-Pass, Overflows, Spill or Abnormal Discharge Events

Date/Time	Duration	Cause	Details	Volume (m3)				
There were n	There were no by-passes, overflows, spills or abnormal discharge events during this reporting period.							

Appendix A

Performance Assessment Report

Ontario Clean Water Agency Performance Assessment Report Wastewater/Lagoon

From: 01/01/2020 to 31/12/2020

Report extracted 03/02/2021 07:58

Facility: [5853] DEEP RIVER WASTEWATER TREATMENT FACILITY

Works: [120000612]

	01/2020	02/2020	03/2020	04/2020	05/2020	06/2020	07/2020	08/2020	09/2020	10/2020	11/2020	12/2020	<total></total>	<avg></avg>	<max></max>	<criteria></criteria>
Flows:																
Raw Flow: Total - Raw Sewage (m³)	81942.05	64196.76	95644.30	102714.03	86776.43	73940.28	69696.78	101598.23	92201.60	86420.60	71108.29	69010.60	995249.95			
Raw Flow: Avg - Raw Sewage (m³/d)	2643.29	2213.68	3085.30	3423.80	2799.24	2464.68	2248.28	3277.36	3073.39	2787.76	2370.28	2226.15		2717.77		
Raw Flow: Max - Raw Sewage (m³/d)	3391.53	2608.31	4533.12	3947.82	3459.58	3038.42	3147.61	3763.68	3727.19	3433.88	3269.15	3336.74			4533.12	
Eff. Flow: Total - Final Effluent (m ³)	81942.05	64196.76	95644.30	102714.03	86776.43	73940.28	69696.78	101598.23	92201.60	86420.60	71108.29	69010.60	995249.95			
Eff. Flow: Avg - Final Effluent (m ³ /d)	2643.29	2213.68	3085.30	3423.80	2799.24	2464.68	2248.28	3277.36	3073.39	2787.76	2370.28	2226.15		2717.77		2727.0
Eff. Flow: Max - Final Effluent (m³/d)	3391.53	2608.31	4533.12	3947.82	3459.58	3038.42	3147.61	3763.68	3727.19	3433.88	3269.15	3336.74			4533.12	
Carbonaceous Biochemical Oxygen Demand: CBOD																
Raw: Avg cBOD5 - Raw Sewage (mg/L)	100.000	97.000	48.000	53.000	84.000	59.500	55.000	43.500	69.000	117.500	60.000	68.500		71.250	117.500	
Raw: # of samples of cBOD5 - Raw Sewage (mg/L)	2	2	2	2	2	2	1	2	2	2	2	2	23			
Eff: Avg cBOD5 - Final Effluent (mg/L)	2.000	6.000	5.000	< 2.000	2.500	1.500	4.000	3.500	4.500	4.500	4.000	5.000		< 3.708	6.000	25.0
Eff: # of samples of cBOD5 - Final Effluent (mg/L)	2	2	2	2	2	2	1	2	2	2	2	2	23			
Loading: cBOD5 - Final Effluent (kg/d)	5.287	13.282	15.427	< 6.848	6.998	3.697	8.993	11.471	13.830	12.545	9.481	11.131		< 9.916	15.427	
Biochemical Oxygen Demand: BOD5:																
Total Suspended Solids: TSS:																
Raw: Avg TSS - Raw Sewage (mg/L)	366.000	151.500	174.000	150.500	2155.500	134.500	127.000	67.000	113.000	810.500	80.500	118.000		370.667	2155.500	
Raw: # of samples of TSS - Raw Sewage (mg/L)	2	2	2	2	2	2	1	2	2	2	2	2	23			
Eff: Avg TSS - Final Effluent (mg/L)	4.500	6.500	5.000	7.000	< 2.500	< 6.000	3.000	7.000	4.000	2.500	5.000	< 2.000		< 4.583	7.000	25.0
Eff: # of samples of TSS - Final Effluent (mg/L)	2	2	2	2	2	2	1	2	2	2	2	2	23			
Loading: TSS - Final Effluent (kg/d)	11.895	14.389	15.427	23.967	< 6.998	< 14.788	6.745	22.942	12.294	6.969	11.851	< 4.452		< 12.726	23.967	
Percent Removal: TSS - Raw Sewage (mg/L)	98.770	95.710	97.126	95.349	99.884	95.539	97.638	89.552	96.460	99.692	93.789	98.305			99.884	
Total Phosphorus: TP:																
Raw: Avg TP - Raw Sewage (mg/L)	4.854	3.795	3.568	3.205	3.400	3.327	3.750	2.393	2.166	12.715	2.035	3.006		4.018	12.715	

Raw: # of samples of TP - Raw Sewage (mg/L)	5	4	5	4	4	4	5	4	5	4	4	5	53			
Eff: Avg TP - Final Effluent (mg/L)	0.099	0.394	0.091	0.179	0.080	0.150	0.070	0.051	0.072	0.173	< 0.055	< 0.070		< 0.123	0.394	1.0
Eff: # of samples of TP - Final Effluent (mg/L)	5	4	5	4	4	4	5	4	5	4	4	5	53			
Loading: TP - Final Effluent (kg/d)	0.261	0.871	0.281	0.613	0.224	0.370	0.156	0.167	0.223	0.482	< 0.129	< 0.155		< 0.328	0.871	
Percent Removal: TP - Raw Sewage (mg/L)	97.969	89.631	97.450	94.415	97.647	95.492	98.144	97.868	96.657	98.641	97.322	97.685			98.641	
Nitrogen Series:																
Raw: Avg TKN - Raw Sewage (mg/L)	43.920	35.950	34.140	25.925	31.850	32.375	31.840	21.325	19.040	37.700	22.625	28.160		30.404	43.920	
Raw: # of samples of TKN - Raw Sewage (mg/L)	5	4	5	4	4	4	5	4	5	4	4	5	53			
Eff: Avg TAN - Final Effluent (mg/L)	< 0.687	3.820	3.035	4.873	< 3.210	0.992	1.282	< 1.201	0.862	2.510	3.588	7.980		< 2.837	7.980	20.0 - 15.0 - 10.0 - 15.0 - 25.
Eff: # of samples of TAN - Final Effluent (mg/L)	5	4	5	4	4	4	5	4	5	4	4	5	53			
Loading: TAN - Final Effluent (kg/d)	< 1.816	8.456	9.364	16.682	< 8.986	2.446	2.882	< 3.934	2.649	6.997	8.503	17.765		< 7.540	17.765	
Disinfection:																
Eff: GMD E. Coli - Final Effluent (cfu/100mL)	10.000	10.000	10.000	5.623	10.000	10.000	10.000	10.000	10.000	10.000	10.000	10.000		9.635	10.000	200.0
Eff: # of samples of E. Coli - Final Effluent (cfu/100	4	4	5	4	4	4	5	4	5	4	4	5	52			

Appendix B

Calibration Reports

P.O. Box 337 P: 905-888-0063 F: 905-888-6381 14 Gormley Industrial Ave. Unit #5 Gormley, Ontario L0H-1G0 Canada E-Mail: <u>sales@aciltd.ca</u> Website: WWW.ACILTD.CÁ

FIELD SERVICE REPORT

Quote Date: November 30, 2020

PAGES: 2

.

ACI Instrumentation Limited is pleased to provide you with our field service report for you as follows:

Site Location	n / Date:	ON Site- Krohne Magnetic Flow Meters 13-11-2020 VERIFICATION						
Customer:	Stephen	Bird Clean Water Agency	Telephone: 613-584-3141					
	177 Rive Deep Riv	r Road rer Ontario. K0J 1P0	E-Mail Address: sbird@OCWA.com					

Further to our site visit on November 13, 2020, the Krohne Magnetic flowmeters all PASSED Verification using the Krohne MagCheck and GS8B simulator. The meters / converters settings as found and left after the verification process:

۰.		6
Size: 8 inch	Size: 8 inch	Size: 8 inch
Converter Model # IFC010	Converter Model # IFC010	Converter Model # IFC010
IFC010 - Settings as follows:	IFC010 - Settings as follows:	IFC010 - Settings as follows:
SIZE: 8 inch (200 mm)	SIZE: 8 inch (200 mm)	SIZE: 8 inch (200 mm)
GK: 9.089	GK: 9.346	GK: 9.275
FIELD FREQUENCY: 1/6	FIELD FREQUENCY: 1/6	FIELD FREQUENCY: 1/6
Current Output: 4 - 20mA	Current Output: 4 - 20mA	Current Output: 4 - 20mA
MEASURENMENT: VOLUME FLOW	MEASURENMENT: VOLUME FLOW	MEASURENMENT: VOLUME FLOW
RANGE: 0 to 92.58 l/sec	RANGE: 0 to 333.3 m3/hr	RANGE: 0 to 333.3 m3/hr
Time Constant: 5 sec	Time Constant: 3 sec	Time Constant: 3 sec
Counter:	Counter:	Counter:
Counter: ON	Counter: ON	Counter: ON
Measurement: Volume	Measurement: Volume	Measurement: Volume
Volume: m3	Volume: m3	Volume: m3

Tag # Raw Sewage	Tag # WAS
<u>Size: 10-inch</u>	Size: 3 inch
Converter Model # IFC100W	Converter Model # IFC010
IFC100 - Settings as follows:	IFC010 - Settings as follows:
SIZE: 10-inch (250 mm)	SIZE: 3 inch (80 mm)
GK: 4.372	GK: 2.5
FIELD FREQUENCY: 1/6	FIELD FREQUENCY: 1/6
Current Output: 4 - 20mA	Current Output: 4 - 20mA
MEASURENMENT: VOLUME FLOW	MEASURENMENT: VOLUME FLOW
RANGE: 0 to 175 l/sec	RANGE: 0 to 60 l/sec
Time Constant: 3 sec	Time Constant: 3 sec
Counter:	Counter:
Counter: OFF	Counter: OFF
Measurement: Volume	Measurement: Volume
Volume: m3	Volume: m3

Site Visit Notes:

- Hooked up MAGCHECK Verificator at each IFC010 converter and initiated the verification procedure. See attached PDF certificates and Trend reports. ALL Meters / Converters PASSED verification.

- Hooked up GS8B simulator at the IFC100W converter on the 250mm Raw Sewage flowmeter. Simulated flows and documented results of flow rate indications at converter display.

Note: See copies of GS8B simulation report attached for the Raw Sewage Flow Meter.

Should additional information be required, please feel free to contact us.

Best regards,

Angelo Valente ACI Instrumentation Limited

ACI Instrumentation Limited F.O.B. Gormley, Ontario; Freight and Taxes extra; Terms Net 30 Days.

This quotation is subject to ACI Instrumentation Limited standard terms and conditions of sale; prices valid for 30 days, E. & O.E.

Altometer

KROHNE Altometer Production facility of Krohne AG, Basel

Kerkeplaat 12, 3313 LC Dordrecht P.O. Box 110, 3300 AC Dordrecht The Netherlands

Phone	: (31) (0)78 - 63 06 351
Fax .	: (31) (0)78 - 63 06 394
E-mail	: Helpdesk@Krohne-altometer.ni
Website	: http://Krohne.com

FLOWMETER VERIFICATION CHECK CERTIFICATE

AJV.

13-11-2020 DR WAS

Measurement: Operator:

Flowmeter:

Date of verification:

Flowmeter: Converter type: Number: Order number: Full scale range: Current output: Frequency output: Diameter: PC: Field frequency: Empty pipe:	IFC010 00069498 60 I/s 4 - 20 0-1000 Hz 80 mm / 3 inch 2:5 1/6 No	<u>MagCheck info</u> MagCheck Serial No.; MagCheck date of Calibration:	00640486 05-03-2020
Results: Field current Field frequency ADC 25% ADC 50% ADC 75% ADC 100% Current output 4mA Current output 20mA Pulse output Coil resistance Resistance electrode 1 with filled Resistance electrode 1 with emp Resistance electrode 2 with filled Resistance electrode 2 with filled	l pipe ity pipe l pipe ity pipe	O.K. O.K. O.K. O.K. O.K. O.K. O.K. O.K.	

Based on the verification results stated above, this certificate confirms that the accuracy of this electromagnetic flowmeter is within +/- 1% of the original factory calibration values

Flowmeter: DEEP RIVER WAS

Trends

Device identification: DEEP RIVER WAS Medium: WAS Converter type: IFC010 Number: 00069498 Order number:

 Full scale range:
 60 l/s

 Current output:
 4 - 20

 Frequency output:
 0-1000 Hz

 Diameter:
 80 mm / 3 inch

 PC:
 2,5

 Field frequency:
 1/6

 Empty pipe:
 No

Field current Nullvalue: 133.237 mA Lower limit: 132.837 mA (-0.3%) Upper limit: 133.637 mA (+0.3%) 29-08-2014: 133.179 mA (-0.05%)

Field frequency Nullvalue: 9.167 Hz Lower limit: 7.792 Hz (-15%) Upper limit: 10.542 Hz (+15%) 29-08-2014; 9.999 Hz (-8.32%)

ADC 25% Nullyatue: 25 % Lower timit: 24,9 % (-0.4%) Upper limit: 25,1 % (+0,4%) 29-08-2014: 24,981 % (-0.08%)

ADC 50% Nutlvalue; 50 % Lower limit; 49,8 % (-0.4%) Upper limit: 50.2 % (+0.4%) 29-08-2014; 49,964 % (-0.08%)

ADC 75% Nullvalue: 75 % Lower limit: 74.7 % (-0.4%) Upper limit: 75.3 % (+0.4%) 29-08-2014: 74.95 % (-0.07%)

ADC 100% Nullvalue: 100 % Lower limit: 99.6 % (-0.4%) Upper limit: 100.4 % (+0.4%) 29-08-2014: 99.941 % (-0.06%)

Current output 4mA Nullvalue: 4 mA __Lower limit: 3.968 mA (-0.3% - 0.02 mA) Upper limit: 4.032 mA (+0.3% + 0.02 mA) 29-08-2014; 3.998 mA (-0.06%)

Current output 20mA Nullvalue: 20 mA Lower limit: 19.92 mA (-0.3% - 0.02 mA) Upper limit: 20.08 mA (+0.3% + 0.02 mA) 29-08-2014: 19.991 mA (-0.05%)

Pulse output Nutlvalue: 500 Hz Lower limit: 499 Hz (-0.2%) Upper limit: 501 Hz (+0.2%) 29-08-2014: 499.975 Hz (-0.01%)

Coil resistance Lower limit: 30 Ohm Upper limit: 250 Ohm 29-08-2014: 104.108 Ohm

Resistance electrode 1 with filled pipe Lower limit: 0,15 kOhm Upper limit: 250 kOhm Electrode Interruption 29-08-2014: > 21 MOhm

Resistance electrode 1 with empty pipe 29-08-2014: Not measured

Resistance electrode 2 with filled pipe Lower limit: 0.15 kOhm Upper limit: 250 kOhm Electrode interruption 29-08-2014: > 21 MOhm

Resistance electrode 2 with empty pipe 29-08-2014: Not measured

Isolation Lower limit: 2 MOhm 29-08-2014: 21 MOhm

ш	
Z	
I	
œ	
\mathbf{X}	
_	

GS 8 B On-Site Verification Record

GS 8'B STANDARD'SETTINGS his spreadsheet is protected, thus entry is only allowed in accesible fields, drop-down boxes & bright green cells. o use this calculator, you will only need to input requested information in the bright green cells from your data tags. he Converter type, engineering units, diameter and frequency have drop down boxes, allowing the user to simply choose from the fist. his spreadsheet will automatically choose inch or metric (depending upon the converter), and state which GK(L) to use. rinting of the programming results is allowed by simply choosing "Print" through your File menu.	<u>oportant.</u> If there is a flowrate value present at the GS8 B zero flow setting, you must compensate to obtain proper evaluation values. (ther manually set converter zero value entry(record original for restoration) or zero converter (zero calibration to be redone for reconnect with primary head), unable to manually set zero value entry or redo zero calibration after reconnecting, then use the offset-compensated tables on second sheet of this spreadsheet calculator + Zero Compensation). Be aware for possible low flow cutoff setting effects.
--	--

המוס הו	acol deu.	12/2/11/21		Serial #:
Flow Tube	Model #:	Aquaflux 20	DOF	
		DATA	NPUT AREAS 1 Green)	×
	INPUT /	ARIABLES		
Converter		4	FC 100	Y _{MAX} =
2 Fuliscale	a	175	liters/sett	
elect Meter	1	Inc	th thm	Max Knob
Dia.	1	01	/ 250	Setting
ND	H	250	шш	
Diameter	11	10	Inch (ref only)	
lo%	11	ġ	ШA	
1100%	ü	20	mA	
P 100% (Hz)	n		Hz	
GK	n		selo not use	
GKL	H.	4,3720	 use GKL 	
¥	п	Value auto	matically chosen	
		from K	value table	

1	e - 91			1	-
Tag #: Raw Sewage	Tested by: A. Valente	5.351	= 18.952 mA	П,	= 163.533 liters/sec
		<u>1462053.283</u> 273250	lloop _{Max}	Freq _{Max}	Q _{Max}
		H	Output Current	Output Frequency	Output Flow Rate
S16319115	Commission #:	Q _{100%} * K * F GK(L) * DN ²	5.0	Q	
ہ: 12 #	Ÿ	20 B	II ×	Knob stting	•

Knob	Calculated Current Output	Calculated	Calculated Flowrate	Selected	Devlation Evaluation
ting	(mA)	Hz	(liters/sec)	Flow Rate	Flow Rate
	4.000		0.00	0.000	0.000
8	5.495		16.35	18,340	-0.08%
m	6.990		32.71	32.700	-0.02%
0	9.981		65.41	65,400	-0.02%
0	18.952		163.53	183.520	-0.01%
411		24			

KROHNE GS 8 B Calculator, Sheet: Calculator

,

Record printed: 2020-12-15 12:19 PM

Page 1 of 1